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Abstract

We initiate a study of a relaxed version of the standard Erdős-Rényi random graph model, where each
edge may depend on a few other edges. We call such graphsdependent random graphs. Our main result
in this direction is a thorough understanding of the clique number of dependent random graphs. We also
obtain bounds for the chromatic number. Surprisingly, manyof the standard properties of random graphs
also hold in this relaxed setting. We show that with high probability, a dependent random graph will con-
tain a clique of sizep1´op1qq logpnq

logp1{pq , and the chromatic number will be at mostn logp1{p1´pqq
logn

. We expect
these results to be of independent interest. As an application and second main result, we give a new
communication protocol for thek-player Multiparty Pointer Jumping (MPJk) problem in the number-on-
the-forehead (NOF) model. Multiparty Pointer Jumping is one of the canonical NOF communication
problems, yet even for three players, its communication complexity is not well understood. Our protocol
for MPJ3 costsOpnplog lognq{ lognq communication, improving on a bound from [8]. We extend our
protocol to the non-Boolean pointer jumping problemyMPJk, achieving an upper bound which isopnq for
anyk ě 4 players. This is the firstopnq protocol for yMPJk and improves on a bound of Damm, Jukna,
and Sgall [10], which has stood for almost twenty years.

1 Introduction

Random Graphs. The study of random graphs revolves understanding the following distribution on
graphs: Givenn andp, define a distribution onn vertex graphsG “ pV,Eq by placing each edgepi, jq P E
independentlywith probabilityp. The first paper on this topic, authored by Erdős and Rényi [12], focused
on connectivity of graphs. Later, Bollobás and Erdős [7] found the interesting result that almost every graph
has a clique number of eitherr or r ` 1, for somer « 2 logn

log 1{p . This remarkable concentration of measure
result led to further investigations of these graphs. Then,Bollobás [5] solved the question of the chromatic
number and showed that almost every graph has chromatic number p1` op1qq´n log p1´pq

2 logn
. For more details,

consult Bollobás [6] and Alon and Spencer [2].
We extend this model by allowing each edge to depend on up tod other edges. We make no a priori

assumptions onhow the edges depend on each other except that edges must be independent of all but at
mostd other edges. This defines a family of graph distributions. Weinitiate a study of dependent random
graphs by considering the clique number and the chromatic number. As far as we know, this is the first
work to systematically study such distributions. However,other relaxations of the standard random graph
model have been studied. The most relevant for us is that of Alon and Nussboim [1], who study random
graphs where edges arek-wise independent. [1] give tight bounds for several graph properties, including
the clique number, the chromatic number, connectivity, andthresholds for the appearance of subgraphs. The
bounds for k-wise independent graph properties are not as tight as the standard random graphs, but this is
to be expected sincek-wise independent random graphs are a family of distributions rather than a single
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distribution. Our dependent random graphs similarly represent a family of graph distributions. However,
dependent random graphs are generally not even almostk-wise independent, even for small values ofd.

NOF Communication Complexity. As an application of our dependent random graphs, we study multi-
party communication problems in the Number-On-The-Forehead (NOF) communication model defined by
Chandra et al. [9]. In this model, there arek playersPLR1, ¨ ¨ ¨ , PLRk who wish to compute some function
fpx1, . . . , xkq of their inputs using the minimal communication possible. Initially, players share a great deal
of information: eachPLRi sees every inputexceptxi.1 Note that a great deal of information is shared before
communication begins; namely, all players exceptPLRi seexi. As a result, for many functions little com-
munication is needed. Precisely how this shared information affects how much communication is needed is
not currently well understood, even when limiting how players may communicate. We consider two well-
studied models of communication. In theone-waycommunication model, players each send exactly one
message in order (i.e., firstPLR1 sends his message, thenPLR2, etc.) In thesimultaneous-message(or SM)
model, each player simultaneously sends a single message toa referee, who processes the messages and
outputs an answer. We useDpfq andD‖pfq to denote the communication complexity off in the one-way
and simultaneous-message models respectively.

To date, no explicit function is known which requires a polynomial amount of communication fork “
Oppolylog nq players in the SM model. Identifying such a function represents one of the biggest problems
in communication complexity. Furthermore, a chain of results [19, 13, 4] showed that such a lower bound
would placef outside of the complexity classACC0. ACC0 lies at the frontier of our current understanding
of circuit complexity, and until the recent work of Williams[18] it wasn’t even known thatNEXP Ę ACC

0.
The Multipary Pointer Jumping problem is widely conjectured to require enough communication to place it
outside ofACC0. This motivates our study.

The Pointer Jumping Problem. There are many variants of the pointer jumping problem. Here, we study
two: a Boolean versionMPJnk , and a non-Boolean versionyMPJ

n
k . (From now on, we suppress then to ease

notation). We shall formally define these problems in Section 2, but for now, each may be described as
problems on a directed graph that hask ` 1 layers of verticesL0, . . . , Lk. The first layerL0 contains a
single vertexs0, and layersL1, . . . , Lk´1 containn vertices each. In the Boolean version,Lk contains two
vertices, while in the non-Boolean versionLk containsn vertices. For inputs, each vertex in each layer
exceptLk has a single directed edge pointing to some vertex in the nextlayer. The output is the the unique
vertex inLk reachable froms0; i.e., the vertex reached by starting ats0 and “following the pointers” to the
kth layer. Note that the output is a single bit forMPJk and alog n-bit string for yMPJk. To make this into
a communication game, we place onPLRi’s forehead all edges from vertices inLi´1 to vertices inLi. If
players speak in any order exceptPLR1, ¨ ¨ ¨ , PLRk, there is an easyOplog nq-bit protocol forMPJk.

This problem was first studied by Wigderson,2 who gave anΩp?nq lower bound forMPJ3. This was later
extended by Viola and Wigderson [17], who showed thatMPJk requiresΩ̃pn1{pk´1qq communication, even
under randomized communication. On the upper-bounds side,Pudlak et al. [16] showed a protocol forMPJ3
that uses onlyO pnplog log nq{ log nq communication, but only works when the input onPLR2’s forehead is
a permutation. Damm et al. [10] show thatDpyMPJ3q “ Opn log log nq andDpyMPJkq “ Opn logpk´1q nq,
wherelogprq n is therth iterated log ofn. Building on [16], Brody and Chakrabarti [8] showedDpMPJ3q “
O

´
n

a
plog log nq{ log n

¯
; they give marginal improvements forMPJk for k ą 3. Despite the attention

1Imaginexi being written onPLRi’s forehead. Then,PLRi sees inputs on other players’ foreheads, but not his own.
2This was unpublished, but an exposition appears in [3].
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devoted to this problem, the upper and lower bounds remain far apart, even fork “ 3 players, where
DpMPJ3q “ Ωp?nq andDpMPJ3q “ Opn

a
plog log nq{ log nq. For this reason, in this work we focus

on MPJk and yMPJk for small values ofk. We strongly believe that fully understanding the communication
complexity ofMPJ3 will shed light on the general problem as well.

1.1 Our Results

We give two collections of results: one for dependent randomgraphs, and the other for the communication
complexity ofMPJk and yMPJk. For our work on dependent random graphs, we focus on the clique number
and on the chromatic number. The clique number of a graphG, denotedcliquepGq, is the size of the
largest clique; the chromatic numberχpGq is the number of colors needed to color the vertices such thatthe
endpoints of each edge have different colors. We use e.g.cliquepGdpn, pqq to refer tocliquepGq for some
G „ Gdpn, pq. We achieve upper and lower bounds for each graph property. Say that a graph propertyP
holdsalmost surely (a.s.)if it holds with probability approaching1 asn approaches8 i.e. if P holds with
probability1´ op1q.

Our strongest results3 give a lower bound forcliquepGdpn, pqq and an upper bound forχpGdpn, pqq.

Theorem 1. If 0 ă p ă 1{4 andd{p ăă ?n, thenGdpn, pq almost surely has a clique of sizeΩ
´

logn
log 1{p

¯
.

Theorem 2. If 3{4 ă p ă 1 andd “ nop1q then almost surelyχpGdpn, pqq ď p1` εq´n logp1´pq
logn

.

These bounds nearly match similar results for Erdős-Rényi random graphs. Our bounds on the other
side are not as tight.

Theorem 3. If 0 ă p ă 1 andd ď n{ log2 n, then almost surelycliquepGdpn, pqq ď d log n.

Theorem 4. If 0 ă p ă 1 andd ď n{ log2 n, then almost surelyχpGdpn, pqq ě n{pd log nq.
For large values ofd, there are wide gaps in the upper and lower bounds of clique number and chromatic

number. Are these gaps necessary? The existing bounds for random graphs show that Theorems 1 and 2 are
close to optimal. Our next result witnesses the tightness for cliquepGdpn, pqq.
Lemma 5. For anyd “ opnq and any0 ă p ă 1

1. there ared-dependent random graphs that almost surely contain cliques of sizeΩpdq.

2. there ared-dependent random graphs that almost surely contain cliques of sizeΩp
?
d log nq.

This result shows that Theorem 3 is also close to optimal. It also demonstrates that tight concentration
of measure does not generally hold for dependent random graphs, even for small values ofd. Nevertheless,
we expect that for many specific dependent random graphs, tight concentration of measure results will hold.
Finally, we give two simple constructions which show that with too much dependence, very little can be said
aboutcliquepGdpn, pqq.
Lemma 6. For anyd ě 2n, the following statements hold.

1. For any0 ă p ă 1, there exists ad-dependent random graphGdpn, pq that is bipartite with certainty.

2. For any1{2 ď p ă 1, there exists ad-dependent random graphGdpn, pq that contains a clique of
sizen{2 with certainty.

3Our choice ofp is motivated by what was needed to obtain the communication complexity bounds forMPJk. We suspect that
tweaking our technical lemmas will give bounds for any constantp.
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Results for Multiparty Pointer Jumping. Our main NOF communication complexity result is a new
protocol forMPJ3.

Theorem 7. DpMPJ3q “ Opnplog log nq{ log nq.

This is the first improvement in the communication complexity of MPJ since the work of Brody and
Chakrabarti [8]. Next, we use this protocol to get new boundsfor the non-Boolean version.

Theorem 8. DpyMPJ4q “ O
´
n

plog lognq2
logn

¯
.

Our protocol foryMPJ4 is the first sublinear-cost protocol foryMPJk for any value ofk and improves on
the protocol of Damm et al. [10] which has stood for nearly twenty years. Our last pointer jumping results
give upper bounds in the SM setting. First we show how to convert our protocol from Theorem 7 to a
simultaneous messages protocol.

Lemma 9. D‖pMPJ3q “ O
´
n log logn

logn

¯
.

Note that to solveyMPJ3, players can compute each bit off3pf2piqq using anMPJ3 protocol. By running
log n instances in parallel, players compute all ofyMPJ3pi, f2, f3q. Thus, we get the following bound for
yMPJ3.

Corollary 10. D‖pyMPJ3q “ Opn log log nq.

This matches the bound from [10] but holds in the more restrictive SM setting.

1.2 Obtaining Bounds for Dependent Random Graph Properties

In this subsection, we describe the technical hook we obtained to prove our bounds for Theorems 1 and 2. A
key piece of intuition is that when looking at only small subgraphs ofG „ Gdpn, pq, the subgraph usually
lookslike Gpn, pq. This intution is formalized in the following definition andlemma.

Definition 1.1. Given a dependent random graphGdpn, pq, call a subset of verticesS Ď V UNCORRE-
LATED if any two edges in the subgraph induced byS are independent.

Lemma 11. Supposed andk are integers such thatdk3 ď n. Fix anyd-dependent graphGdpn, pq, and let
S be a set ofk vertices uniformly chosen fromV . Then, we have

PrrS is UNCORRELATEDs ě 1´ 3dk3

2n
.

At first glance, it might appear like we are now able to appeal to the existing arguments for obtaining
bounds forcliquepGpn, pqq and thenχpGpn, pqq. Unfortuantely, this is not the case—while most potential
k-cliques areUNCORRELATED, allowing correlation between edges drives up thevariance. In effect, we
might expect to have roughly the same number ofk-cliques, but these cliques bunch together. Nevertheless,
we are able to show that whend is small enough, these cliques don’t bunch up too much. Appropriately
bounding the variance is the most technically involved hurdle in this work, and is necessary to obtain both
the upper bound on the chromatic number, and the effecient pointer jumping protocol.
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1.3 Roadmap

The rest of the paper is organized as follows. In Section 2 we specify some notation, give formal definitions
for the problems and models we consider, and provide some technical lemmas on probability which we’ll
need in later sections. We develop our results for dependentrandom graphs in Section 3, deferring some
technical lemmas to Section 5. We present main result on Multiparty Pointer Jumping in Section 4, deferring
the secondaryMPJk results to Section 6. In Section 7 we prove Lemmas 5 and 6.

2 Preliminaries and Notation

We userns to denote the sett1, . . . , nu, N to denote
`
n
2

˘
, andexppzq to denoteez. For a stringx P t0, 1un,

let xrjs denote thejth bit of x. For a sequence of random variablesX0,X1, . . ., we useXi to denote
the subsequenceX0, . . . ,Xi. For a graphG “ pV,Eq, Ḡ denotes the complement ofG. Given sets
A Ă B Ă V , we useBzA to denote the set of edgestpu, vq : u, v P B andtu, vu Ę Au.

For a communication problem, we refer to players asPLR1, . . . , PLRk. Whenk “ 3, we anthropomor-
phize players as Alice, Bob, and Carol. Our communication complexity measures were defined in Sec-
tion 1; for an in-depth development of communication complexity, consult the excellent standard textbook
of Kushilevitz and Nisan [15].

2.1 Probability Theory and Random Graphs

Next, we formalize our notion of dependent random graphs anddescribe the tools we use to boundcliquepGdpn, pqq.
Definition 2.1 ([11], Definition 5.3). A sequence of random variablesY0, Y1, . . . , Yn is a martingalewith
respect to another sequenceX0,X1, . . . ,Xn if for all i ě 0 we have

Yi “ gipXiq

for some functionstgiu and, for all i ě 1 we have

ErYi|Xi´1s “ Yi´1 .

Theorem 12 (Azuma’s Inequality). LetY0, . . . , Yn be a martingale with respect toX0, . . . ,Xn such that
ai ď Yi ´ Yi´1 ď bi for all i ě 1. Then

PrrYn ą Y0 ` ts,PrrYn ă Y0 ´ ts ď exp

ˆ
´ 2t2ř

ipbi ´ aiq2
˙

.

Of particular relevance for our work is theedge-exposure martingale. LetG be a random graph. Arbi-
trarily order possible edges of the graphe1, . . . , eN , and letXi be the indicator variable for the event that
ei P G. Let f :

`
n
2

˘
Ñ R be any function on the edge set, and letYi :“ ErfpX1, . . . ,XN q|Xis. It is easy to

verify that for anyf , ErYi|Xăis “ Yi´1, and thereforetYiu are a matingale with respect totXiu. We say
thattYiu is the edge-exposure martingale forG.

It is worth noting that martingales make no assumptions about the independence oftXiu. We’ll use
martingales on graph distributions where each edges may depend on a small number of other edges. This
notion of local dependencyis formalized below.

A dependency graphfor a set of random variablesX “ tX1, . . . ,XNu is a graphH on rN s such that
for all i, Xi is independent oftXj : pi, jq R Hu. We say that a set of variablesX is d-locally dependentif
there exists a dependency graph forX where each vertex has degree at mostd.
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The following lemma of Janson [14] (rephrased in our notation) bounds the probability that the sum of
a series of random bits deviates far from its expected value,when the random bits have limited dependence.

Lemma 13. [14] LetX “ tXiuiPrNs be ad-locally dependent set of identically distributed binary variables,
and letY “

ř
iPrNs Xi. Then, for anyt we have

Prr|Y ´ ErY s| ě ts ď e
´2t2

pd`1qN .

For more details and results on probability and concentration of measure, consult the textbook of Dub-
hashi and Panconesi [11].

Definition 2.2. A distributionGdpn, pq is d-dependentif each edge is placed in the graph with probability
p, and furthermore that the set of edges ared-locally dependent.

Note that takingd “ 0 gives the standard Erdős-Rényi graph model. As withk-wise independent
random graphs,d-dependent random graphs are actually a family of graph distributions. We make no as-
sumptions on the underlying distribution beyond the fact that each edge depends on at mostd other edges.
We useGdpn, pq to denote an arbitrary dependent random graph.

A clique in a graphG “ pV,Eq is a set of verticesS such that the subgraph induced onS is complete.
Similarly, an independent setT is a set of vertices whose induced subgraph is empty. Aclique coverof G
is a partition ofV into cliques. We letcliquepGq denote the size of the largest clique inG. LetχpGq denote
the chromatic number ofG; i.e., the minimum number of colors needed to color the vertex set such that no
two adjacent vertices are colored the same. Note thatχpGq is the size of the smallest clique cover ofḠ.

2.2 Multiparty Pointer Jumping

Finally, we formally define the Boolean Multiparty Pointer Jumping function. Leti P rns, and letf2, . . . , fk :

rnsn, be functions fromrns to rns. Let x P t0, 1un. We define thek-player pointer jumping function
MPJnk : rns ˆ prnsnqk´2 ˆ t0, 1un recursively as follows:

MPJn3 pi, f2, xq :“ xrf2piqs ,
MPJnkpi, f2, . . . , fk´1, xq :“ MPJnk´1pf2piq, f3, . . . , fk´1, xq .

The non-Boolean versionyMPJ
n
k : rns ˆ prnsnqk´1 is defined similarly recursively:

yMPJ
n
3 pi, f2, f3q :“ f3pf2piqq ,

yMPJ
n
kpi, f2, . . . , fkq :“ yMPJ

n
k´1pf2piq, f3, . . . , fkq .

Henceforth, we drop the superscriptn to ease notation. Each problem is turned into a communication game
in the natural way.PLR1 is giveni; for each2 ď j ă k, PLRj receivesfj, andPLRk receivesx. Players
must communicate to outputMPJkpi, f2, . . . , fk´1, xq.

3 Dependent Random Graphs

In this section, we prove our main results regarding dependent random graphs, namely that with high prob-
ability they contain a large clique, and with high probability the chromatic number is not too large. The two
theorems are formally stated below.
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Theorem 14. (Formal Restatement of Theorem 1) For all0 ă ε ă 1{4 there existsn0 such that

PrrcliquepGdpn, pqq ą ks ą 1´ expp´n1`εq ,

for all n ě n0, for all n´ε{4 ă p ă 1
4

and for alld, k such thatk ď logpn{p2d log3 nqq
logp1{pq andd{p ď n1{2´ε.

This theorem showscliquepGdpn, pqq “ Ω
´

logn
log 1{p

¯
with high probability, as long asd{p is bounded

away from
?
n. Furthermore, whend “ nop1q, cliquepGdpn, pqq ě p1´ εq logn

logp1{pq with high probability.

Proof. This proof follows the classic technique of Bollobás [5], modified to handle dependent random
graphs. We need to show thatGdpn, pq contains clique of sizek. To that end, letY be the largest num-
ber ofedge-disjointUNCORRELATED k-cliques. First, we give a lower bound onErY s; we defer its proof
to Section 5.

Lemma 15. ErY s ě n2p
19k5

.

Now, we use the edge-exposure martingale onGdpn, pq to show that with high probability,Y does not
stray far from it’s expectation. LetY0, Y1, ¨ ¨ ¨ YN , be the edge exposure martingale onGdpn, pq. Recall
that Y0 “ ErY s, YN “ Y , andYi “ ErY |Xis. In a standard random graph model where all edges are
independently placed inG, it is easy to see that conditioning on whether or not an edge is in the graph
changes the expected number ofedge-disjointUNCORRELATED k-cliques by at most one. This no longer
holds when edges are dependent. However, if the graph distribution isd-dependent, then conditioning on
Xi changes the expected number ofedge-disjointUNCORRELATED k-cliques by at mostd. Therefore,
|Yi`1 ´ Yi| ď d. Then, by Azuma’s inequality, Lemma 15, and our assumption thatd{p ď n1{2´ε, we have

PrrY “ 0s ď PrrY ´ ErY s ď ´ErY ss

ď exp

ˆ´ErY s2
2Nd2

˙

“ exp

ˆ
´ n2p2

192d2k10
p1` op1qq

˙

ď expp´n1`εq .

Thus, it follows thatGdpn, pq contains anUNCORRELATEDk-clique with probability at least1´expp´n1`εq.
Since everyUNCORRELATED clique is still a clique, it is clear that

PrrcliquepGdpn, pqq ě ks ě 1´ expp´n1`εq .

Next, we use the lower bound oncliquepGdpn, pqq to obtain an upper bound onχpGdpn, pqq.

Theorem 16. For all 0 ă ε ă 1{8 there existsn0 such that

Pr

„
χpGdpn, qqq ă p1` 4εq´n logp1´ qq

log n


ą 1´ exppn1`εq ,

for all 3{4 ă q ă 1´ n´ε{4, all d ď nop1q, and alln ě n0.
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Proof. This follows a greedy coloring approach similar to [5, 16], but adapted to dependent random graphs.
Setm “ n

log2 n
, ε1 “ 2ε, andp “ 1 ´ q. Let E be the event that every induced subgraphH of Gdpn, qq

with m vertices has an independent set of size at leastk :“ p1´ ε1q logm
´ logp1´qq . Independent sets inGdpn, qq

correspond to cliques in the complement graphGdpn, qq, which is distributed identically toGdpn, pq. Thus,
we’re able to leverage Theorem 14 to boundPrrEs. In particular, sinced ď nop1q ď mop1q,4 by Theorem 14
and a union bound we have

PrrEs ą 1´
ˆ
n

m

˙
expp´n1`ε1q ą 1´ exp

ˆ
n

log n
´ n1`ε1

˙
ą 1´ expp´n1`εq .

Now, assumeE holds. We iteratively construct a coloring forGdpn, qq. Start with each vertex uncol-
ored. Repeat the following process as long as more thanm uncolored vertices remain: Selectm uncol-
ored vertices. From their induced subgraph, identify an independent setI of size at leastk. Then, color
each vertex inI using a new color. When at mostm uncolored vertices remain, color each remaining
vertex using a different color. Since two vertices share thesame color only if they are in an indepen-
dent set, it’s clear this is a valid coloring. More over, for each color in the first phase, we color at least
k ą p1´ ε1q logm

´ log p
ą p1´ p3{2qεq logn

´ log p
vertices. Hence, the overall number of colors used is at most

n´m

p1´ p3{2qε1qplog nq{p´ logp1´ qqq `m ď p1` 4εq´n logp1´ qq
log n

.

Therefore,χpGdpn, qqq ď p1` 4εq´n logp1´qq
logn

as long asE holds. This completes the proof.

Finally, we give an upper bound oncliquepGdpn, pqq and a lower bound onχpGdpn, pqq, which follow
directly from Lemma 13.

Theorem 17. For all 0 ă p ă 1 andd ď n{ log2 n, almost surelycliquepGdpn, pqq “ Opd log nq.

Proof. Let G „ Gdpn, pq, and fix some constantc to be determined later. For a set of verticesS Ď V of
size|S| “ cd log n, let BADS denote the event thatS is a clique, and letBAD :“ Ž

S BADS . Note that
there are

`
n

cd logn

˘
ď exppcd log2 nq such events. SinceG is d-dependent andS Ă V , then the subgraph

induced byS is alsod-dependent. Now, definez :“
`
cd logn

2

˘
and letX1, . . . ,Xz be indicator variables for

the edges in the subgraph induced byS. Finally, letY :“ ř
i Xi. Then,ErY s “ pz, andBADS amounts

to havingY “ z. By Lemma 13,

PrrBADSs “ PrrY “ zs “ PrrY ´ErY s ě zp1´pqs ď exp

ˆ
´2z2p1´ pq2

pd` 1qz

˙
“ exp

ˆ
´2zp1´ pq2

d` 1

˙
.

Choosingc “ 1{p1´ pq2 and using a union bound yields

PrrBADs ď
ˆ
n

z

˙
PrrBADSs ď exp

ˆ
cd log2 n´ 2p1´ pq2

d` 1
pcd log nq2

˙

“ exp
`
cd log2 np1´ 2cp1 ´ pq2q

˘

ă expp´Ωpd log2 nqq ,

Thus, almost surelyGdpn, pq has no clique of sizeě cd log n.

4note thatnδ “ mδ1

, whereδ1 “ δ log n

log n´2 log log n
. If δ “ op1q thenδ1 “ op1q as well.
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Our lower bound onχpGdpn, pqq follows as a direct corollary, since any independent set inGdpn, pq is
a clique in the complement graphĞGdpn, pq, which is alsod-dependent.

Corollary 18. If 0 ă p ă 1 andd ď n{ log2 n, then almost surelyχpGdpn, pqq ě n{pd log nq.

4 A New Protocol forMPJ3

Below, we describe a family ofMPJ3 protocolstPHu parameterized by a bipartite graphH “ pA Y B,Eq
with |A| “ |B| “ n. In each protocolPH , Alice and Bob each independently send a single message to
Carol, who must take the messages and the input she sees and output MPJ3pi, f, xq. Bob’s communication
in each protocol is simple: giveni, he sendsxj for eachj such thatpi, jq P H. Alice’s message is more
involved. GivenH andf , she partitionsrns into clusters. For each cluster in the partition, she sends theXOR

of the bits forx. (e.g. if one cluster ist1, 3, 5u, then Alice would sendxr1s ‘ xr3s ‘ xr5s) This partition of
rns into clusters is carefully chosen and depends onH andf . Crucially, it is possible to make this partition
so that for any inputsi, f , Bob sendsxrjs for eachj in the cluster containingfpiq, except for possibly
xrfpiqs itself. We formalize this clustering below. Thus, Carol cancomputexrfpiqs by taking the relevant
cluster from Alice’s message and “XOR-ing out” the irrelevant bits using portions of Bob’s message.

Each protocolPH will correctly computeMPJ3pi, f, xq; we then use the probabilitic method to show
that there exists a graphH such thatPH is efficient. At the heart of this probabilistic analysis is a bound on
the chromatic number of a dependent random graph. For functions with large preimages, this dependency
becomes too great to handle.

Definition 4.1. A functionf : rns Ñ rns is d-limited if |f´1pjq| ď d for all j P rns.

We end up with a protocolPH that is efficient for all inputspi, f, xq as long asf is d-limited (d « log n

suffices); later, we generalizePH to work for all inputs.

Remark 1. This construction is inspired by the construction of Pudlák et al. [16], who gave a protocol for
MPJ3 that works in the special case that the middle layer is apermutationπ instead of a general function
f . They also use the probabilistic method to show that onePH must be efficient. The probablistic method
argument in our case depends on the chromatic number of a dependent random graph; the analysis of the
permutation-based protocol in [16] relied on the chromaticnumber of the standard random graphGpn, pq.

Description ofPH . LetH “ pAYB,Eq be a bipartite graph with|A| “ |B| “ n. GivenH andf , define
a graphGf,H by placingpi, jq P Gf,H if and only if bothpi, fpjqq andpj, fpiqq are in H. LetC1, . . . , Ck be
a clique cover ofGf,H , and for each1 ď ℓ ď k, letSℓ :“ tfpjq : j P Cℓu.

The protocolPH proceeds as follows. Givenf andx, Alice constructsGf,H . For each cliqueCℓ, Alice
sendsbℓ :“

À
jPSℓ

xrjs. Bob, giveni andx, sendsxrjs for all pi, jq P H. We claim these messages enable
Carol to recoverMPJ3pi, f, xq. Indeed, giveni andf , Carol computesGf,H . Let C be the clique in the
clique cover ofGf,H containingi, and letS :“ tfpjq : j P Cu andb :“ À

jPS xrjs. Note that Alice
sendsb. Also note that for anyj ‰ i P C, there is an edgepi, jq P Gf,H . By construction, this means that
pi, fpjqq P H, so Bob sendsxrfpjqs. Thus, Carol computesxrfpiqs by takingb (which Alice sends) and
“XOR-ing out” xrfpjqs for anyj ‰ i P C. In this way,PH computesMPJ3.

While PH computesMPJ3, it might not do so in a communication-efficient manner. The following
lemma shows that there is an efficient protocol wheneverf has small preimages.
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Lemma 19. For anyd ď nop1q, there exists a bipartite graphH such that for alli P rns, x P t0, 1un, and
all d-limited functionsf , we have

costpPHq “ O

ˆ
n
log log n

log n

˙
.

Before proving Lemma 19, let us see how this gives the generalupper bound.

Theorem 20 (Restatement of Theorem 7).DpMPJ3q “ Opnplog log nq{ log nq.

Proof. Fix d “ log n and letPH be the protocol guaranteed by Lemma 19. We construct a general protocol
P for MPJ3 as follows. Givenf , Alice and Carol select ad-limited functiong such thatgpjq “ fpjq for all j
such that|f´1pfpjqq| ď d. Note that Alice and Carol can do this without communication, by selecting (say)
the lexicographically least suchg. On inputpi, f, xq, Alice sends the message she would have sent inPH

on inputpi, g, xq, along withxrjs for all j with large preimages. Bob merely sends the message he would
have sent inPH . If the preimage offpiq is large, then Carol recoversxrfpiqs directly from the second part
of Alice’s message. Otherwise, Carol computesMPJ3pi, g, xq usingPH . Sincefpiq has a small preimage,
we know thatxrgpiqs “ xrfpiqs “ MPJ3pi, f, xq, so in either case Carol recoversMPJ3pi, f, xq.

The communication cost ofP is the cost ofPH , plus one bit for eachj with preimage|f´1pjq| ą d.
There are at mostn{d suchj. With d “ log n and using Lemma 19, the cost ofP is

costpPq ď costpPHq ` n{d “ Opnplog log nq{ log nq `Opn{ log nq “ Opnplog log nq{ log nq .

Proof of Lemma 19.We use the Probabilitstic Method. Place each edge inH independently with probability

p “ Θ
´
log logn
logn

¯
. Now, for anyd-limited functionf , consider the graphGf,H . Each edgepi, jq is in Gf,H

with probability p2, but the edges are not independent. However, we claim that iff is d-limited, then
Gf,H is (2d ´ 2)-dependent. To see this, note thatpi, jq is in Gf,H if both pi, fpjqq andpj, fpiqq are inH.
Therefore,pi, jq is dependent on (i) any edgepi, j1q such thatfpj1q “ fpjq, and (ii) any edgepi1, jq such
thatfpiq “ fpi1q. Sincef is d-limited, there are at mostd ´ 1 choices each fori1 andj1. Thus, each edge
depends on at most2d´ 2 other edges, andGf,H is p2d´ 2q-dependent.

In PH , Alice sends one bit per clique in the clique cover ofGf,H . Bob sends one bit for each neighbor of
i in H. Thus, we’d like a graphH such that everyi P rns has a few neighbors and everyd-limited function
f has a small clique cover.

Let BADi denote the event thati has more than2pn neighbors inH. By a standard Chernoff bound

argument,PrrBADis ď expp´np2{2q. Next, letBADf be the event that at leastp1 ` εq´n logpp2q
logn

cliques
are needed to cover the vertices inGf,H . Note that any clique inGf,H is an independent set in the comple-
ment graphĘGf,H , so the clique cover number ofGf,H equals the chromatic number ofĘGf,H . Also note that
ĘGf,H is itself ad-dependent random graph, with edge probabilityq “ 1 ´ p2. Therefore, by Theorem 16,

PrrBADf s ă expp´n1`εq. Finally, letBAD :“ pŽiBADiq
Ž ´Ž

d-limited f
BADf

¯
. There aren

indicesi and at mostnn ď exppn log nq d-limited functionsf . Therefore, buy a union bound we have

PrrBADs ă nPrrBADis ` nn PrrBADf s ă ne´np2

2 ` nne´n1`ε ă 1.

Therefore, there exists a goodH. Also note that inPH for a goodH, Alice and Bob each communicate
Opn log logn

logn
q bits. This completes the proof.l
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Simultaneous Messages. We conclude this section by showing how to convertPH into an SM protocol.
Observe that Carol selects a bit from Alice’s message (namely, the clique containingfpiq) and a few bits
from Bob’s message (the neighbors ofi in H) andXORs them together. To convertPH to an SM protocol,
Alice and Bob send the same messages as inPH . Carol, giveni andf , sends a bitmask describing which
bit from Alice’s message and which bits from Bob’s message are relevant. The Referee thenXORs these bits
together, again producingMPJ3pi, f, xq. Carol sends one bit for each bit of communication sent by Alice
and Bob. Thus, this SM protocol costs twice as much as the costof PH . We get the following result.

Lemma 21 (Restatement of Lemma 9).D‖pMPJ3q “ Opn log logn
logn

q.

5 Proofs of Main Technical Lemmas

In this section, we state and prove three technical lemmas which form key insights to our contribution.
The first lemma states that most sets ofk vertices “look independent”. The second bounds the expected
number ofintersectingk-cliques. The final lemma gives a lower bound on the expected number ofdisjoint
UNCORRELATEDk-cliques.

We remind the reader that all three lemmas apply to arbitraryd-dependent random graph distributions.

Lemma 22 (Restatement of Lemma 11).Supposed and k are integers such thatdk3 ď n. Fix any
d-dependent graphGdpn, pq, and letS be a set ofk vertices uniformly chosen fromV . Then, we have

PrrS is UNCORRELATEDs ě 1´ 3dk3

2n
.

Proof. We divide the possible conflicts into two classes, bound the probability of each, and use a union
bound. Say that correlated edges arelocal if they share a vertex. Otherwise, call themremote. LetL andR
be the events thatS contains a local and remote dependency respectively.

First, we boundPrrRs. Imagine buildingS by picking verticesv1, . . . , vk one at a time uniformly. Let
Si :“ tv1, . . . , viu, and letBi be the the set of vertices that would create a remote dependency if added to
Si. Note thatB1 “ H since there are no edges inS1 (it contains only one vertex). More importantly, for
i ą 1, there are at most

`
i
2

˘
¨ p2dq ă di2 vertices inBi, becauseSi contains

`
i
2

˘
edges; each edge depends

on at mostd other edges, and each of these edges contributes at most two vertices toBi. It follows thatR is
avoided ifvi`1 R Bi for eachi “ 2 . . . k ´ 1. There arepn´ iq choices forvi`1, so

Prr Rs ě
k´1ź

i“2

ˆ
1´ di2

n´ i

˙
ě

ˆ
1´ dk2

n´ k

˙k´2

ě 1´ dk3

n
,

HencePrrRs ď dk3{n. At first glance, it might appear like we’ve handled local dependencies as well.
However, it is possible that when addingvi, we add local dependent edges, if these edges are both adjacent
to vi. Thus, we handle this case separately.

Let Lij denote the event thati, j P S and there are no local dependencies inS involving pi, jq. Call a
vertexℓ bad forpi, jq if either pi, ℓq or pj, ℓq depend onpi, jq. There are at mostd bad vertices forpi, jq.
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Note thatPrri, j P Ss “
`
n´2
k´2

˘
{
`
n
k

˘
“ kpk ´ 1q{npn´ 1q and that

Prr Lij|i, j P Ss ě
ˆ
n´ 2´ d

k ´ 2

˙
{
ˆ
n´ 2

k ´ 2

˙

ě
d´1ź

z“0

ˆ
1´ k ´ 2

n´ 2´ z

˙

ě
ˆ
1´ k ´ 2

n´ 2´ d

˙d

ě 1´ dpk ´ 2q
n´ 2´ d

ě 1´ dk

n
.

It follows thatPrrLijs “ Prri, j P SsPrrLij|i, j P Ss ď kpk´1q
npn´1q ¨

dk
n

. There are
`
n
2

˘
possible pairsi, j, so

by a union bound, we havePrrLs ď npn´1q
2

kpk´1q
npn´1q

dk
n
ď dk3

2n
. Another union bound onR andL completes

the lemma.

Lemma 23. Let d, p, k be such thatk ă logpn{p2d log3 nqq
log 1{p . Fix a d-dependent random graph distribution

Gdpn, pq. LetG „ Gdpn, pq, and letW be the set of ordered pairspS, T q such thatS, T are intersecting
UNCORRELATEDk-cliques. Then,

Er|W |s ď 2k

ˆ
n

k

˙
p2p

k

2q´1

ˆ
k

2

˙ˆ
n

2

˙
.

Note: To understand the relationship betweend, k, p, n, it is helpful to consider the cased “ nop1q. In
this setting, the lemma holds as long ask ď p1´ op1qq logn

log 1{p .

Proof. Let S, T be arbitrary sets ofk vertices, and letX “ S X T . We calculateEr|W |s by iterating over
all possible values ofS,X and for each pair, counting the expected number ofT such thatS X T “ X and
S, T are bothk-cliques. ForS,X, let F pS,Xq be the expected number ofUNCORRELATED k-cliquesT
such thatS X T “ X, conditioned onS being ak-clique. Also letF pℓq be the maximum of allF pS,Xq,
taken over allS and allX Ă S with |X| “ ℓ. We have

Er|W |s “
ÿ

S

PrrS is k-cliques
ÿ

XĂS

ÿ

T :SXT“X

PrrT is k-clique|S is k-cliques (1)

“
ÿ

S

pp
k
2q

ÿ

XĂS

F pS,Xq (2)

ď
ÿ

S

pp
k
2q

k´1ÿ

ℓ“2

ÿ

XĂS
|X|“ℓ

F pℓq (3)

ď
ˆ
n

k

˙
pp

k

2q
ÿ

ℓ

ˆ
k

ℓ

˙
F pℓq . (4)

Next, we obtain an upper bound onF pℓq. Since we need only an upper bound, we take a very pessimistic
approach. LetM Ă rns zS be the set of vertices adjacent to an edgee that depends on some edge from
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SzX. Each edge inSzX depends on at mostd other edges, and there are
`
k
2

˘
´

`
ℓ
2

˘
edges inSzX. Therefore,

|M | ď dp
`
k
2

˘
´

`
ℓ
2

˘
q. Now, letEpMq be the set of edges with one endpoint inM and the other endpoint

in M Y X. Each of these edges may be correlated with edges inSzX, so for anye P EpMq we assume
only Prre|S is k-cliques ď 1. On the other hand, by construction any edgee not in EpMq is independent
of S, and thereforePrre P G|S is k-cliques “ p. Next, we sum over all possibleT , grouping by how much
T instersectsM . Suppose|T X M | “ ℓ1 for some0 ď ℓ1 ď k ´ ℓ. Then,T contains

`
k
2

˘
edges,

`
ℓ
2

˘

of these edges have both endpoints inX, and are fixed after conditioning onS being ak-clique. Of the
remaining edges,ℓ ¨ ℓ1 `

`
ℓ1

2

˘
are inEpMq; the rest are independent ofS. Thus, when|T XM | “ ℓ1, then

PrrT is k-clique|S is k-cliques ď pp
k

2q´pℓ2q´ℓℓ1´pℓ1

2q.

F pℓq “
ÿ

T :SXT“X

PrrT is k-clique|S is k-cliques (5)

“
k´ℓÿ

ℓ1“0

ÿ

T :SXT“X
|TXM |“ℓ1

PrrT is k-clique|S is k-cliques (6)

ď
k´ℓÿ

ℓ1“0

ˆ
M

ℓ1

˙ˆ
n´ k ´M

k ´ ℓ´ ℓ1

˙
pp

k
2q´pℓ2q´ℓℓ1´pℓ1

2q (7)

“ pp
k
2q´pℓ2q

k´ℓÿ

ℓ1“0

F ˚pℓ1q , (8)

whereF ˚pℓ1q :“
`
M
ℓ1

˘`
n´k´M
k´ℓ´ℓ1

˘
p´ℓℓ1´pℓ1

2q. Next, we show that the summation in Equation (8) telescopes.

Claim 24. If k ď
log

´
n

2d log3 n

¯

log 1{p then
řk´1

ℓ1“0 F
˚pℓ1q ď 2F ˚p0q.

Proof. Fix any0 ď i ă k ´ ℓ, and considerF ˚pi ` 1q{F ˚piq. Using
`

a
b`1

˘
{
`
a
b

˘
“ a´b

b`1
and

`
a

b´1

˘
{
`
a
b

˘
“

b
a´b´1

and recalling thatM ă d
`
k
2

˘
, we have:

F ˚pi` 1q
F ˚piq “

`
M
i`1

˘`
n´k´M
k´pi`1q

˘
p´ℓpi`1q´pi`1qi{2

`
M
i

˘`
n´k´M

k´i

˘
p´ℓi´ipi´1q{2

“ M ´ 1

i` 1

k ´ i

n´ k ´M ´ k ` i
p´ℓ´i

ď dk2

2

k

n´ opnq

ˆ
1

p

˙k

ă dk3

n

ˆ
1

p

˙k

ă k3

2 log3 n

ă 1{2 ,
where the penultimate inequality holds because of our assumption onk, and the final inequality holds be-
causek ă log n. We’ve shown that for alli, F ˚pi ` 1q{F ˚piq ă 1{2. HenceF ˚piq ă F ˚p0q2´i, and soř

ℓ1 F ˚pℓ1q ď ř
ℓ1 F ˚p0q2´ℓ1 ď 2F ˚p0q.
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From claim 24, we see that

F pℓq ď pp
k
2q´pℓ2q

k´ℓÿ

ℓ1“0

F ˚pℓ1q ď 2pp
k
2q´pℓ2qF ˚p0q “ 2pp

k
2q´pℓ2q

ˆ
n´ k ´M

k ´ ℓ

˙
.

Now, plugging this inequality back into Equation 4, we get

Er|W |s ď
ˆ
n

k

˙
pp

k
2q

ÿ

ℓ

ˆ
k

ℓ

˙
F pℓq ď 2

ˆ
n

k

˙
pp

k
2q

ÿ

ℓ

ˆ
k

ℓ

˙
pp

k
2q´pℓ2q

ˆ
n´ k ´M

k ´ ℓ

˙
.

LetGpℓq :“ pp
k
2q´pℓ2q`k

ℓ

˘`
n´k´M

k´ℓ

˘
, and for2 ď ℓ ă k ´ 1, letG˚pℓq :“ Gpℓq{Gpℓ ` 1q. Note that

G˚pℓq “ pℓ
ℓ` 1

k ´ ℓ

n´ 2k ´M ` ℓ` 1

k ´ ℓ
.

We claim thatG˚pℓq decreases as long asp ă 8{27´ Ωp1q. To see this, note that

G˚pℓq
G˚pℓ` 1q “ p

ℓ` 1

ℓ
¨

ˆ
k ´ ℓ` 1

k ´ ℓ

˙2
n´ 2k ´M ` ℓ` 1

n´ 2k ´M ` ℓ
ă pp3{2q3p1` op1qq ,

where the inequality holds becausepa ` 1q{a “ 1 ` 1{a and becauseℓ, k ´ ℓ ě 2 for the range ofℓ we
need when calculatingG˚pℓq. In a way, saying thatG˚pℓq is decreasing amounts to saying thatGpℓq is
convex—onceGpiq ď Gpi ` 1q, thenGpjq ď Gpj ` 1q for all j ą i. Next, a straightforward calculation
using our choice ofk shows thatGpk ´ 1q ď Gp2q. Thus, it must be the case thatGpiq ď Gp2q for all i,
and therefore

Er|W |s ď 2

ˆ
n

k

˙
pp

k
2qkGp2q “ 2k

ˆ
n

k

˙
p2p

k
2q´1

ˆ
k

2

˙ˆ
n´ k ´M

k ´ 2

˙
ă 2k

ˆ
n

k

˙
p2p

k
2q´1

ˆ
k

2

˙ˆ
n

k ´ 2

˙
.

This completes the proof of Lemma 23.

Finally, we prove the lemma that in anyd-dependent graph distribution, the expected number ofdisjoint
UNCORRELATED k-cliques is large. Recall thatY is the maximal number of disjointUNCORRELATED

k-cliques.

Lemma 25 (Restatement of Lemma 15).ErY s ě n2p
19k5

.

Proof. We constructY probabilistically, by selecting each potentialUNCORRELATED k-clique with small
probability and removing any pairs ofk-cliques that intersect. LetK denote the family ofUNCORRELATED

k-cliques. By Lemma 11 and our choice ofd, a randomly chosen setS of k vertices isUNCORRELATED

with probability at least2{3. By this and our choice ofk, we have

Er|K|s ě 2

3

ˆ
n

k

˙
pp

k
2q .

Recall thatW is the set of ordered pairstS, T u of UNCORRELATED k-cliques such that2 ď |S X T | ă k.

For our argument, we require an upper bound onEr|W |s. In the standard random graph model, if|SXT | “
ℓ, thenPrrS, T both k-cliquess “ pp

k
2q´pℓ2q. However, this no longer holds ford-dependent distrubtions,

even if S and T are bothUNCORRELATED. This is because while edges inS and T are independent,
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edges inS but not T may be correlated with edges inT but notS. As an extreme case, suppose all
edges inS are independent, but each edge inS zT is completely correlated with an edge inT zS. Then,

PrrS, T k-cliquess “ PrrS is k-cliques “ PrrT is k-cliques “ pp
k
2q. Essentially, allowing edges to be

correlated has the potential to drive up the variance on the number ofk-cliques, even when thesek-cliques
areUNCORRELATED. This is perhaps to be expected. Nevertheless, in Lemma 23, we were able to show
that whend is small, this increase is not much more than in the standard graph model.

With this claim, we are now able to construct a large set of disjoint UNCORRELATEDk-cliques with high
probability. CreateK 1 Ď K by selecting each uncorrelatedS P K independently with probability

PrrS P K 1s “ γ “ 1

12kpp
k

2q´1
`
k
2

˘`
n

k´2

˘ .

Finally, createL from K 1 by removing each pairS, T P K 1 such thatS, T P W . By construction,L is a set
of edge-disjointUNCORRELATEDk-cliques; furthermore, we have

Er|L|s “ γEr|K|s ´ 2γ2Er|W |s

ě 2γ

3

ˆ
n

k

˙
pp

k
2q ´

2γ ¨ 2k
`
n
k

˘
p2p

k

2q´1
`
k
2

˘`
n

k´2

˘

12kpp
k

2q´1
`
k
2

˘`
n

k´2

˘

“ 2γ

3

ˆ
n

k

˙
pp

k

2q ´ γ

3

ˆ
n

k

˙
pp

k

2q

“ γ

3

ˆ
n

k

˙
pp

k
2q

“
`
n
k

˘
pp

k
2q

3 ¨ 12kpp
k
2q´1

`
k
2

˘`
n
2

˘

ě
`
n
k

˘
`

n
k´2

˘ p

36k

1`
k
2

˘

ě p

18k3

`
n
k

˘
`

n
k´2

˘

“ p

18k3
pn´ k ´ 2qpn ´ k ´ 1q

kpk ´ 1q

ě p

18k3
18n2

19k2

“ n2p

19k5
,

where the final inequality holds for large enoughn.

6 Results for Non-Boolean Pointer Jumping

In this section, we leverage the protocol forMPJ3 to achieve new results for the non-Boolean Pointer Jumping
problemyMPJ. Let Q be the protocol forMPJ3 given in Lemma 9. First, we give a protocol foryMPJ3. The
cost matches the upper bound from [10] but has the advantangeof working in the Simultaneous Messages
model.
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Lemma 26 (Restatement of Lemma 10).There is anOpn log log nq-bit SM protocol foryMPJ3.

Proof. RunQ log n times in parallel, on inputspi, f2, z1q, pi, f2, z2q, . . . , pi, f2, zlog nq, wherezj denotes the
jth most significant bit off3. This allows the Referee to recover each bit off3pf2piqq “ yMPJpi, f2, f3q.

Next we give a new upper bound foryMPJ4. As far as we know, this is the first protocol foryMPJk for any
k that uses a sublinear amount of communication.

Theorem 27 (Restatement of Theorem 8).There is a one-way protocol foryMPJ4 with costOpn plog lognq2
logn

q.

Proof. Let i, f2, f3, f4 be the inputs toyMPJ4, and for1 ď j ď log n, let zj P t0, 1un be the string obtained
by taking thejth most significant bit of eachf3pwq (i.e.,zjrws is thejth most significant bit off3pwq.) Fix
a parameterk to be determined shortly.PLR1, PLR2, andPLR3 run Q on tpi, f2, zjq : 1 ď j ď ku. From
this, PLR3 learns the firstk bits of f3pf2piqq. She then sendsf4pzq for everyz P t0, 1ulog n whosek most
significant bits match those off3pf2piqq. PLR4 seesi, f2, andf3, computesz˚ :“ f3pf2piqq, and recovers
f4pz˚q from PLR3’s message. Note that there aren{2k strings that agree on the firstk bits, and for each
of these strings,PLR3 sendslog n bits. Therefore, the cost of this protocol isk costpQq ` n logpnq{2k “
O

´
kn log logn

logn
` n logpnq2´k

¯
. Settingk :“ 2 log ln 2 logn

log logn
“ Θplog log nq minimizes the communication

cost, giving a protocol with costO
´
n

plog lognq2
logn

¯
.

7 Dependent Graphs with Large Cliques or Large Dependency

In this section, we provide results that witness the tightness of our current bounds. The next lemma shows
that there exist dependent random graphs that almost surelycontain cliques of sizeΩpdq, and others that
almost surely have cliques of sizeΩp

?
d logpnqq.

Lemma 28. (Restatement of Lemma 5) For all constant0 ă p ă 1 andd “ opnq,

1. there exists ad-dependent random graphGdpn, pq such that

Pr

„
cliquepGdpn, pqq ą

d
?
p

2
´ d

1
2 p

1
4


ą 1´ e´2n{d .

2. there exists ad-dependent random graphGdpn, pq such that almost surely

cliquepGdpn, pqq “ Ωp
?
d logpnqq .

Proof. We give two constructions.
For the first result, fixd1 :“ d

?
p

2
´

a
d
?
p andM1 :“ 2n{d. Partition the vertices intoM1 sets

V1, . . . , VM1
each of sized{2. Let cpiq denote the part containingi (we think ofi has having colorc). Now,

let tXi,c : i P V, 1 ď c ď M1u be a series of i.i.d. random bits withPrrXi,c “ 1s “ ?
p, and place

pi, jq P Gdpn, pq if Xi,cpjq
Ź

Xj,cpiq “ 1. Thus,pi, jq is an edge with probabilityp. Also note that edges
pi, jq andpi1, j1q are dependent if eithercpiq “ cpi1q or cpjq “ cpj1q. Since there ared{2 vertices in eachVℓ,
pi, jq is dependent on at mostd other edges andGdpn, pq is d-dependent.

Now, fix a colorc, and letSc :“ ti : cpiq “ c^Xi,c “ 1u. For anyi, j P Sc we haveXi,c “ Xj,c “ 1

and thatcpiq “ cpjq “ c. Therefore,pi, jq P Gdpn, pq for anyi, j P Sc, henceSc is a clique.
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Next, consider|Sc|. There ared{2 vertices with colorc, soEr|Sc|s “ d
?
p

2
. By the Chernoff bound,

Prr|Sc| ă d1s ă 1
e
, so the probability that there is some colorc with |Sc| ě d1 is at least1 ´ e´2n{d.

Therefore,Gdpn, pq almost surely contains a clique of size at leastd1.
For the second graph, partition the verticesrns intoM2 :“ n{

?
d subsetsV1, . . . , VM2

, each of size
?
d.

Let cpiq be the subset containingi. Let tXc1,c2 : 1 ď c1, c2 ď M2u be a set of independent, identically
distributed binary variables withPrrXc,c1 “ 1s “ p. Now, place edgepi, jq in the graph ifXcpiq,cpjq “ 1. In
this way, for anyVs, Vt, either all edges betweenVs andVt exist, or none do, and similarly for anyVs, either
all edges between vertices inVs will be in the graph, or none will.

Next, letS be the set of alli such that edges between vertices inVi are in the graph. Eachi P S with
probability p. By standard Chernoff bounds,|S| ě pM2{2 with high probability. LetM 1 :“ pM2{2.
The construction above induces a new random graphG1 on M 1 vertices where all edges are i.i.d. in
G1 with probablity p. i.e., G1 is an Erdős-Rényi random graph onM 1 vertices. By [7],cliquepG1q ě
2 logpM 1q{ logp1{pq “ Ωplogpnq{ logp1{pqq with high probability. Finally, a clique of sizek in G1 gives a
clique of sizek

?
d in G, henceG contains a clique of sizeΩp

?
d logpnq{ logp1{pqqwith high probablity.

Our second result in this section shows that when the dependency factor becomesΩpnq, essentially
nothing can be said about the clique number of dependent random graphs.

Lemma 29. (Restatement of Lemma 6) Fixd :“ 2n´ 2. Then, the following statements hold.

1. For any0 ă p ă 1, there exists ad-dependent random graphGdpn, pq that is bipartite with certainty.

2. For any1{2 ď p ă 1, there exists ad-dependent random graphGdpn, pq such thatcliquepGdpn, pqq ě
n{2 with certainty.

Proof. We again provide two constructions. For the first construction, setq1 :“ 1 ´ ?1´ p, and let
X1, . . . ,Xn be i.i.d. random bits such thatXi “ 1 with probabilityq1. Think of eachXi as being assinged
to vertexvi. Now, place edgepi, jq P Gdpn, pq iff Xi ‘ Xj “ 1. Note thatpi, jq P Gdpn, pq with
probability 2qp1 ´ qq “ p. It is easy to see thatpi, jq depends onpi1, j1q only if either i “ i1 or j “ j1.
There are at most2pn ´ 1q such edges, hence the random graph isd-dependent. Finally, we claim that the
graph is bipartite. To see this, suppose for the sake of contradiction thatGdpn, pq contains an odd cycle
p1, 2, . . . , 2k ` 1, 1q. Without loss of generality, assume thatX1 “ 1 (the proof is similar ifX1 “ 0.) Since
each edgepi, i` 1q P Gdpn, pq, we must have thatX2,X4, . . . ,X2k all equal0, andX1,X3, . . . ,X2k`1 all
equal1. But thenX1 “ X2k`1 “ 1, hencep1, 2k ` 1q R Gdpn, pq. This contradicts the assumption that
p1, 2, . . . , 2k ` 1, 1q is a cycle.

We proceed with the second construction in a similar manner.Let q2 :“ 1
2
p1 ´ ?2p´ 1q, and let

X1, . . . ,Xn be i.i.d. random bits withPrrXi “ 1s “ q2. This time, placepi, jq P Gdpn, pq iff Xi “ Xj .
Note thatpi, jq is an edge with probablityq22 ` p1 ´ q2q2 “ p. Now, letS0 :“ ti : Xi “ 0u and similarly
S1 :“ ti : Xi “ 1u. It is easy to see thatS0 andS1 are both cliques inGdpn, pq. One of them must contain
at least half the vertices.

References

[1] Noga Alon and Asaf Nussboim. k-wise independent random graphs. InProc. 49th Annual IEEE
Symposium on Foundations of Computer Science, pages 813–822, 2008.

[2] Noga Alon and Joel H. Spencer.The Probabilistic Method. Wiley-Interscience, New York, NY, 2000.

17
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