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This talk is mostly about the paper

• Tight Size-Degree Lower Bounds for  
Sums-of-Squares Proofs  
presented at Computational Complexity Conference, 2015

joint work with Jakob Nordström 
(KTH, Stockholm)



i. 
intro to proof complexity



Proof complexity:  
Study of succinct, polynomial-time verifiable proofs of 
unsatisfiability (i.e. refutations) for CNF formulas

Original motivation: super-polynomial size lower bounds would 
imply coNP ≠ NP and hence P ≠ NP

(quite a remote goal...)



Study of potential and limitations of current methods 
for SAT solving and combinatorial optimization.

Solver outputs UNSAT → proof of unsatisfiability.

Solver running time      → proof length.

Recent motivation:



Applications of SAT solving

• Model checking for 
hardware and software 
verification

• Combinatorial designs 
(Ramsey, Latin squares …)

• Planning

• Cryptography

• Scheduling

• Testing security protocols

• …



Expressiveness: stronger algorithms ⇒ shorter proofs

                                                       ⇒ hard to use

                                                       ⇒ hard to analyze

Simplicity: weaker algorithms  ⇒ simpler search space 

                                              ⇒ better heuristics

Proof System 

A language to express proofs of UNSAT



A _ x B _ ¬x
A _B

Resolution

Proof Lines

Resolution rule

Refutation                derive the empty clause ⊥

C = l1 _ l2 _ . . . lw



• Simple enough to prove size lower bounds

• Powerful enough to be useful in practice

• Davis-Putnam-Logemann-Loveland (DPLL) algorithm

• CDCL SAT solvers (Conflict-Driven Clause Learning)

Resolution is the most popular proof format



Polynomial Calculus

Proof Lines

Inference Rules

Refutation
...

1=0

p = 0 q = 0

↵p+ �q = 0
↵,� 2 F

p = 0

xp = 0

p = 0
p 2 F[x1, . . . , xn]



Sherali-Adams

Refutation

tX

i=1

gipi = �1

↵i � 0

where

The proofs is a single equation, not a sequence of deductive steps

gi = ↵i

Y

`

xi`

Y

`

(1� xj`)

pi 2 R[x1, . . . , xn]pi � 0



Polynomial inequalities over the reals



Polynomial inequalities over the reals

E.g.  Propositional theorem proving 

(m-1) - ∑j∈[m]  Cj(x)    ≥   0⋀j∈[m] Cj  is UNSAT iff



Polynomial inequalities over the reals

E.g.  Propositional theorem proving 

(m-1) - ∑j∈[m]  Cj(x)    ≥   0⋀j∈[m] Cj  is UNSAT iff

E.g.  Optimization and approximation

minx∈D F(x) ≥ c



F ≥ 0 ?

A method to prove polynomial inequalities

Sums-of-squares (SOS)



F =  A2 + B2 + C2 + …

F ≥ 0 ?

A method to prove polynomial inequalities

[Shor, ’87, Nesterov ’00, Parrilo ’00, Lasserre ’01]

Sums-of-squares (SOS)



Approximation Algorithms 

[Goemans, Williamson, 1995]Max Cut

[Arora, Rao, Vazirani, 2009]Sparsest Cut

Machine Learning

Others

Sparse dictionary learning [Barak, Kelner, Steurer , 2014]

[Chakraborty et al., 2011]Aircraft research

[de Laat et al., 2014]Sphere packing

Power Flow optimization [Ghaddar et al., 2014]



Refutation of ⋀j∈[m] Cj 

assuming

xi2 - xi = 0

-1 ≥ 0

i.e. xi ∈ {0,1}

1 - Cj(x) = 0 Clause Cj is satisfied

a proof of



∑j∈[m]  Pj ·(1-Cj(x))   
+  

∑i∈[n]  Ri ·(xi2-xi) 
          +
        ( -1 )           =  (H1)2  +  (H2)2 + (H3)2  +…

A sums-of-squares refutation of ⋀j∈[m] Cj  over n variables



∑j∈[m]  Pj ·(1-Cj(x))   
+  

∑i∈[n]  Ri ·(xi2-xi) 
          +
        ( -1 )           =  (H1)2  +  (H2)2 + (H3)2  +…

A sums-of-squares refutation of ⋀j∈[m] Cj  over n variables

Size:        #monomials (before cancellation)    ≤ nDegree

Degree:   max degree among summands         ≤ n+1



The problem of proof search

Finding short proofs seems hard, e.g. [Alekhnovich, Razborov, 08]

Search space gets smaller if we restrict some proof parameter

The maximum width (i.e. # literals) of the clauses in a resolution proof

The maximum degree among the polynomials in a PC/SA/SOS proof

Note:  This morning Albert Atserias discussed connections between these 
measures and length/size lower bounds. I won’t discuss them further.



Polynomial Calculus of degree O(k)

Gröbner basis computation of length nO(k)

Sherali-Adams proofs of degree O(k)

Linear Program of size nO(k)

Sums-of-Squares proofs of degree O(k)

Semidefinite  Program of size nO(k)

Resolution proof of width O(k)

Exhaustive search of length nO(k)

A _ x B _ ¬x
A _B



Polynomial Calculus of degree O(k)

Gröbner basis computation of length nO(k)

Sherali-Adams proofs of degree O(k)

Linear Program of size nO(k)

Sums-of-Squares proofs of degree O(k)

Semidefinite  Program of size nO(k)

Resolution proof of width O(k)

Exhaustive search of length nO(k)

A _ x B _ ¬x
A _B Tight by [ALN,14]

Tight by [ALN,14]

Tight by [ALN,14]



ii. 
our result



Size ≤ nDegree 

Can this bound be improved?

Running-Time ≤ nDegree 

For sums-of-squares we know that



We build 3-CNF formulas Fk;n  for k≪nδ

• polynomial size in k and n,

with sums-of-squares proof of

• degree O(k), thus of size nO(k),  

and which require sums-of-squares proofs of

• size nΩ(k), no matter the degree



Step 1, we start with: 

symmetric formula, hard for degree

Step 2, by “relativization” we build:

a formula hard for size



iii. 
     symmetric formula, hard for degree



“Graph G has a k-clique”

2

3

1

4

⋁v∊V  xi,v       for i∊[k]  

¬xi,v ⋁ ¬xj,w
for i≠j in [k]
and {v,w}∉E

The formula is symmetric w.r.t. indices in [k]



We need a k-clique formulas for a graph G such that

• G has O(k) vertices

• G has no k-cliques

• any refutation has a monomial which mention Ω(k) indices 



Theorem [Gri01, Sch08]: For every k > 0 we can sample a random 
3-XOR formula φ in O(k) variables and O(k) constraints so that the 
following properties hold with positive probability.

1. Unsatisfiable,
2. any sums-of-squares refutation requires degree Ω(k).



Theorem [Gri01, Sch08]: For every k > 0 we can sample a random 
3-XOR formula φ in O(k) variables and O(k) constraints so that the 
following properties hold with positive probability.

1. Unsatisfiable,
2. any sums-of-squares refutation requires degree Ω(k).

Pick such φ and chop it into k parts of size O(1) each

φ = φ1    ∧  φ2   ∧ …⋯ ∧  φk



0 0 0 0

0 0 0 1

0 0 1 0

1 1 1 1

≤O(1)

Vertices for all assignments to the variables in φi

 z3 z7 z12 z29



0 0 0 0

0 0 0 1

0 0 1 0

1 1 1 1

≤O(1)

Vertices for all assignments to the variables in φi

 z3 z7 z12 z29

We remove the vertices not 
compatible with constraints in φi

         

              E.g.    z3⊕ z7 ⊕ z29=1  



0 0 0 0

0 0 0 1

0 0 1 0

1 1 1 1

z3 z7 z12 z29

0 0 0 0

0 0 0 1

0 0 1 0

1 1 1 1

z7 z9 z12 z16

Edge iff assignments are compatible

φi φj



0 0 0 0

0 0 0 1

0 0 1 0

1 1 1 1

z3 z7 z12 z29

0 0 0 0

0 0 0 1

0 0 1 0

1 1 1 1

z7 z9 z12 z16

Edge iff assignments are compatible

φi φj



• Gφ has O(k) vertices, since each block has O(1) vertices

• Gφ has no k-cliques, since φ is unsatisfiable 

0 0 0 0

0 0 0 1

0 0 1 0

0 0 0 1

0 0 0 0

0 0 1 0

1 1 1 11 1 1 1

0 0 0 1

0 0 0 0

0 0 1 0

1 1 1 1

Gφ =

[FGLSS reduction]



Lemma1: any sums-of-square refutation for the k-Clique formula 
over graph Gφ  has a monomial which mentions Ω(k)  indices.

proof idea: from a refutation of k-Clique over graph Gφ  with at 
most t  indices we extract a refutation for φ of degree Ω(t). 

Using Theorem [Gri01, Sch08] we get that t = Ω(k).



iv. 
relativization



Relativization [Krajíček, 2004; Dantchev, Riis, 2003]

[Atserias, Müller, Oliva, 2013]: lower bound for Depth-2 Frege

[Atserias, L. , Nordström, 2014]:  nΩ(k) lower bound for
• resolution of width k
• polynomial calculus of degree k
• Sherali-Adams proof of  rank k 



Fk alias of the k-clique formula on Gφ  on variables “xi,v”
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2

Fk = ⋀S⊆[k] FS

Let FS be the ⋀ of clauses that mention the indices in S

Fk alias of the k-clique formula on Gφ  on variables “xi,v”
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Fk = ⋀S⊆[k] FS

Let FS be the ⋀ of clauses that mention the indices in S

Fk alias of the k-clique formula on Gφ  on variables “xi,v”

Fn = ⋀S⊆[n],|S|≤k FS
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for i≠j in [k]      for i∊[k]  

Relativized k-clique formula Fk;n

and {v,w}∉E

⋁v∊V  xi,v ¬xi,v ⋁ ¬xj,w
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      for i∊[n]  for i≠j in [n]

Relativized k-clique formula Fk;n

and {v,w}∉E

⋁v∊V  xi,v ¬xi,v ⋁ ¬xj,w
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      for i∊[n]  for i≠j in [n]

Relativized k-clique formula Fk;n

and {v,w}∉E

⋁v∊V  xi,v ¬xi,v ⋁ ¬xj,w¬si   ∨ ¬si   ∨ ¬sj ∨
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      for i∊[n]  for i≠j in [n]

Relativized k-clique formula Fk;n

and {v,w}∉E

⋁v∊V  xi,v ¬xi,v ⋁ ¬xj,w¬si   ∨ ¬si   ∨ ¬sj ∨

“∑i∈[n]  si    ≥   k”

{ i : si = 1 } is the range of 
an injective (multi)function
from [k] to [n]



The formula Fk;n has a refutation of size nO(k)

proof idea: brute force over all possible ways to 

• choose k indices from [n]

• point them to k vertices in the graph Gφ



v. 
size nΩ(k)  lower bound



     Π                               Π|⍴

Key tool: random restriction

proof of simplied formula

A partial assignment ⍴ 

simplifies formula

Idea: 
Simplified formula requires proof with large monomial
If proof is small, restriction removes all large monomials

⍴
Fk;n                           Fk;n |⍴

⍴



Usually, restriction arguments give exponential 
lower bounds, which cannot work here...

... we need to fine tune the restriction to make it 
work in the right range of parameters.

For the experts: 

Furst-Saxe-Sipser style instead of Håstad style
(see also [Atserias, Müller, Oliva, 2013])



1. Select S⊆[n],|S|=k

Fix si to 1 iff i∊S, to 0 ow

2. If i∉S set all xi,v at random

3. Match [k] with S arbitrarily

4. we get a copy of the 
original k-Clique formula 

Random restriction ⍴ as follows
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1. Select S⊆[n],|S|=k

Fix si to 1 iff i∊S, to 0 ow

2. If i∉S set all xi,v at random

3. Match [k] with S arbitrarily

4. we get a copy of the 
original k-Clique formula 

Random restriction ⍴ as follows
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Lemma I: Any sums-of-squares refutation of it 
has a monomial that mentions Ω(k) indices.

Since Fk;n|⍴  is a copy of k-Clique formula for Gφ

Recall



Lemma 2. After restriction, a monomial mentions 
Ω(k) indices with probability < n-Ω(k)

Hence, if proof size < nΩ(k) there is restriction 
yielding a proof with no monomial with Ω(k) indices.

      Π                             Π|⍴

⍴
Fk;n                           Fk;n |⍴

⍴



a monomial in the unrestricted refutation Π           

r

r � k log n+ k

r < k log n+ k

Pr[m is not set to zero] 
✓
1

2

◆k logn

 n�k

Pr[m mentions ↵k surviving indices] /
✓

k

↵k

◆✓
k log n+ k

↵k

◆
n�⌦(k)

m

# of indices mentioned in m



Consider a refutation Π of size no(k)  for the formula Fk;n 
We restrict and we get a refutation Π|⍴ for Fk;n|⍴

Proof recap

by Lemma I, Fk;n|⍴  is k-Clique formula on Gφ, for all ρ

Π|⍴ must mention Ω(k) indices in some monomial

by Lemma 2, for some choice of the restriction ρ

Π|⍴ does mention o(k) indices in every monomial
q.e.d.



Fk;n  can be turned into a 3-CNF using extension variables

• the lower bound applies with a fix to the argument

• the upper bound now has size nO(k) and degree O(k)

“Didn’t you promise a 3-CNF?”



∞. 
conclusion



Our result

There are 3-CNF formulas Fk;n  for k≪nδ

• polynomial size in k and n,

with sums-of-squares proof of

• degree O(k), thus of size nO(k),  

and which require sums-of-squares proofs of

• size nΩ(k), no matter the degree.



Open problem: k-Clique formula

Fix G=(V,E) with no k-clique

Σv∈V xv ≥ k
xv xw = 0   for {u,v}∉E

Does sums-of-squares require |V|Ω(k) size proofs?

Average case:  G=G(n,p) for p≈n-2/(k-1)



Our reduction to 3-XOR is also size efficient…

Random 3-XOR is hard for Sums-of-Squares w.r.t. size
[Kojevnikov, Itsykson, 2006]



Our reduction to 3-XOR is also size efficient…

Random 3-XOR is hard for Sums-of-Squares w.r.t. size
[Kojevnikov, Itsykson, 2006]

…assuming no negative variables 

Corollary: lower bound if no negative variables.



[Beyersdorff, Galesi, L, Razborov, 2012] conjecture length |V|Ω(k)

[Beyersdorff, Galesi, L, 2013] prove it for treelike resolution 
[L, Pudlák, Rödl, Thapen, 2013] prove it for the “wrong” encoding

[Beame, Impagliazzo, Sabharwal, 2007] size >2Ω(|V|)  even for k ≈|V|

K-Clique is still open even for resolution:



Thank you


