Factor-11/8 NP-inapproximability for 2-Variable Linear Equations

Sangxia Huang

EPFL Switzerland

Joint work with Johan Håstad Rajsekar Manokaran Ryan O'Donnell John Wright

2-Variable Linear Equations

Definition (E2LIN_q)

System of \mathbb{F}_q linear equations, each containing exactly two variables.

Example of an E2LIN₂ instance

$$\begin{aligned}
 x_1 + x_4 &= 1 \\
 x_3 + x_5 &= 0 \\
 x_2 + x_5 &= 0
 \end{aligned}$$

. . .

2-Variable Linear Equations

Definition (E2LIN_q)

System of \mathbb{F}_q linear equations, each containing exactly two variables.

Example of an E2LIN₂ instance

$$\begin{aligned}
 x_1 + x_4 &= 1 \\
 x_3 + x_5 &= 0 \\
 x_2 + x_5 &= 0
 \end{aligned}$$

. . .

Equivalent to Unique-Games

[Khot, Kindler, Mossel, O'Donnell '07], [Mossel, O'Donnell, Oleszkiewicz '10]

Definition (($\varepsilon, \varepsilon'$)-approximation algorithm)

Given an instance in which the best solution falsifies at most an ε -fraction of the equations, the algorithm finds a solution falsifying at most an ε' -fraction of the equations.

Definition (($\varepsilon, \varepsilon'$)-approximation algorithm)

Given an instance in which the best solution falsifies at most an ε -fraction of the equations, the algorithm finds a solution falsifying at most an ε' -fraction of the equations.

Simple observation: there is a (0,0)-approximation algorithm for E2LIN_q.

• $(\varepsilon, \frac{2}{\pi}\sqrt{\varepsilon} + o(\varepsilon))$ -approximation algorithm for E2LIN₂ [Goemans, Williamson '94]

- $(\varepsilon, \frac{2}{\pi}\sqrt{\varepsilon} + o(\varepsilon))$ -approximation algorithm for E2LIN₂ [Goemans, Williamson '94]
- $(\varepsilon, C_q \sqrt{\varepsilon})$ -approximation for E2LIN_q, for some $C_q = \Theta(\sqrt{\log q})$ [Charikar, Makarychev, Makarychev, '06]

- $(\varepsilon, \frac{2}{\pi}\sqrt{\varepsilon} + o(\varepsilon))$ -approximation algorithm for E2LIN₂ [Goemans, Williamson '94]
- $(\varepsilon, C_q \sqrt{\varepsilon})$ -approximation for E2LIN_q, for some $C_q = \Theta(\sqrt{\log q})$ [Charikar, Makarychev, Makarychev, '06]
- UGC implies that improving on the above algorithms is NP-hard

[Khot, Kindler, Mossel, O'Donnell '07], [Mossel, O'Donnell, Oleszkiewicz '10]

- $(\varepsilon, \frac{2}{\pi}\sqrt{\varepsilon} + o(\varepsilon))$ -approximation algorithm for E2LIN₂ [Goemans, Williamson '94]
- $(\varepsilon, C_q \sqrt{\varepsilon})$ -approximation for E2LIN_q, for some $C_q = \Theta(\sqrt{\log q})$ [Charikar, Makarychev, Makarychev, '06]
- UGC implies that improving on the above algorithms is NP-hard

[Khot, Kindler, Mossel, O'Donnell '07], [Mossel, O'Donnell, Oleszkiewicz '10]

If there exists q = q(ε) such that (ε, ω(√ε))-approximating E2LIN_q is NP-hard, then UGC holds [Rao '11]

NP-hardness for Approximating E2LIN2

Theorem (Håstad '97)

For any $C < \frac{5}{4}$ and $0 < \varepsilon < \varepsilon_0 = \frac{1}{4}$, $(\varepsilon, C\varepsilon)$ -approximating E2LIN₂ is NP-hard.

NP-hardness for Approximating E2LIN2

Theorem (Håstad '97)

For any $C < \frac{5}{4}$ and $0 < \varepsilon < \varepsilon_0 = \frac{1}{4}$, $(\varepsilon, C\varepsilon)$ -approximating E2LIN₂ is NP-hard.

▶ The same hardness holds for any q, and $\varepsilon_0 \rightarrow \frac{1}{2}$ as $q \rightarrow \infty$ [O'Donnell, Wright '12]

NP-hardness for Approximating E2LIN2

For any $C < \frac{11}{8}$, $0 < \varepsilon < \varepsilon_0 = \frac{1}{8}$, it is NP-hard to $(\varepsilon, C\varepsilon)$ -approximate E2LIN₂.

For any $C < \frac{11}{8}$, $0 < \varepsilon < \varepsilon_0 = \frac{1}{8}$, it is NP-hard to $(\varepsilon, C\varepsilon)$ -approximate E2LIN₂.

• Proof by gadget reduction from CSP with some predicate ϕ

For any $C < \frac{11}{8}$, $0 < \varepsilon < \varepsilon_0 = \frac{1}{8}$, it is NP-hard to $(\varepsilon, C\varepsilon)$ -approximate E2LIN₂.

- Proof by gadget reduction from CSP with some predicate ϕ
- Our gadget is optimal among all gadget reductions from ϕ

For any $C < \frac{11}{8}$, $0 < \varepsilon < \varepsilon_0 = \frac{1}{8}$, it is NP-hard to $(\varepsilon, C\varepsilon)$ -approximate E2LIN₂.

- Proof by gadget reduction from CSP with some predicate ϕ
- Our gadget is optimal among all gadget reductions from ϕ
- For any predicate ψ whose set of satisfying assignments supports a pairwise independent distribution, no gadget reduction from CSP with predicate ψ can establish NP-hardness factor better than ¹/_{1-e^{-1/2}} ≈ 2.54

Gadget Reduction for $(\varepsilon, \frac{5}{4}\varepsilon)$ -hardness of E2LIN₂

[Håstad '97][Trevisan, Sorkin, Sudan, Williamson '00]

Theorem (Håstad '97)

For any $k \ge 3$ and $\varepsilon > 0$, $(\varepsilon, \frac{1}{2} - \varepsilon)$ -approximating $EkLIN_2$ is NP-hard.

Theorem (Håstad '97)

For any $k \ge 3$ and $\varepsilon > 0$, $(\varepsilon, \frac{1}{2} - \varepsilon)$ -approximating $\mathsf{E}k\mathsf{Lin}_2$ is NP-hard.

- Take k = 3
- Let z be a global auxiliary variable

Theorem (Håstad '97)

For any $k \ge 3$ and $\varepsilon > 0$, $(\varepsilon, \frac{1}{2} - \varepsilon)$ -approximating $\mathsf{E}k\mathsf{Lin}_2$ is NP-hard.

- Take k = 3
- Let z be a global auxiliary variable
- Consider an equation

$$x_1 + x_2 + x_3 = 0.$$

Theorem (Håstad '97)

For any $k \ge 3$ and $\varepsilon > 0$, $(\varepsilon, \frac{1}{2} - \varepsilon)$ -approximating $\mathsf{E}k\mathsf{Lin}_2$ is NP-hard.

- Take k = 3
- Let z be a global auxiliary variable
- Consider an equation

$$x_1 + x_2 + x_3 = 0.$$

Introduce variables y₁, y₂, y₃, y₄, and constraints

$$\begin{array}{lll} z+y_1=1, & z+y_2=1, & z+y_3=1, & z+y_4=0, \\ x_1+y_1=1, & x_1+y_2=1, & x_1+y_3=0, & x_1+y_4=1, \\ x_2+y_1=1, & x_2+y_2=0, & x_2+y_3=1, & x_2+y_4=1, \\ x_3+y_1=0, & x_3+y_2=1, & x_3+y_3=1, & x_3+y_4=1. \end{array}$$

Take k = 3

- Let z be a global auxiliary variable
- Consider an equation

$$x_1 + x_2 + x_3 = 0$$

Introduce variables y₁, y₂, y₃, y₄, and constraints

$$\begin{array}{lll} z+y_1=1, & z+y_2=1, & z+y_3=1, & z+y_4=0, \\ x_1+y_1=1, & x_1+y_2=1, & x_1+y_3=0, & x_1+y_4=1, \\ x_2+y_1=1, & x_2+y_2=0, & x_2+y_3=1, & x_2+y_4=1, \\ x_3+y_1=0, & x_3+y_2=1, & x_3+y_3=1, & x_3+y_4=1. \end{array}$$

Take k = 3

- Let z be a global auxiliary variable
- Consider an equation

$$x_1 + x_2 + x_3 = 0.$$

Introduce variables y₁, y₂, y₃, y₄, and constraints

$$\begin{array}{lll} z+y_1=1, & z+y_2=1, & z+y_3=1, & z+y_4=0, \\ x_1+y_1=1, & x_1+y_2=1, & x_1+y_3=0, & x_1+y_4=1, \\ x_2+y_1=1, & x_2+y_2=0, & x_2+y_3=1, & x_2+y_4=1, \\ x_3+y_1=0, & x_3+y_2=1, & x_3+y_3=1, & x_3+y_4=1. \end{array}$$

Let σ be an assignment to x₁, x₂ and x₃

- If σ satisfies the equation, then there is an assignment to the auxiliary variables that falsifies 4 equations
- Otherwise any assignment to the auxiliary variables falsify at least 6 equations

Take k = 3

- Let z be a global auxiliary variable
- Consider an equation

$$x_1 + x_2 + x_3 = 0.$$

Introduce variables y₁, y₂, y₃, y₄, and constraints

$$\begin{array}{lll} z+y_1=1, & z+y_2=1, & z+y_3=1, & z+y_4=0, \\ x_1+y_1=1, & x_1+y_2=1, & x_1+y_3=0, & x_1+y_4=1, \\ x_2+y_1=1, & x_2+y_2=0, & x_2+y_3=1, & x_2+y_4=1, \\ x_3+y_1=0, & x_3+y_2=1, & x_3+y_3=1, & x_3+y_4=1. \end{array}$$

Let σ be an assignment to x₁, x₂ and x₃

- If σ satisfies the equation, then there is an assignment to the auxiliary variables that falsifies 4 equations
- Otherwise any assignment to the auxiliary variables falsify at least 6 equations

$$\Rightarrow (\frac{4}{16} + \varepsilon, \frac{5}{16} - \varepsilon)$$
-hardness for E2LIN₂

[Trevisan, Sorkin, Sudan, Williamson '00]

For each satisfying assignment to x₁,x₂,x₃, setting the auxiliary variables according to the matrix above achieves unsat at most C

- For each satisfying assignment to x₁,x₂,x₃, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x₁,x₂,x₃, any assignment to the auxiliary variable gives unsat at least S

- For each satisfying assignment to x₁,x₂,x₃, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x₁,x₂,x₃, any assignment to the auxiliary variable gives unsat at least S
- Key Observation: If two columns y_i and y_j are identical, then merging them gives a new gadget that is as good

- For each satisfying assignment to x₁,x₂,x₃, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x₁,x₂,x₃, any assignment to the auxiliary variable gives unsat at least S
- ► Key Observation: If two columns y_i and y_j are identical, then merging them gives a new gadget that is as good ⇒ Need at most 2⁴ = 16 variables in the gadget

- For each satisfying assignment to x₁,x₂,x₃, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x₁,x₂,x₃, any assignment to the auxiliary variable gives unsat at least S
- ► Key Observation: If two columns y_i and y_j are identical, then merging them gives a new gadget that is as good ⇒ Need at most 2⁴ = 16 variables in the gadget
- Search of optimal gadget as LP

- For each satisfying assignment to x₁,x₂,x₃, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x₁,x₂,x₃, any assignment to the auxiliary variable gives unsat at least S
- ► Key Observation: If two columns y_i and y_j are identical, then merging them gives a new gadget that is as good ⇒ Need at most 2⁴ = 16 variables in the gadget
- Search of optimal gadget as LP
 - $\sim \binom{16}{2}$ variables and $\sim 2^{16}$ constraints

- For each satisfying assignment to x₁,x₂,x₃, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x₁,x₂,x₃, any assignment to the auxiliary variable gives unsat at least S
- ► Key Observation: If two columns y_i and y_j are identical, then merging them gives a new gadget that is as good ⇒ Need at most 2⁴ = 16 variables in the gadget
- Search of optimal gadget as LP
 - $\sim \binom{16}{2}$ variables and $\sim 2^{16}$ constraints
 - Certificate of optimality via dual LP

Definition (*Had_r*)

The *Had*_{*r*} predicate has $k = 2^r$ input variables, one for each subset $S \subseteq [r]$. The input $\{x_S\}_{S \subseteq [r]}$ satisfies *Had*_{*r*} if for each *S*, $|S| \ge 2, x_{\emptyset} + x_S = \sum_{i \in S} (x_{\emptyset} + x_{\{i\}})$.

Definition (*Had_r*)

The *Had*_{*r*} predicate has $k = 2^r$ input variables, one for each subset $S \subseteq [r]$. The input $\{x_S\}_{S \subseteq [r]}$ satisfies *Had*_{*r*} if for each *S*, $|S| \ge 2$, $x_{\emptyset} + x_S = \sum_{i \in S} (x_{\emptyset} + x_{\{i\}})$.

- The Had_r predicate has 2^{r+1} satisfying assignments.
- The Had₂ predicate is exactly E4LIN₂.

Definition (*Had_r*)

The *Had*_{*r*} predicate has $k = 2^r$ input variables, one for each subset $S \subseteq [r]$. The input $\{x_S\}_{S \subseteq [r]}$ satisfies *Had*_{*r*} if for each *S*, $|S| \ge 2$, $x_{\emptyset} + x_S = \sum_{i \in S} (x_{\emptyset} + x_{\{i\}})$.

- The Had_r predicate has 2^{r+1} satisfying assignments.
- ► The *Had*₂ predicate is exactly E4LIN₂.

Theorem (Chan '13)

For every $r \ge 2$ and $\varepsilon > 0$, $(\varepsilon, 1 - 2^{r+1}/2^{2^r} - \varepsilon)$ -approximating Had_r-CSP is NP-hard.

• Predicate
$$\phi : \{0, 1\}^k \to \{0, 1\}$$

- Predicate $\phi: \{0, 1\}^k \to \{0, 1\}$
- Variable set V

- Predicate $\phi : \{0, 1\}^k \to \{0, 1\}$
- Variable set V
- Distribution of ϕ -constraints $C \sim I$, where

$$C = ((x_1, b_1), \dots, (x_k, b_k)), \quad x_i \in V, b_i \in \{0, 1\}$$

A $\phi\text{-}\mathsf{CSP}$ instance $\mathcal I$

- Predicate $\phi : \{0, 1\}^k \to \{0, 1\}$
- Variable set V
- Distribution of ϕ -constraints $C \sim I$, where

$$C = ((x_1, b_1), \dots, (x_k, b_k)), \quad x_i \in V, b_i \in \{0, 1\}$$

• Assignment $A: V \rightarrow \{0, 1\}$ satisfies constraint C if

$$\phi(b_1 + A(x_1), \ldots, b_k + A(x_k)) = 1.$$

A $\phi\text{-}\mathsf{CSP}$ instance $\mathcal I$

- Predicate $\phi : \{0, 1\}^k \to \{0, 1\}$
- Variable set V
- Distribution of ϕ -constraints $C \sim I$, where

$$C = ((x_1, b_1), \dots, (x_k, b_k)), \quad x_i \in V, b_i \in \{0, 1\}$$

• Assignment $A: V \rightarrow \{0, 1\}$ satisfies constraint C if

$$\phi(b_1 + A(x_1), \ldots, b_k + A(x_k)) = 1.$$

• The value of A on \mathcal{I} : $unsat(A; \mathcal{I}) = \Pr_{\mathcal{C} \sim \mathcal{I}}[A \text{ falsifies } \mathcal{C}].$

A $\phi\text{-}\mathsf{CSP}$ instance $\mathcal I$

• Assignment $A: V \rightarrow \{0, 1\}$

A ϕ -CSP instance \mathcal{I}

- Assignment $A: V \rightarrow \{0, 1\}$
- ▶ Distribution $\mathcal{D}(A, \mathcal{I})$
 - **1.** Sample $((x_1, b_1), \dots, (x_k, b_k)) \sim \mathcal{I}$
 - **2.** Output $(b_1 + A(x_1), \ldots, b_k + A(x_k))$

A ϕ -CSP instance \mathcal{I}

- Assignment $A: V \rightarrow \{0, 1\}$
- ▶ Distribution $\mathcal{D}(A, \mathcal{I})$
 - 1. Sample $((x_1, b_1), \ldots, (x_k, b_k)) \sim \mathcal{I}$
 - **2.** Output $(b_1 + A(x_1), \ldots, b_k + A(x_k))$

Example:

 $\phi(x_1, x_2, \overline{x_3})$ $\phi(x_3, x_1, x_4)$ $\phi(\overline{x_2}, x_3, x_4)$

Assignment $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1$.

$$\Pr_{\substack{(b_1, b_2, b_3) \sim \mathcal{D} \\ (b_1, b_2, b_3) \sim \mathcal{D}}} [(b_1, b_2, b_3) = (0, 1, 1)] = 1/3$$

$$\Pr_{\substack{(b_1, b_2, b_3) \sim \mathcal{D}}} [(b_1, b_2, b_3) = (0, 0, 1)] = 2/3.$$

Theorem (Håstad '97, restated)

For any $\varepsilon > 0$, given a EkLiN₂ instance, it is NP-hard to distinguish between the following two cases

Completeness $unsat(\mathcal{I}) \leq \varepsilon$

Soundness For every assignment A, $d_{TV}(\mathcal{D}(A, \mathcal{I}), \mathcal{U}_k) \leq \varepsilon$

Theorem (Håstad '97, restated)

For any $\varepsilon > 0$, given a EkLiN₂ instance, it is NP-hard to distinguish between the following two cases

Completeness $unsat(\mathcal{I}) \leq \varepsilon$

Soundness For every assignment A, $d_{TV}(\mathcal{D}(A, \mathcal{I}), \mathcal{U}_k) \leq \varepsilon$

Theorem (Chan '13, restated)

For every $r \ge 2$ and $\varepsilon > 0$, given an Had_r-CSP instance \mathcal{I} , it is NP-hard to distinguish between the following two cases:

Completeness $unsat(\mathcal{I}) \leq \varepsilon$

Soundness For every assignment A, $d_{TV}(\mathcal{D}(A, \mathcal{I}), \mathcal{U}_{2^r}) \leq \varepsilon$.

A simple $(\varepsilon, \frac{5}{4}\varepsilon)$ -hardness gadget reduction from a E4LIN₂ instance \mathcal{I} to a E2LIN₂ instance \mathcal{J} :

A simple $(\varepsilon, \frac{5}{4}\varepsilon)$ -hardness gadget reduction from a E4LIN₂ instance \mathcal{I} to a E2LIN₂ instance \mathcal{J} :

$$x_1 + x_2 + x_3 + x_4 = 0$$

A simple $(\varepsilon, \frac{5}{4}\varepsilon)$ -hardness gadget reduction from a E4LIN₂ instance \mathcal{I} to a E2LIN₂ instance \mathcal{J} :

$$\Rightarrow x_1 + x_2 + x_3 + x_4 = 0$$

$$\Rightarrow x_1 + y = 0, x_2 + y = 0, x_3 + y = 0, x_4 + y = 1$$

A simple $(\varepsilon, \frac{5}{4}\varepsilon)$ -hardness gadget reduction from a E4LIN₂ instance \mathcal{I} to a E2LIN₂ instance \mathcal{J} :

$$x_1 + x_2 + x_3 + x_4 = 0 \Rightarrow x_1 + y = 0, x_2 + y = 0, x_3 + y = 0, x_4 + y = 1$$

If x₁ + x₂ + x₃ + x₄ = 0, we can set y such that only 1 of the equations are violated

A simple $(\varepsilon, \frac{5}{4}\varepsilon)$ -hardness gadget reduction from a E4LIN₂ instance \mathcal{I} to a E2LIN₂ instance \mathcal{J} :

$$x_1 + x_2 + x_3 + x_4 = 0 \Rightarrow x_1 + y = 0, x_2 + y = 0, x_3 + y = 0, x_4 + y = 1$$

If x₁ + x₂ + x₃ + x₄ = 0, we can set y such that only 1 of the equations are violated
 ⇒ If unsat(I) ≤ ε, then unsat(J) ≤ ¼ + ¾ε

A simple $(\varepsilon, \frac{5}{4}\varepsilon)$ -hardness gadget reduction from a E4LIN₂ instance \mathcal{I} to a E2LIN₂ instance \mathcal{J} :

$$x_1 + x_2 + x_3 + x_4 = 0 \Rightarrow x_1 + y = 0, x_2 + y = 0, x_3 + y = 0, x_4 + y = 1$$

If x₁ + x₂ + x₃ + x₄ = 0, we can set y such that only 1 of the equations are violated
 ⇒ If unsat(I) ≤ ε, then unsat(J) ≤ ¹/₄ + ³/₄ε

• If $x_1 = x_2 = x_3 = 1 + x_4$ then $y = x_1$ satisfies all equations

A simple $(\varepsilon, \frac{5}{4}\varepsilon)$ -hardness gadget reduction from a E4LIN₂ instance \mathcal{I} to a E2LIN₂ instance \mathcal{J} :

$$\Rightarrow x_1 + x_2 + x_3 + x_4 = 0$$

$$\Rightarrow x_1 + y = 0, x_2 + y = 0, x_3 + y = 0, x_4 + y = 1$$

If x₁ + x₂ + x₃ + x₄ = 0, we can set y such that only 1 of the equations are violated
 ⇒ If unsat(I) ≤ ε, then unsat(J) ≤ ¹/₄ + ³/₄ε

• If $x_1 = x_2 = x_3 = 1 + x_4$ then $y = x_1$ satisfies all equations

In all other cases, the best assignment to y violates 2 equations

A simple $(\varepsilon, \frac{5}{4}\varepsilon)$ -hardness gadget reduction from a E4LIN₂ instance \mathcal{I} to a E2LIN₂ instance \mathcal{J} :

$$\Rightarrow x_1 + x_2 + x_3 + x_4 = 0$$

$$\Rightarrow x_1 + y = 0, x_2 + y = 0, x_3 + y = 0, x_4 + y = 1$$

If x₁ + x₂ + x₃ + x₄ = 0, we can set y such that only 1 of the equations are violated
 ⇒ If unsat(I) ≤ ε, then unsat(J) ≤ ¹/₄ + ³/₄ε

• If $x_1 = x_2 = x_3 = 1 + x_4$ then $y = x_1$ satisfies all equations

- In all other cases, the best assignment to y violates 2 equations
- ▶ If for every assignment A, $d_{TV}(\mathcal{D}(A, \mathcal{I}), \mathcal{U}_k) \leq \varepsilon$, then $unsat(\mathcal{J}) \geq \frac{2}{16} \cdot \frac{0}{4} + \frac{8}{16} \cdot \frac{1}{4} + \frac{6}{16} \cdot \frac{2}{4} - \varepsilon = \frac{5}{16} - \varepsilon$

Definition (Had_r)

- ► The gadget needs at most 2^{2^r} variables (primary and auxiliary), V := {0, 1}^{2^r}
 - ▶ *V* as the set of Boolean functions on *r* bits *b*₁,...,*b*_{*r*}

- ► The gadget needs at most 2^{2^r} variables (primary and auxiliary), V := {0, 1}^{2^r}
 - ▶ *V* as the set of Boolean functions on *r* bits *b*₁,...,*b*_{*r*}
- Identify the primary variables with linear functions on r bits

$$\mathbf{P} := \left\{ \sum_{i \in S} b_i \mid S \subseteq [r] \right\}.$$

The *Had*_{*r*} predicate has $k = 2^r$ input variables, one for each subset $S \subseteq [r]$. The input $\{x_S\}_{S \subseteq [r]}$ satisfies *Had*_{*r*} if for each *S*, $|S| \ge 2$, $x_S + x_{\emptyset} = \sum_{i \in S} (x_i + x_{\emptyset})$.

- ► The gadget needs at most 2^{2^r} variables (primary and auxiliary), V := {0, 1}^{2^r}
 - ▶ *V* as the set of Boolean functions on *r* bits *b*₁,...,*b*_{*r*}

Identify the primary variables with linear functions on r bits

$$P:=\left\{\sum_{i\in S}b_i\mid S\subseteq [r]\right\}.$$

For $i \in \{0, 1\}^r$, define the *i*-th dictator assignment $D_i(f) := f(i)$

- ► The gadget needs at most 2^{2^r} variables (primary and auxiliary), V := {0, 1}^{2^r}
 - ▶ *V* as the set of Boolean functions on *r* bits *b*₁,...,*b*_{*r*}
- Identify the primary variables with linear functions on r bits

$$P:=\left\{\sum_{i\in S}b_i\mid S\subseteq [r]\right\}.$$

- For $i \in \{0, 1\}^r$, define the *i*-th dictator assignment $D_i(f) := f(i)$
 - The value of the primary variables under D_i and 1 + D_i satisfy Had_r

Definition

A (*c*, *s*)-gadget reducing Had_r to E2LIN₂ is a gadget G satisfying the following properties:

Completeness For every dictator assignment D_i , $unsat(D_i, \mathcal{G}) \leq c$

Soundness The expected $unsat(\cdot; G)$ over uniformly random assignments to the primary variables is at least *s*.

Definition

A (*c*, *s*)-gadget reducing Had_r to E2LIN₂ is a gadget G satisfying the following properties:

Completeness For every dictator assignment D_i , $unsat(D_i, \mathcal{G}) \leq c$

Soundness The expected $unsat(\cdot; G)$ over uniformly random assignments to the primary variables is at least *s*.

Proposition

Suppose there exists a (c, s)-gadget reducing Had_r to E2LIN₂, then given an E2LIN₂instance \mathcal{I} , it is NP-hard to distinguish

Completeness $unsat(\mathcal{I}) \leq c + \varepsilon$

Soundness $unsat(\mathcal{I}) \geq s - \varepsilon$

Constructing Gadgets for $Had_r \to \mathsf{E2LIN}_2$ $\mathsf{Our}\;(\frac{1}{8},\frac{11}{64})\text{-}\mathsf{Gadget}$

. . .

. . .

► Had₂: s/c = 5/4 (= 1.25)

• Had_{∞} : ?

. . .

 $s/c \ge 3/2$ if a certain Game Show Conjecture is true

Theorem

Let G be a (c, s)-gadget reducing Had_r to E2LIN₂. Then

$$\displaystyle rac{s}{c} \leq \displaystyle rac{1}{1-e^{-1/2}} pprox 2.54$$

Theorem

Let G be a (c, s)-gadget reducing Had_r to E2LIN₂. Then

$$\displaystyle rac{s}{c} \leq \displaystyle rac{1}{1-e^{-1/2}} pprox 2.54$$

Remark

We can assume that all equations in the gadget has the form x + y = 0, where x and y are at Hamming distance 1, as long as we only consider assignments A such that A(1 + x) = 1 + A(x).

Limitation of Gadget Construction

Let $K := 2^{r+1}$ be the number of satisfying assignments of Had_r .

Let $K := 2^{r+1}$ be the number of satisfying assignments of Had_r . Let P^{\pm} be the set of primary variables and their negations.

Let $K := 2^{r+1}$ be the number of satisfying assignments of Had_r . Let P^{\pm} be the set of primary variables and their negations. For $x, y \in \{0, 1\}^K$, define their similarity

$$sim(x, y) := Pr_{i \sim [K]}[x_i = y_i],$$

and

$$sim(x, P^{\pm}) = \max_{y \in P^{\pm}} sim(x, y).$$

Let $K := 2^{r+1}$ be the number of satisfying assignments of Had_r . Let P^{\pm} be the set of primary variables and their negations. For $x, y \in \{0, 1\}^K$, define their similarity

$$sim(x, y) := Pr_{i \sim [K]}[x_i = y_i],$$

and

$$sim(x, P^{\pm}) = \max_{y \in P^{\pm}} sim(x, y).$$

Observation

For any $x \in V$, if there exists $y \in P^{\pm}$, such that $sim(x, y) > \frac{3}{4}$, then for all other $y' \in P^{\pm}$, $sim(x, y') < \frac{3}{4}$.

Let \mathcal{D} be a distribution over $\begin{bmatrix} 3\\4 \end{bmatrix}$, 1] with probability density function $\mathcal{D}(t) = C \cdot e^{2t}$, for $t \in \begin{bmatrix} 3\\4 \end{bmatrix}$, 1].

Let \mathcal{D} be a distribution over $\begin{bmatrix} 3\\4 \end{bmatrix}$, 1] with probability density function $\mathcal{D}(t) = C \cdot e^{2t}$, for $t \in \begin{bmatrix} 3\\4 \end{bmatrix}$, 1].

1. Pick a number $t \sim D$

Let \mathcal{D} be a distribution over $\begin{bmatrix} 3\\4 \end{bmatrix}$, 1] with probability density function $\mathcal{D}(t) = C \cdot e^{2t}$, for $t \in \begin{bmatrix} 3\\4 \end{bmatrix}$, 1].

- **1**. Pick a number $t \sim D$
- 2. Pick a uniformly random index $i \in [K]$, and let D_i be the corresponding dictator

Let \mathcal{D} be a distribution over $\begin{bmatrix} \frac{3}{4}, 1 \end{bmatrix}$ with probability density function $\mathcal{D}(t) = C \cdot e^{2t}$, for $t \in \begin{bmatrix} \frac{3}{4}, 1 \end{bmatrix}$.

- **1**. Pick a number $t \sim D$
- 2. Pick a uniformly random index $i \in [K]$, and let D_i be the corresponding dictator
- For variable x ∈ V, if sim(x, P[±]) > t, assign x the value of its closest primary variable, otherwise assign x according to D_i.

Consider an equation x + y = 0.

Consider an equation x + y = 0. $sim(x, P^{\pm}) \le 3/4$, $sim(y, P^{\pm}) \le 3/4$ Expected *unsat* is 1/K. Consider an equation x + y = 0. $sim(x, P^{\pm}) \le 3/4$, $sim(y, P^{\pm}) \le 3/4$ Expected *unsat* is 1/K. $sim(x, P^{\pm}) > sim(y, P^{\pm}) =: s$, $sim(x, P^{\pm}) > 3/4$ We have $sim(x, P^{\pm}) = s + 1/K$, and $s \ge 3/4$. Consider an equation x + y = 0. $sim(x, P^{\pm}) \le 3/4$, $sim(y, P^{\pm}) \le 3/4$ Expected unsat is 1/K. $sim(x, P^{\pm}) > sim(y, P^{\pm}) =: s$, $sim(x, P^{\pm}) > 3/4$ We have $sim(x, P^{\pm}) = s + 1/K$, and $s \ge 3/4$. If $t \in [3/4, s)$, then x + y = 0 always satisfied. Consider an equation x + y = 0. $sim(x, P^{\pm}) \le 3/4$, $sim(y, P^{\pm}) \le 3/4$ Expected *unsat* is 1/K. $sim(x, P^{\pm}) > sim(y, P^{\pm}) =: s$, $sim(x, P^{\pm}) > 3/4$ We have $sim(x, P^{\pm}) = s + 1/K$, and $s \ge 3/4$. If $t \in [3/4, s)$, then x + y = 0 always satisfied. If $t \in [s, s + 1/K)$, expected *unsat* is 1/2. Consider an equation x + y = 0. $sim(x, P^{\pm}) \le 3/4$, $sim(y, P^{\pm}) \le 3/4$ Expected *unsat* is 1/K. $sim(x, P^{\pm}) > sim(y, P^{\pm}) =: s$, $sim(x, P^{\pm}) > 3/4$ We have $sim(x, P^{\pm}) = s + 1/K$, and $s \ge 3/4$. If $t \in [3/4, s)$, then x + y = 0 always satisfied. If $t \in [s, s + 1/K)$, expected *unsat* is 1/2. If $t \in [s + 1/K, 1]$, expected *unsat* is 1/K.

- Optimal gadget reduction for E2LIN₂ from stronger hardness guarantees for Had₃-CSP
- Limitations of gadget construction for showing hardness of E2LIN₂

Thank you!