Factor-11/8 NP-inapproximability for 2-Variable Linear Equations

Sangxia Huang

EPFL
Switzerland

Joint work with Johan Håstad Rajsekar Manokaran Ryan O'Donnell John Wright

2-Variable Linear Equations

Definition (${\mathrm{E} 2 \mathrm{LIN}_{q} \text {) }}^{\text {) }}$
System of \mathbb{F}_{q} linear equations, each containing exactly two variables.

Example of an E2LIN N_{2} instance

$$
\begin{aligned}
& x_{1}+x_{4}=1 \\
& x_{3}+x_{5}=0 \\
& x_{2}+x_{5}=0
\end{aligned}
$$

2-Variable Linear Equations

Definition ($\mathrm{E} 2 \mathrm{LIN}_{q}$)
System of \mathbb{F}_{q} linear equations, each containing exactly two variables.

Example of an E2LIN N_{2} instance

$$
\begin{aligned}
& x_{1}+x_{4}=1 \\
& x_{3}+x_{5}=0 \\
& x_{2}+x_{5}=0
\end{aligned}
$$

Equivalent to Unique-Games
[Khot, Kindler, Mossel, O'Donnell '07], [Mossel, O'Donnell,
Oleszkiewicz '10]

Approximation for 2-Variable Linear Equations

Definition (($\left.\varepsilon, \varepsilon^{\prime}\right)$-approximation algorithm)
Given an instance in which the best solution falsifies at most an ε-fraction of the equations, the algorithm finds a solution falsifying at most an ε^{\prime}-fraction of the equations.

Approximation for 2-Variable Linear Equations

Definition (($\left.\varepsilon, \varepsilon^{\prime}\right)$-approximation algorithm)
Given an instance in which the best solution falsifies at most an ε-fraction of the equations, the algorithm finds a solution falsifying at most an ε^{\prime}-fraction of the equations.

- Simple observation: there is a (0,0)-approximation algorithm for $\mathrm{E} 2 \mathrm{LIN}_{q}$.

Approximation for 2-Variable Linear Equations

- $\left(\varepsilon, \frac{2}{\pi} \sqrt{\varepsilon}+O(\varepsilon)\right)$-approximation algorithm for $\mathrm{E}_{2} \mathrm{LIN} \mathrm{N}_{2}$ [Goemans, Williamson '94]

Approximation for 2-Variable Linear Equations

- $\left(\varepsilon, \frac{2}{\pi} \sqrt{\varepsilon}+O(\varepsilon)\right)$-approximation algorithm for E2LIN 2 [Goemans, Williamson '94]
- $\left(\varepsilon, C_{q} \sqrt{\varepsilon}\right)$-approximation for E2LIN $_{q}$, for some
$C_{q}=\Theta(\sqrt{\log q})$
[Charikar, Makarychev, Makarychev, '06]

Approximation for 2-Variable Linear Equations

- $\left(\varepsilon, \frac{2}{\pi} \sqrt{\varepsilon}+O(\varepsilon)\right)$-approximation algorithm for E2LIN 2 [Goemans, Williamson '94]
- $\left(\varepsilon, C_{q} \sqrt{\varepsilon}\right)$-approximation for $\mathrm{E} 2 \mathrm{LIN}_{q}$, for some
$C_{q}=\Theta(\sqrt{\log q})$
[Charikar, Makarychev, Makarychev, '06]
- UGC implies that improving on the above algorithms is NP-hard
[Khot, Kindler, Mossel, O'Donnell '07], [Mossel, O'Donnell, Oleszkiewicz '10]

Approximation for 2-Variable Linear Equations

- $\left(\varepsilon, \frac{2}{\pi} \sqrt{\varepsilon}+O(\varepsilon)\right)$-approximation algorithm for E2LIN 2 [Goemans, Williamson '94]
- $\left(\varepsilon, C_{q} \sqrt{\varepsilon}\right)$-approximation for $\mathrm{E} 2 \mathrm{LIN}_{q}$, for some
$C_{q}=\Theta(\sqrt{\log q})$
[Charikar, Makarychev, Makarychev, '06]
- UGC implies that improving on the above algorithms is NP-hard
[Khot, Kindler, Mossel, O'Donnell '07], [Mossel, O'Donnell, Oleszkiewicz '10]
- If there exists $q=q(\varepsilon)$ such that $(\varepsilon, \omega(\sqrt{\varepsilon}))$-approximating $E 2 \operatorname{LIN}_{q}$ is NP-hard, then UGC holds [Rao '11]

NP-hardness for Approximating E2LIN

Theorem (Håstad '97)
For any $C<\frac{5}{4}$ and $0<\varepsilon<\varepsilon_{0}=\frac{1}{4}$, $(\varepsilon, C \varepsilon)$-approximating E2LIN N_{2} is NP-hard.

NP-hardness for Approximating E2LIN

Theorem (Håstad '97)
For any $C<\frac{5}{4}$ and $0<\varepsilon<\varepsilon_{0}=\frac{1}{4}$, $(\varepsilon, C \varepsilon)$-approximating E2LIN ${ }_{2}$ is NP-hard.

- The same hardness holds for any q, and $\varepsilon_{0} \rightarrow \frac{1}{2}$ as $q \rightarrow \infty$ [O'Donnell, Wright '12]

NP-hardness for Approximating E2LIN

Our Results

Theorem
For any $C<\frac{11}{8}, 0<\varepsilon<\varepsilon_{0}=\frac{1}{8}$, it is NP-hard to
$(\varepsilon, C \varepsilon)$-approximate E2LIN ${ }_{2}$.

Our Results

Theorem
For any $C<\frac{11}{8}, 0<\varepsilon<\varepsilon_{0}=\frac{1}{8}$, it is NP-hard to
$(\varepsilon, \boldsymbol{C} \varepsilon)$-approximate E2LIN ${ }_{2}$.

- Proof by gadget reduction from CSP with some predicate ϕ

Our Results

Theorem
For any $C<\frac{11}{8}, 0<\varepsilon<\varepsilon_{0}=\frac{1}{8}$, it is NP-hard to
$(\varepsilon, \boldsymbol{C} \varepsilon)$-approximate E2LIN ${ }_{2}$.

- Proof by gadget reduction from CSP with some predicate ϕ
- Our gadget is optimal among all gadget reductions from ϕ

Our Results

Theorem
For any $C<\frac{11}{8}, 0<\varepsilon<\varepsilon_{0}=\frac{1}{8}$, it is NP-hard to
$(\varepsilon, C \varepsilon)$-approximate $\mathrm{E} 2 \mathrm{LIN}_{2}$.

- Proof by gadget reduction from CSP with some predicate ϕ
- Our gadget is optimal among all gadget reductions from ϕ
- For any predicate ψ whose set of satisfying assignments supports a pairwise independent distribution, no gadget reduction from CSP with predicate ψ can establish
NP-hardness factor better than $\frac{1}{1-e^{-1 / 2}} \approx 2.54$

Gadget Reduction for $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness of E2LIN ${ }_{2}$

 [Håstad '97][Trevisan, Sorkin, Sudan, Williamson '00]
Gadget Reduction for $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness of E2LIN 2

 [Håstad '97][Trevisan, Sorkin, Sudan, Williamson '00]Theorem (Håstad '97)
For any $k \geq 3$ and $\varepsilon>0,\left(\varepsilon, \frac{1}{2}-\varepsilon\right)$-approximating $E k L I N_{2}$ is NP-hard.

Gadget Reduction for $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness of E2LIN 2

 [Håstad '97][Trevisan, Sorkin, Sudan, Williamson '00]Theorem (Håstad '97)
For any $k \geq 3$ and $\varepsilon>0,\left(\varepsilon, \frac{1}{2}-\varepsilon\right)$-approximating $E k L I N_{2}$ is NP-hard.

- Take $k=3$
- Let z be a global auxiliary variable

Gadget Reduction for $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness of E2LIN 2 [Håstad '97][Trevisan, Sorkin, Sudan, Williamson '00]

Theorem (Håstad '97)
For any $k \geq 3$ and $\varepsilon>0,\left(\varepsilon, \frac{1}{2}-\varepsilon\right)$-approximating $E k L I N_{2}$ is NP-hard.

- Take $k=3$
- Let z be a global auxiliary variable
- Consider an equation

$$
x_{1}+x_{2}+x_{3}=0
$$

Gadget Reduction for $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness of E2LIN 2

 [Håstad '97][Trevisan, Sorkin, Sudan, Williamson '00]Theorem (Håstad '97)
For any $k \geq 3$ and $\varepsilon>0,\left(\varepsilon, \frac{1}{2}-\varepsilon\right)$-approximating $\mathrm{E}_{\mathrm{LLIN}}^{2}$ is NP-hard.

- Take $k=3$
- Let z be a global auxiliary variable
- Consider an equation

$$
x_{1}+x_{2}+x_{3}=0
$$

- Introduce variables $y_{1}, y_{2}, y_{3}, y_{4}$, and constraints

$$
\begin{array}{cccc}
z+y_{1}=1, & z+y_{2}=1, & z+y_{3}=1, & z+y_{4}=0 \\
x_{1}+y_{1}=1, & x_{1}+y_{2}=1, & x_{1}+y_{3}=0, & x_{1}+y_{4}=1 \\
x_{2}+y_{1}=1, & x_{2}+y_{2}=0, & x_{2}+y_{3}=1, & x_{2}+y_{4}=1 \\
x_{3}+y_{1}=0, & x_{3}+y_{2}=1, & x_{3}+y_{3}=1, & x_{3}+y_{4}=1
\end{array}
$$

Gadget Reduction for $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness of E2LIN ${ }_{2}$

 [Håstad '97][Trevisan, Sorkin, Sudan, Williamson '00]- Take $k=3$
- Let z be a global auxiliary variable
- Consider an equation

$$
x_{1}+x_{2}+x_{3}=0
$$

- Introduce variables $y_{1}, y_{2}, y_{3}, y_{4}$, and constraints

$$
\begin{array}{cccc}
z+y_{1}=1, & z+y_{2}=1, & z+y_{3}=1, & z+y_{4}=0 \\
x_{1}+y_{1}=1, & x_{1}+y_{2}=1, & x_{1}+y_{3}=0, & x_{1}+y_{4}=1 \\
x_{2}+y_{1}=1, & x_{2}+y_{2}=0, & x_{2}+y_{3}=1, & x_{2}+y_{4}=1 \\
x_{3}+y_{1}=0, & x_{3}+y_{2}=1, & x_{3}+y_{3}=1, & x_{3}+y_{4}=1
\end{array}
$$

Gadget Reduction for $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness of E2LIN 2

 [Håstad '97][Trevisan, Sorkin, Sudan, Williamson '00]- Take $k=3$
- Let z be a global auxiliary variable
- Consider an equation

$$
x_{1}+x_{2}+x_{3}=0
$$

- Introduce variables $y_{1}, y_{2}, y_{3}, y_{4}$, and constraints

$$
\begin{array}{cccc}
z+y_{1}=1, & z+y_{2}=1, & z+y_{3}=1, & z+y_{4}=0 \\
x_{1}+y_{1}=1, & x_{1}+y_{2}=1, & x_{1}+y_{3}=0, & x_{1}+y_{4}=1 \\
x_{2}+y_{1}=1, & x_{2}+y_{2}=0, & x_{2}+y_{3}=1, & x_{2}+y_{4}=1 \\
x_{3}+y_{1}=0, & x_{3}+y_{2}=1, & x_{3}+y_{3}=1, & x_{3}+y_{4}=1
\end{array}
$$

- Let σ be an assignment to x_{1}, x_{2} and x_{3}
- If σ satisfies the equation, then there is an assignment to the auxiliary variables that falsifies 4 equations
- Otherwise any assignment to the auxiliary variables falsify at least 6 equations

Gadget Reduction for $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness of E2LIN 2

 [Håstad '97][Trevisan, Sorkin, Sudan, Williamson '00]- Take $k=3$
- Let z be a global auxiliary variable
- Consider an equation

$$
x_{1}+x_{2}+x_{3}=0
$$

- Introduce variables $y_{1}, y_{2}, y_{3}, y_{4}$, and constraints

$$
\begin{array}{cccc}
z+y_{1}=1, & z+y_{2}=1, & z+y_{3}=1, & z+y_{4}=0 \\
x_{1}+y_{1}=1, & x_{1}+y_{2}=1, & x_{1}+y_{3}=0, & x_{1}+y_{4}=1 \\
x_{2}+y_{1}=1, & x_{2}+y_{2}=0, & x_{2}+y_{3}=1, & x_{2}+y_{4}=1 \\
x_{3}+y_{1}=0, & x_{3}+y_{2}=1, & x_{3}+y_{3}=1, & x_{3}+y_{4}=1
\end{array}
$$

- Let σ be an assignment to x_{1}, x_{2} and x_{3}
- If σ satisfies the equation, then there is an assignment to the auxiliary variables that falsifies 4 equations
- Otherwise any assignment to the auxiliary variables falsify at least 6 equations
$\Rightarrow\left(\frac{4}{16}+\varepsilon, \frac{5}{16}-\varepsilon\right)$-hardness for E2LIN 2

Constructing Gadgets

[Trevisan, Sorkin, Sudan, Williamson '00]

Constructing Gadgets

[Trevisan, Sorkin, Sudan, Williamson '00]

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}	\ldots
0	0	0	1	1	1	1	\cdots
0	1	1	1	1	0	0	\cdots
1	0	1	1	0	1	0	\cdots
1	1	0	0	1	1	0	\ldots

Constructing Gadgets

[Trevisan, Sorkin, Sudan, Williamson '00]

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}	\ldots
0	0	0	1	1	1	1	\cdots
0	1	1	1	1	0	0	\cdots
1	0	1	1	0	1	0	\cdots
1	1	0	0	1	1	0	\ldots

- For each satisfying assignment to x_{1}, x_{2}, x_{3}, setting the auxiliary variables according to the matrix above achieves unsat at most C

Constructing Gadgets

[Trevisan, Sorkin, Sudan, Williamson '00]

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}	\ldots
0	0	0	1	1	1	1	\ldots
0	1	1	1	1	0	0	\cdots
1	0	1	1	0	1	0	\ldots
1	1	0	0	1	1	0	\ldots

- For each satisfying assignment to x_{1}, x_{2}, x_{3}, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x_{1}, x_{2}, x_{3}, any assignment to the auxiliary variable gives unsat at least S

Constructing Gadgets

[Trevisan, Sorkin, Sudan, Williamson '00]

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}	\ldots
0	0	0	1	1	1	1	\cdots
0	1	1	1	1	0	0	\cdots
1	0	1	1	0	1	0	\cdots
1	1	0	0	1	1	0	\ldots

- For each satisfying assignment to x_{1}, x_{2}, x_{3}, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x_{1}, x_{2}, x_{3}, any assignment to the auxiliary variable gives unsat at least S
- Key Observation: If two columns y_{i} and y_{j} are identical, then merging them gives a new gadget that is as good

Constructing Gadgets

[Trevisan, Sorkin, Sudan, Williamson '00]

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}	\ldots
0	0	0	1	1	1	1	\cdots
0	1	1	1	1	0	0	\cdots
1	0	1	1	0	1	0	\cdots
1	1	0	0	1	1	0	\ldots

- For each satisfying assignment to x_{1}, x_{2}, x_{3}, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x_{1}, x_{2}, x_{3}, any assignment to the auxiliary variable gives unsat at least S
- Key Observation: If two columns y_{i} and y_{j} are identical, then merging them gives a new gadget that is as good \Rightarrow Need at most $2^{4}=16$ variables in the gadget

Constructing Gadgets

[Trevisan, Sorkin, Sudan, Williamson '00]

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}	\ldots
0	0	0	1	1	1	1	\cdots
0	1	1	1	1	0	0	\cdots
1	0	1	1	0	1	0	\cdots
1	1	0	0	1	1	0	\ldots

- For each satisfying assignment to x_{1}, x_{2}, x_{3}, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x_{1}, x_{2}, x_{3}, any assignment to the auxiliary variable gives unsat at least S
- Key Observation: If two columns y_{i} and y_{j} are identical, then merging them gives a new gadget that is as good \Rightarrow Need at most $2^{4}=16$ variables in the gadget
- Search of optimal gadget as LP

Constructing Gadgets

[Trevisan, Sorkin, Sudan, Williamson '00]

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}	\ldots
0	0	0	1	1	1	1	\cdots
0	1	1	1	1	0	0	\cdots
1	0	1	1	0	1	0	\cdots
1	1	0	0	1	1	0	\ldots

- For each satisfying assignment to x_{1}, x_{2}, x_{3}, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x_{1}, x_{2}, x_{3}, any assignment to the auxiliary variable gives unsat at least S
- Key Observation: If two columns y_{i} and y_{j} are identical, then merging them gives a new gadget that is as good \Rightarrow Need at most $2^{4}=16$ variables in the gadget
- Search of optimal gadget as LP
- $\sim\binom{16}{2}$ variables and $\sim 2^{16}$ constraints

Constructing Gadgets

[Trevisan, Sorkin, Sudan, Williamson '00]

x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}	y_{4}	\ldots
0	0	0	1	1	1	1	\ldots
0	1	1	1	1	0	0	\ldots
1	0	1	1	0	1	0	\ldots
1	1	0	0	1	1	0	\ldots

- For each satisfying assignment to x_{1}, x_{2}, x_{3}, setting the auxiliary variables according to the matrix above achieves unsat at most C
- For each unsatisfying assignment to x_{1}, x_{2}, x_{3}, any assignment to the auxiliary variable gives unsat at least S
- Key Observation: If two columns y_{i} and y_{j} are identical, then merging them gives a new gadget that is as good \Rightarrow Need at most $2^{4}=16$ variables in the gadget
- Search of optimal gadget as LP
- $\sim\binom{16}{2}$ variables and $\sim 2^{16}$ constraints
- Certificate of optimality via dual LP

Stronger Hardness Guarantees

Definition $\left(\mathrm{Had}_{r}\right)$

The Had_{r} predicate has $k=2^{r}$ input variables, one for each subset $S \subseteq[r]$. The input $\left\{x_{S}\right\}_{S \subseteq[r]}$ satisfies Had $_{r}$ if for each S, $|S| \geq 2, x_{\emptyset}+x_{S}=\sum_{i \in S}\left(x_{\emptyset}+x_{\{i\}}\right)$.

Stronger Hardness Guarantees

Definition $\left(\mathrm{Had}_{r}\right)$

The Had_{r} predicate has $k=2^{r}$ input variables, one for each subset $S \subseteq[r]$. The input $\left\{x_{S}\right\}_{S \subseteq[r]}$ satisfies Had $_{r}$ if for each S, $|S| \geq 2, x_{\emptyset}+x_{S}=\sum_{i \in S}\left(x_{\emptyset}+x_{\{i\}}\right)$.

- The Had_{r} predicate has 2^{r+1} satisfying assignments.
- The Had_{2} predicate is exactly $\mathrm{E} 4 \mathrm{~L} \mathrm{IN}_{2}$.

Stronger Hardness Guarantees

Definition $\left(\mathrm{Had}_{r}\right)$

The Had ${ }_{r}$ predicate has $k=2^{r}$ input variables, one for each subset $S \subseteq[r]$. The input $\left\{x_{S}\right\}_{S \subseteq[r]}$ satisfies Hadr if for each S, $|S| \geq 2, x_{\emptyset}+x_{S}=\sum_{i \in S}\left(x_{\emptyset}+x_{\{i\}}\right)$.

- The Hadr predicate has 2^{r+1} satisfying assignments.
- The Had_{2} predicate is exactly E4LIN2.

Theorem (Chan '13)

For every $r \geq 2$ and $\varepsilon>0,\left(\varepsilon, 1-2^{r+1} / 2^{2^{r}}-\varepsilon\right)$-approximating Had $_{r}$-CSP is NP-hard.

Stronger Hardness Guarantees

Stronger Hardness Guarantees

A ϕ-CSP instance \mathcal{I}

Stronger Hardness Guarantees

A ϕ-CSP instance \mathcal{I}

- Predicate $\phi:\{0,1\}^{k} \rightarrow\{0,1\}$

Stronger Hardness Guarantees

A ϕ-CSP instance \mathcal{I}

- Predicate $\phi:\{0,1\}^{k} \rightarrow\{0,1\}$
- Variable set V

Stronger Hardness Guarantees

A ϕ-CSP instance \mathcal{I}

- Predicate $\phi:\{0,1\}^{k} \rightarrow\{0,1\}$
- Variable set V
- Distribution of ϕ-constraints $\mathcal{C} \sim \mathcal{I}$, where

$$
\mathcal{C}=\left(\left(x_{1}, b_{1}\right), \ldots,\left(x_{k}, b_{k}\right)\right), \quad x_{i} \in V, b_{i} \in\{0,1\}
$$

Stronger Hardness Guarantees

A ϕ-CSP instance \mathcal{I}

- Predicate $\phi:\{0,1\}^{k} \rightarrow\{0,1\}$
- Variable set V
- Distribution of ϕ-constraints $\mathcal{C} \sim \mathcal{I}$, where

$$
\mathcal{C}=\left(\left(x_{1}, b_{1}\right), \ldots,\left(x_{k}, b_{k}\right)\right), \quad x_{i} \in V, b_{i} \in\{0,1\}
$$

- Assignment $A: V \rightarrow\{0,1\}$ satisfies constraint \mathcal{C} if

$$
\phi\left(b_{1}+A\left(x_{1}\right), \ldots, b_{k}+A\left(x_{k}\right)\right)=1
$$

Stronger Hardness Guarantees

A ϕ-CSP instance \mathcal{I}

- Predicate $\phi:\{0,1\}^{k} \rightarrow\{0,1\}$
- Variable set V
- Distribution of ϕ-constraints $\mathcal{C} \sim \mathcal{I}$, where

$$
\mathcal{C}=\left(\left(x_{1}, b_{1}\right), \ldots,\left(x_{k}, b_{k}\right)\right), \quad x_{i} \in V, b_{i} \in\{0,1\}
$$

- Assignment $A: V \rightarrow\{0,1\}$ satisfies constraint \mathcal{C} if

$$
\phi\left(b_{1}+A\left(x_{1}\right), \ldots, b_{k}+A\left(x_{k}\right)\right)=1
$$

- The value of A on \mathcal{I} : unsat $(A ; \mathcal{I})=\operatorname{Pr}_{\mathcal{C} \sim \mathcal{I}}[A$ falsifies $\mathcal{C}]$.

Stronger Hardness Guarantees

A ϕ-CSP instance \mathcal{I}

- Assignment $A: V \rightarrow\{0,1\}$

Stronger Hardness Guarantees

A ϕ-CSP instance \mathcal{I}

- Assignment $A: V \rightarrow\{0,1\}$
- Distribution $\mathcal{D}(A, \mathcal{I})$

1. Sample $\left(\left(x_{1}, b_{1}\right), \ldots,\left(x_{k}, b_{k}\right)\right) \sim \mathcal{I}$
2. Output $\left(b_{1}+A\left(x_{1}\right), \ldots, b_{k}+A\left(x_{k}\right)\right)$

Stronger Hardness Guarantees

A ϕ-CSP instance \mathcal{I}

- Assignment $A: V \rightarrow\{0,1\}$
- Distribution $\mathcal{D}(A, \mathcal{I})$

1. Sample $\left(\left(x_{1}, b_{1}\right), \ldots,\left(x_{k}, b_{k}\right)\right) \sim \mathcal{I}$
2. Output $\left(b_{1}+A\left(x_{1}\right), \ldots, b_{k}+A\left(x_{k}\right)\right)$

Example:

$$
\begin{aligned}
& \phi\left(x_{1}, x_{2}, \overline{x_{3}}\right) \\
& \phi\left(x_{3}, x_{1}, x_{4}\right) \\
& \phi\left(\overline{x_{2}}, x_{3}, x_{4}\right)
\end{aligned}
$$

Assignment $x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1$.

$$
\begin{aligned}
& \underset{\left(b_{1}, b_{2}, b_{3}\right) \sim \mathcal{D}}{\operatorname{Pr}}\left[\left(b_{1}, b_{2}, b_{3}\right)=(0,1,1)\right]=1 / 3 \\
& \underset{\left(b_{1}, b_{2}, b_{3}\right) \sim \mathcal{D}}{\operatorname{Pr}}\left[\left(b_{1}, b_{2}, b_{3}\right)=(0,0,1)\right]=2 / 3 .
\end{aligned}
$$

Stronger Hardness Guarantees

Theorem (Håstad '97, restated)
For any $\varepsilon>0$, given a $\mathrm{E} k \mathrm{LIN}_{2}$ instance, it is NP-hard to distinguish between the following two cases
Completeness unsat $(\mathcal{I}) \leq \varepsilon$
Soundness For every assignment $A, d_{T V}\left(\mathcal{D}(A, \mathcal{I}), \mathcal{U}_{k}\right) \leq \varepsilon$

Stronger Hardness Guarantees

Theorem (Håstad '97, restated)
For any $\varepsilon>0$, given a $\mathrm{E} k \mathrm{LIN}_{2}$ instance, it is NP-hard to distinguish between the following two cases
Completeness unsat $(\mathcal{I}) \leq \varepsilon$
Soundness For every assignment $A, d_{T V}\left(\mathcal{D}(A, \mathcal{I}), \mathcal{U}_{k}\right) \leq \varepsilon$
Theorem (Chan '13, restated)
For every $r \geq 2$ and $\varepsilon>0$, given an Had - CSP instance \mathcal{I}, it is $N P$-hard to distinguish between the following two cases:
Completeness unsat $(\mathcal{I}) \leq \varepsilon$
Soundness For every assignment $A, d_{T V}\left(\mathcal{D}(A, \mathcal{I}), \mathcal{U}_{2^{r}}\right) \leq \varepsilon$.

Stronger Hardness Guarantees

A simple $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness gadget reduction from a E4LIN 2 instance \mathcal{I} to a $E 2 L N_{2}$ instance \mathcal{J} :

Stronger Hardness Guarantees

A simple $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness gadget reduction from a E4LIN ${ }_{2}$ instance \mathcal{I} to a $E 2 L N_{2}$ instance \mathcal{J} :

$$
x_{1}+x_{2}+x_{3}+x_{4}=0
$$

Stronger Hardness Guarantees

A simple $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness gadget reduction from a E4LIN 2 instance \mathcal{I} to a E2LIN 2 instance \mathcal{J} :

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
\Rightarrow \quad x_{1}+y=0, x_{2}+y=0, x_{3}+y=0, x_{4}+y=1
\end{gathered}
$$

Stronger Hardness Guarantees

A simple $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness gadget reduction from a E4LIN ${ }_{2}$ instance \mathcal{I} to a E2LIN 2 instance \mathcal{J} :

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
\Rightarrow \quad x_{1}+y=0, x_{2}+y=0, x_{3}+y=0, x_{4}+y=1
\end{gathered}
$$

- If $x_{1}+x_{2}+x_{3}+x_{4}=0$, we can set y such that only 1 of the equations are violated

Stronger Hardness Guarantees

A simple $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness gadget reduction from a E4LIN 2 instance \mathcal{I} to a $E 2 L N_{2}$ instance \mathcal{J} :

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
\Rightarrow \quad x_{1}+y=0, x_{2}+y=0, x_{3}+y=0, x_{4}+y=1
\end{gathered}
$$

- If $x_{1}+x_{2}+x_{3}+x_{4}=0$, we can set y such that only 1 of the equations are violated
\Rightarrow If $\operatorname{unsat}(\mathcal{I}) \leq \varepsilon$, then $\operatorname{unsat}(\mathcal{J}) \leq \frac{1}{4}+\frac{3}{4} \varepsilon$

Stronger Hardness Guarantees

A simple $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness gadget reduction from a E4LIN 2 instance \mathcal{I} to a E2LIN N_{2} instance \mathcal{J} :

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
\Rightarrow \quad x_{1}+y=0, x_{2}+y=0, x_{3}+y=0, x_{4}+y=1
\end{gathered}
$$

- If $x_{1}+x_{2}+x_{3}+x_{4}=0$, we can set y such that only 1 of the equations are violated
\Rightarrow If $\operatorname{unsat}(\mathcal{I}) \leq \varepsilon$, then unsat $(\mathcal{J}) \leq \frac{1}{4}+\frac{3}{4} \varepsilon$
- If $x_{1}=x_{2}=x_{3}=1+x_{4}$ then $y=x_{1}$ satisfies all equations

Stronger Hardness Guarantees

A simple $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness gadget reduction from a E4LIN ${ }_{2}$ instance \mathcal{I} to a $E 2 L N_{2}$ instance \mathcal{J} :

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
\Rightarrow \quad x_{1}+y=0, x_{2}+y=0, x_{3}+y=0, x_{4}+y=1
\end{gathered}
$$

- If $x_{1}+x_{2}+x_{3}+x_{4}=0$, we can set y such that only 1 of the equations are violated
\Rightarrow If $\operatorname{unsat}(\mathcal{I}) \leq \varepsilon$, then $\operatorname{unsat}(\mathcal{J}) \leq \frac{1}{4}+\frac{3}{4} \varepsilon$
- If $x_{1}=x_{2}=x_{3}=1+x_{4}$ then $y=x_{1}$ satisfies all equations
- In all other cases, the best assignment to y violates 2 equations

Stronger Hardness Guarantees

A simple $\left(\varepsilon, \frac{5}{4} \varepsilon\right)$-hardness gadget reduction from a E4LIN ${ }_{2}$ instance \mathcal{I} to a $E 2 L \mathrm{~N}_{2}$ instance \mathcal{J} :

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
\Rightarrow \quad x_{1}+y=0, x_{2}+y=0, x_{3}+y=0, x_{4}+y=1
\end{gathered}
$$

- If $x_{1}+x_{2}+x_{3}+x_{4}=0$, we can set y such that only 1 of the equations are violated
\Rightarrow If $\operatorname{unsat}(\mathcal{I}) \leq \varepsilon$, then unsat $(\mathcal{J}) \leq \frac{1}{4}+\frac{3}{4} \varepsilon$
- If $x_{1}=x_{2}=x_{3}=1+x_{4}$ then $y=x_{1}$ satisfies all equations
- In all other cases, the best assignment to y violates 2 equations
- If for every assignment $A, d_{T V}\left(\mathcal{D}(A, \mathcal{I}), \mathcal{U}_{k}\right) \leq \varepsilon$, then $\operatorname{unsat}(\mathcal{J}) \geq \frac{2}{16} \cdot \frac{0}{4}+\frac{8}{16} \cdot \frac{1}{4}+\frac{6}{16} \cdot \frac{2}{4}-\varepsilon=\frac{5}{16}-\varepsilon$

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow$ E2LIN $_{2}$

Definition $\left(\mathrm{Had}_{r}\right)$

The Had_{r} predicate has $k=2^{r}$ input variables, one for each subset $S \subseteq[r]$. The input $\left\{x_{S}\right\}_{S \subseteq[r]}$ satisfies Had $_{r}$ if for each S, $|S| \geq 2, x_{S}+x_{\emptyset}=\sum_{i \in S}\left(x_{i}+x_{\emptyset}\right)$.

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN}_{2}$

Definition $\left(\mathrm{Had}_{r}\right)$

The Had_{r} predicate has $k=2^{r}$ input variables, one for each subset $S \subseteq[r]$. The input $\left\{x_{S}\right\}_{S \subseteq[r]}$ satisfies Had $_{r}$ if for each S, $|S| \geq 2, x_{S}+x_{\emptyset}=\sum_{i \in S}\left(x_{i}+x_{\emptyset}\right)$.

- The gadget needs at most $2^{2^{r}}$ variables (primary and auxiliary), $V:=\{0,1\}^{2^{r}}$
- V as the set of Boolean functions on r bits b_{1}, \ldots, b_{r}

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN}_{2}$

Definition $\left(\mathrm{Had}_{r}\right)$

The Had_{r} predicate has $k=2^{r}$ input variables, one for each subset $S \subseteq[r]$. The input $\left\{x_{S}\right\}_{S \subseteq[r]}$ satisfies Had $_{r}$ if for each S, $|S| \geq 2, x_{S}+x_{\emptyset}=\sum_{i \in S}\left(x_{i}+x_{\emptyset}\right)$.

- The gadget needs at most $2^{2^{r}}$ variables (primary and auxiliary), $V:=\{0,1\}^{2^{2}}$
- V as the set of Boolean functions on r bits b_{1}, \ldots, b_{r}
- Identify the primary variables with linear functions on r bits

$$
P:=\left\{\sum_{i \in S} b_{i} \mid S \subseteq[r]\right\} .
$$

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN}_{2}$

Definition $\left(\mathrm{Had}_{r}\right)$

The Had_{r} predicate has $k=2^{r}$ input variables, one for each subset $S \subseteq[r]$. The input $\left\{x_{S}\right\}_{S \subseteq[r]}$ satisfies Had $_{r}$ if for each S, $|S| \geq 2, x_{S}+x_{\emptyset}=\sum_{i \in S}\left(x_{i}+x_{\emptyset}\right)$.

- The gadget needs at most $2^{2^{r}}$ variables (primary and auxiliary), $V:=\{0,1\}^{2^{2}}$
- V as the set of Boolean functions on r bits b_{1}, \ldots, b_{r}
- Identify the primary variables with linear functions on r bits

$$
P:=\left\{\sum_{i \in S} b_{i} \mid S \subseteq[r]\right\}
$$

- For $i \in\{0,1\}^{r}$, define the i-th dictator assignment $D_{i}(f):=f(i)$

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN}_{2}$

Definition $\left(\mathrm{Had}_{r}\right)$

The Had_{r} predicate has $k=2^{r}$ input variables, one for each subset $S \subseteq[r]$. The input $\left\{x_{S}\right\}_{S \subseteq[r]}$ satisfies Had $_{r}$ if for each S, $|S| \geq 2, x_{S}+x_{\emptyset}=\sum_{i \in S}\left(x_{i}+x_{\emptyset}\right)$.

- The gadget needs at most $2^{2^{r}}$ variables (primary and auxiliary), $V:=\{0,1\}^{2^{2}}$
- V as the set of Boolean functions on r bits b_{1}, \ldots, b_{r}
- Identify the primary variables with linear functions on r bits

$$
P:=\left\{\sum_{i \in S} b_{i} \mid S \subseteq[r]\right\}
$$

- For $i \in\{0,1\}^{r}$, define the i-th dictator assignment $D_{i}(f):=f(i)$
- The value of the primary variables under D_{i} and $1+D_{i}$ satisfy Had_{r}

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow$ E2LIN $_{2}$

Definition

A (c, s)-gadget reducing Had_{r} to $E 2 \mathrm{LIN}_{2}$ is a gadget \mathcal{G} satisfying the following properties:
Completeness For every dictator assignment D_{i}, unsat $\left(D_{i}, \mathcal{G}\right) \leq c$
Soundness The expected unsat $(\cdot ; \mathcal{G})$ over uniformly random assignments to the primary variables is at least s.

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN} 2$

Definition

A (c, s)-gadget reducing Had_{r} to $E 2 \mathrm{LIN}_{2}$ is a gadget \mathcal{G} satisfying the following properties:
Completeness For every dictator assignment D_{i}, unsat $\left(D_{i}, \mathcal{G}\right) \leq c$
Soundness The expected unsat $(\cdot ; \mathcal{G})$ over uniformly random assignments to the primary variables is at least s.

Proposition

Suppose there exists a (c, s)-gadget reducing Hadr to $\mathrm{E} 2 \mathrm{LIN}_{2}$, then given an $\mathrm{E} 2 \mathrm{LIN} \mathrm{N}_{2}$ instance \mathcal{I}, it is NP-hard to distinguish
Completeness unsat($\mathcal{I}) \leq c+\varepsilon$
Soundness unsat($\mathcal{I}) \geq s-\varepsilon$

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN}_{2}$

Our $\left(\frac{1}{8}, \frac{11}{64}\right)$-Gadget

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN}_{2}$

- $\mathrm{Had}_{2}: s / c=5 / 4(=1.25)$

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN}_{2}$

- $\mathrm{Had}_{2}: s / c=5 / 4(=1.25)$
- $\mathrm{Had}_{3}: s / c=11 / 8(=1.375)$

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN}_{2}$

- $\mathrm{Had}_{2}: s / c=5 / 4(=1.25)$
- $\mathrm{Had}_{3}: s / c=11 / 8(=1.375)$

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN}_{2}$

- $\mathrm{Had}_{2}: s / c=5 / 4(=1.25)$
- $\mathrm{Had}_{3}: s / c=11 / 8(=1.375)$
- $\operatorname{Had}_{\infty}$: ?

Constructing Gadgets for $\mathrm{Had}_{r} \rightarrow \mathrm{E} 2 \mathrm{LIN}_{2}$

- $\mathrm{Had}_{2}: s / c=5 / 4(=1.25)$
- $\mathrm{Had}_{3}: s / c=11 / 8(=1.375)$
- $\operatorname{Had}_{\infty}$:?
$s / c \geq 3 / 2$ if a certain Game Show Conjecture is true

Limitation of Gadget Construction

Theorem
Let \mathcal{G} be a (c, s)-gadget reducing Had_{r} to ${\mathrm{E} 2 \mathrm{LIN}_{2} \text {. Then }}^{\text {. }}$

$$
\frac{s}{c} \leq \frac{1}{1-e^{-1 / 2}} \approx 2.54
$$

Limitation of Gadget Construction

Theorem
Let \mathcal{G} be a (c, s)-gadget reducing Hadr to $\mathrm{E} 2 \mathrm{LIN}_{2}$. Then

$$
\frac{s}{c} \leq \frac{1}{1-e^{-1 / 2}} \approx 2.54
$$

Remark

We can assume that all equations in the gadget has the form $x+y=0$, where x and y are at Hamming distance 1, as long as we only consider assignments A such that $A(1+x)=1+A(x)$.

Limitation of Gadget Construction

Limitation of Gadget Construction

Let $K:=2^{r+1}$ be the number of satisfying assignments of Hadr_{r}.

Limitation of Gadget Construction

Let $K:=2^{r+1}$ be the number of satisfying assignments of Had_{r}. Let $P^{ \pm}$be the set of primary variables and their negations.

Limitation of Gadget Construction

Let $K:=2^{r+1}$ be the number of satisfying assignments of Had_{r}. Let $P^{ \pm}$be the set of primary variables and their negations.
For $x, y \in\{0,1\}^{K}$, define their similarity

$$
\operatorname{sim}(x, y):=\operatorname{Pr}_{i \sim[K]}\left[x_{i}=y_{i}\right],
$$

and

$$
\operatorname{sim}\left(x, P^{ \pm}\right)=\max _{y \in P^{ \pm}} \operatorname{sim}(x, y) .
$$

Limitation of Gadget Construction

Let $K:=2^{r+1}$ be the number of satisfying assignments of Had_{r}. Let $P^{ \pm}$be the set of primary variables and their negations.
For $x, y \in\{0,1\}^{K}$, define their similarity

$$
\operatorname{sim}(x, y):=\operatorname{Pr}_{i \sim[K]}\left[x_{i}=y_{i}\right],
$$

and

$$
\operatorname{sim}\left(x, P^{ \pm}\right)=\max _{y \in P^{ \pm}} \operatorname{sim}(x, y) .
$$

Observation

For any $x \in V$, if there exists $y \in P^{ \pm}$, such that $\operatorname{sim}(x, y)>\frac{3}{4}$, then for all other $y^{\prime} \in P^{ \pm}, \operatorname{sim}\left(x, y^{\prime}\right)<\frac{3}{4}$.

Limitation of Gadget Construction

Let \mathcal{D} be a distribution over $\left[\frac{3}{4}, 1\right]$ with probability density function $\mathcal{D}(t)=C \cdot e^{2 t}$, for $t \in\left[\frac{3}{4}, 1\right]$.

Limitation of Gadget Construction

Let \mathcal{D} be a distribution over $\left[\frac{3}{4}, 1\right]$ with probability density function $\mathcal{D}(t)=C \cdot e^{2 t}$, for $t \in\left[\frac{3}{4}, 1\right]$.

1. Pick a number $t \sim \mathcal{D}$

Limitation of Gadget Construction

Let \mathcal{D} be a distribution over $\left[\frac{3}{4}, 1\right]$ with probability density function $\mathcal{D}(t)=C \cdot e^{2 t}$, for $t \in\left[\frac{3}{4}, 1\right]$.

1. Pick a number $t \sim \mathcal{D}$
2. Pick a uniformly random index $i \in[K]$, and let D_{i} be the corresponding dictator

Limitation of Gadget Construction

Let \mathcal{D} be a distribution over $\left[\frac{3}{4}, 1\right]$ with probability density function $\mathcal{D}(t)=C \cdot e^{2 t}$, for $t \in\left[\frac{3}{4}, 1\right]$.

1. Pick a number $t \sim \mathcal{D}$
2. Pick a uniformly random index $i \in[K]$, and let D_{i} be the corresponding dictator
3. For variable $x \in V$, if $\operatorname{sim}\left(x, P^{ \pm}\right)>t$, assign x the value of its closest primary variable, otherwise assign x according to D_{i}.

Limitation of Gadget Construction

Consider an equation $x+y=0$.

Limitation of Gadget Construction

Consider an equation $x+y=0$.

$$
\operatorname{sim}\left(x, P^{ \pm}\right) \leq 3 / 4, \operatorname{sim}\left(y, P^{ \pm}\right) \leq 3 / 4
$$

Expected unsat is $1 / K$.

Limitation of Gadget Construction

Consider an equation $x+y=0$.

$$
\begin{array}{r}
\operatorname{sim}\left(x, P^{ \pm}\right) \leq 3 / 4, \operatorname{sim}\left(y, P^{ \pm}\right) \leq 3 / 4 \\
\text { Expected unsat is } 1 / K .
\end{array}
$$

$\operatorname{sim}\left(x, P^{ \pm}\right)>\operatorname{sim}\left(y, P^{ \pm}\right)=: s, \operatorname{sim}\left(x, P^{ \pm}\right)>3 / 4$
We have $\operatorname{sim}\left(x, P^{ \pm}\right)=s+1 / K$, and $s \geq 3 / 4$.

Limitation of Gadget Construction

Consider an equation $x+y=0$.

$$
\begin{array}{r}
\operatorname{sim}\left(x, P^{ \pm}\right) \leq 3 / 4, \operatorname{sim}\left(y, P^{ \pm}\right) \leq 3 / 4 \\
\text { Expected unsat is } 1 / K .
\end{array}
$$

$\operatorname{sim}\left(x, P^{ \pm}\right)>\operatorname{sim}\left(y, P^{ \pm}\right)=: s, \operatorname{sim}\left(x, P^{ \pm}\right)>3 / 4$
We have $\operatorname{sim}\left(x, P^{ \pm}\right)=s+1 / K$, and $s \geq 3 / 4$.
If $t \in[3 / 4, s)$, then $x+y=0$ always satisfied.

Limitation of Gadget Construction

Consider an equation $x+y=0$.

$$
\begin{array}{r}
\operatorname{sim}\left(x, P^{ \pm}\right) \leq 3 / 4, \operatorname{sim}\left(y, P^{ \pm}\right) \leq 3 / 4 \\
\text { Expected unsat is } 1 / K .
\end{array}
$$

$\operatorname{sim}\left(x, P^{ \pm}\right)>\operatorname{sim}\left(y, P^{ \pm}\right)=: s, \operatorname{sim}\left(x, P^{ \pm}\right)>3 / 4$
We have $\operatorname{sim}\left(x, P^{ \pm}\right)=s+1 / K$, and $s \geq 3 / 4$. If $t \in[3 / 4, s)$, then $x+y=0$ always satisfied. If $t \in[s, s+1 / K)$, expected unsat is $1 / 2$.

Limitation of Gadget Construction

Consider an equation $x+y=0$.
$\operatorname{sim}\left(x, P^{ \pm}\right) \leq 3 / 4, \operatorname{sim}\left(y, P^{ \pm}\right) \leq 3 / 4$
Expected unsat is $1 / K$.
$\operatorname{sim}\left(x, P^{ \pm}\right)>\operatorname{sim}\left(y, P^{ \pm}\right)=: s, \operatorname{sim}\left(x, P^{ \pm}\right)>3 / 4$
We have $\operatorname{sim}\left(x, P^{ \pm}\right)=s+1 / K$, and $s \geq 3 / 4$.
If $t \in[3 / 4, s)$, then $x+y=0$ always satisfied.
If $t \in[s, s+1 / K)$, expected unsat is $1 / 2$.
If $t \in[s+1 / K, 1]$, expected unsat is $1 / K$.

Summary

- Optimal gadget reduction for E2LIN N_{2} from stronger hardness guarantees for Had_{3}-CSP
- Limitations of gadget construction for showing hardness of E2Lin ${ }_{2}$

Thank you!

