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2-Variable Linear Equations

Definition (E2LINq)
System of Fq linear equations, each containing exactly two
variables.

Example of an E2LIN2 instance

x1 + x4 = 1
x3 + x5 = 0
x2 + x5 = 0

. . .

Equivalent to Unique-Games
[Khot, Kindler, Mossel, O’Donnell ’07], [Mossel, O’Donnell,
Oleszkiewicz ’10]
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Approximation for 2-Variable Linear Equations

Definition ((ε, ε′)-approximation algorithm)
Given an instance in which the best solution falsifies at most an
ε-fraction of the equations, the algorithm finds a solution
falsifying at most an ε′-fraction of the equations.

I Simple observation: there is a (0,0)-approximation
algorithm for E2LINq.
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Approximation for 2-Variable Linear Equations

I (ε, 2
π

√
ε+ o(ε))-approximation algorithm for E2LIN2

[Goemans, Williamson ’94]

I (ε,Cq
√
ε)-approximation for E2LINq, for some

Cq = Θ(
√

log q)
[Charikar, Makarychev, Makarychev, ’06]

I UGC implies that improving on the above algorithms is
NP-hard
[Khot, Kindler, Mossel, O’Donnell ’07], [Mossel, O’Donnell,
Oleszkiewicz ’10]

I If there exists q = q(ε) such that (ε, ω(
√
ε))-approximating

E2LINq is NP-hard, then UGC holds
[Rao ’11]
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NP-hardness for Approximating E2LIN2

Theorem (Håstad ’97)

For any C < 5
4 and 0 < ε < ε0 = 1

4 , (ε,Cε)-approximating
E2LIN2 is NP-hard.

I The same hardness holds for any q, and ε0 → 1
2 as q →∞

[O’Donnell, Wright ’12]
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Our Results

Theorem
For any C < 11

8 , 0 < ε < ε0 = 1
8 , it is NP-hard to

(ε,Cε)-approximate E2LIN2.

I Proof by gadget reduction from CSP with some predicate φ
I Our gadget is optimal among all gadget reductions from φ

I For any predicate ψ whose set of satisfying assignments
supports a pairwise independent distribution, no gadget
reduction from CSP with predicate ψ can establish
NP-hardness factor better than 1

1−e−1/2 ≈ 2.54
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Gadget Reduction for (ε, 5
4ε)-hardness of E2LIN2

[Håstad ’97][Trevisan, Sorkin, Sudan, Williamson ’00]

Theorem (Håstad ’97)

For any k ≥ 3 and ε > 0, (ε, 1
2 − ε)-approximating EkLIN2 is

NP-hard.

I Take k = 3
I Let z be a global auxiliary variable
I Consider an equation

x1 + x2 + x3 = 0.

I Introduce variables y1, y2, y3, y4, and constraints

z + y1 = 1, z + y2 = 1, z + y3 = 1, z + y4 = 0,
x1 + y1 = 1, x1 + y2 = 1, x1 + y3 = 0, x1 + y4 = 1,
x2 + y1 = 1, x2 + y2 = 0, x2 + y3 = 1, x2 + y4 = 1,
x3 + y1 = 0, x3 + y2 = 1, x3 + y3 = 1, x3 + y4 = 1.
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Theorem (Håstad ’97)

For any k ≥ 3 and ε > 0, (ε, 1
2 − ε)-approximating EkLIN2 is

NP-hard.

I Take k = 3
I Let z be a global auxiliary variable
I Consider an equation

x1 + x2 + x3 = 0.

I Introduce variables y1, y2, y3, y4, and constraints

z + y1 = 1, z + y2 = 1, z + y3 = 1, z + y4 = 0,
x1 + y1 = 1, x1 + y2 = 1, x1 + y3 = 0, x1 + y4 = 1,
x2 + y1 = 1, x2 + y2 = 0, x2 + y3 = 1, x2 + y4 = 1,
x3 + y1 = 0, x3 + y2 = 1, x3 + y3 = 1, x3 + y4 = 1.



Gadget Reduction for (ε, 5
4ε)-hardness of E2LIN2
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I Otherwise any assignment to the auxiliary variables falsify
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⇒ ( 4

16 + ε, 5
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Gadget Reduction for (ε, 5
4ε)-hardness of E2LIN2
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Constructing Gadgets
[Trevisan, Sorkin, Sudan, Williamson ’00]

x1 x2 x3 y1 y2 y3 y4 . . .
0 0 0 1 1 1 1 . . .
0 1 1 1 1 0 0 . . .
1 0 1 1 0 1 0 . . .
1 1 0 0 1 1 0 . . .

I For each satisfying assignment to x1,x2,x3, setting the
auxiliary variables according to the matrix above achieves
unsat at most C

I For each unsatisfying assignment to x1,x2,x3, any
assignment to the auxiliary variable gives unsat at least S

I Key Observation: If two columns yi and yj are identical,
then merging them gives a new gadget that is as good
⇒ Need at most 24 = 16 variables in the gadget

I Search of optimal gadget as LP
I ∼

(16
2

)
variables and ∼ 216 constraints

I Certificate of optimality via dual LP
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Stronger Hardness Guarantees

Definition (Hadr )
The Hadr predicate has k = 2r input variables, one for each
subset S ⊆ [r ]. The input {xS}S⊆[r ] satisfies Hadr if for each S,
|S| ≥ 2, x∅ + xS =

∑
i∈S(x∅ + x{i}).

I The Hadr predicate has 2r+1 satisfying assignments.
I The Had2 predicate is exactly E4LIN2.

Theorem (Chan ’13)

For every r ≥ 2 and ε > 0, (ε,1− 2r+1/22r − ε)-approximating
Hadr -CSP is NP-hard.
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Stronger Hardness Guarantees

A φ-CSP instance I
I Predicate φ : {0,1}k → {0,1}
I Variable set V
I Distribution of φ-constraints C ∼ I, where

C = ((x1,b1), . . . , (xk ,bk )), xi ∈ V ,bi ∈ {0,1}

I Assignment A : V → {0,1} satisfies constraint C if

φ(b1 + A(x1), . . . ,bk + A(xk )) = 1.

I The value of A on I: unsat(A; I) = PrC∼I [A falsifies C].
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Stronger Hardness Guarantees

Theorem (Håstad ’97, restated)
For any ε > 0, given a EkLIN2 instance, it is NP-hard to
distinguish between the following two cases
Completeness unsat(I) ≤ ε
Soundness For every assignment A, dTV (D(A, I),Uk ) ≤ ε

Theorem (Chan ’13, restated)
For every r ≥ 2 and ε > 0, given an Hadr -CSP instance I, it is
NP-hard to distinguish between the following two cases:
Completeness unsat(I) ≤ ε
Soundness For every assignment A, dTV (D(A, I),U2r ) ≤ ε.
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A simple (ε, 5
4ε)-hardness gadget reduction from a E4LIN2

instance I to a E2LIN2 instance J :

x1 + x2 + x3 + x4 = 0
⇒

x1 + y = 0, x2 + y = 0, x3 + y = 0, x4 + y = 1

I If x1 + x2 + x3 + x4 = 0, we can set y such that only 1 of
the equations are violated
⇒ If unsat(I) ≤ ε, then unsat(J ) ≤ 1

4 + 3
4ε

I If x1 = x2 = x3 = 1 + x4 then y = x1 satisfies all equations
I In all other cases, the best assignment to y violates 2

equations
I If for every assignment A, dTV (D(A, I),Uk ) ≤ ε, then

unsat(J ) ≥ 2
16 ·

0
4 + 8

16 ·
1
4 + 6

16 ·
2
4 − ε = 5

16 − ε
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Constructing Gadgets for Hadr → E2LIN2

Definition (Hadr )
The Hadr predicate has k = 2r input variables, one for each
subset S ⊆ [r ]. The input {xS}S⊆[r ] satisfies Hadr if for each S,
|S| ≥ 2, xS + x∅ =

∑
i∈S(xi + x∅).

I The gadget needs at most 22r
variables (primary and

auxiliary), V := {0,1}2
r

I V as the set of Boolean functions on r bits b1, . . . ,br

I Identify the primary variables with linear functions on r bits

P :=
{∑

i∈S bi | S ⊆ [r ]
}
.

I For i ∈ {0,1}r , define the i-th dictator assignment
Di(f ) := f (i)

I The value of the primary variables under Di and 1 + Di
satisfy Hadr
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Constructing Gadgets for Hadr → E2LIN2

Definition
A (c, s)-gadget reducing Hadr to E2LIN2 is a gadget G
satisfying the following properties:
Completeness For every dictator assignment Di ,

unsat(Di ,G) ≤ c
Soundness The expected unsat(·;G) over uniformly random

assignments to the primary variables is at least s.

Proposition
Suppose there exists a (c, s)-gadget reducing Hadr to E2LIN2,
then given an E2LIN2instance I, it is NP-hard to distinguish
Completeness unsat(I) ≤ c + ε

Soundness unsat(I) ≥ s − ε
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Constructing Gadgets for Hadr → E2LIN2

I Had2: s/c = 5/4 (= 1.25)

I Had3: s/c = 11/8 (= 1.375)
. . .

I Had∞: ?
s/c ≥ 3/2 if a certain Game Show Conjecture is true
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Limitation of Gadget Construction

Theorem
Let G be a (c, s)-gadget reducing Hadr to E2LIN2. Then

s
c
≤ 1

1− e−1/2 ≈ 2.54

Remark
We can assume that all equations in the gadget has the form
x + y = 0, where x and y are at Hamming distance 1, as long
as we only consider assignments A such that
A(1 + x) = 1 + A(x).
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Limitation of Gadget Construction

Let K := 2r+1 be the number of satisfying assignments of Hadr .
Let P± be the set of primary variables and their negations.
For x , y ∈ {0,1}K , define their similarity

sim(x , y) := Pri∼[K ][xi = yi ],

and
sim(x ,P±) = max

y∈P±
sim(x , y).

Observation
For any x ∈ V, if there exists y ∈ P±, such that sim(x , y) > 3

4 ,
then for all other y ′ ∈ P±, sim(x , y ′) < 3

4 .
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Limitation of Gadget Construction

Let D be a distribution over
[3

4 ,1
]

with probability density
function D(t) = C · e2t , for t ∈

[3
4 ,1
]
.

1. Pick a number t ∼ D
2. Pick a uniformly random index i ∈ [K ], and let Di be the

corresponding dictator
3. For variable x ∈ V , if sim(x ,P±) > t , assign x the value of

its closest primary variable, otherwise assign x according
to Di .
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Limitation of Gadget Construction

Consider an equation x + y = 0.

sim(x ,P±) ≤ 3/4, sim(y ,P±) ≤ 3/4
Expected unsat is 1/K .

sim(x ,P±) > sim(y ,P±) =: s, sim(x ,P±) > 3/4
We have sim(x ,P±) = s + 1/K , and s ≥ 3/4.
If t ∈ [3/4, s), then x + y = 0 always satisfied.
If t ∈ [s, s + 1/K ), expected unsat is 1/2.
If t ∈ [s + 1/K ,1], expected unsat is 1/K .
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Summary

I Optimal gadget reduction for E2LIN2 from stronger
hardness guarantees for Had3-CSP

I Limitations of gadget construction for showing hardness of
E2LIN2



Thank you!


