Symmetrizing sum of squares polynomials on the hypercube.

Anupam Prakash,
Center for Quantum Technologies and Nanyang Technological University, Singapore.

February 1, 2016

Based on joint work with Troy Lee, Ronald De Wolf and Henry Yuen. Arxiv:1601.02311.

Overview

(1) Grigoriev's knapsack lower bound
(2) Symmetrizing $S o S$ polynomials on hypercube
(3) Blekherman's theorem

Positivestellensatz refutations

- Consider the polynomial system $f(x)=r, f_{i}(x)=0 \forall i \in[n]$, a refutation of the system is a proof that the system has no solutions.

Positivestellensatz refutations

- Consider the polynomial system $f(x)=r, f_{i}(x)=0 \forall i \in[n]$, a refutation of the system is a proof that the system has no solutions.
- A Positivestellensatz refutation of degree d is an identity of the form:

$$
g(x)(f(x)-r)+\sum_{i=1}^{n} g_{i}(x) f_{i}(x)=1+h(x) .
$$

where $\operatorname{deg}(f g) \leq d, \operatorname{deg}\left(f_{i} g_{i}\right) \leq d$ and $h(x)=\sum_{i} h_{i}(x)^{2}$ with $\operatorname{deg}\left(h_{i}\right) \leq d / 2$.

Positivestellensatz refutations

- Consider the polynomial system $f(x)=r, f_{i}(x)=0 \forall i \in[n]$, a refutation of the system is a proof that the system has no solutions.
- A Positivestellensatz refutation of degree d is an identity of the form:

$$
g(x)(f(x)-r)+\sum_{i=1}^{n} g_{i}(x) f_{i}(x)=1+h(x) .
$$

where $\operatorname{deg}(f g) \leq d, \operatorname{deg}\left(f_{i} g_{i}\right) \leq d$ and $h(x)=\sum_{i} h_{i}(x)^{2}$ with $\operatorname{deg}\left(h_{i}\right) \leq d / 2$.

- If there is a solution x to the polynomial system, the left side evaluates to 0 while the right side is at least 1 .

Positivestellensatz refutations

- Consider the polynomial system $f(x)=r, f_{i}(x)=0 \forall i \in[n]$, a refutation of the system is a proof that the system has no solutions.
- A Positivestellensatz refutation of degree d is an identity of the form:

$$
g(x)(f(x)-r)+\sum_{i=1}^{n} g_{i}(x) f_{i}(x)=1+h(x) .
$$

where $\operatorname{deg}(f g) \leq d, \operatorname{deg}\left(f_{i} g_{i}\right) \leq d$ and $h(x)=\sum_{i} h_{i}(x)^{2}$ with $\operatorname{deg}\left(h_{i}\right) \leq d / 2$.

- If there is a solution x to the polynomial system, the left side evaluates to 0 while the right side is at least 1.
- How to lower bound the degree of Positivestellensatz refutations?

Pseudo Expectations

- A degree- d pseudo-expectation \widetilde{E} is a linear function on the space of degree- d polynomials such that $\widetilde{E}\left[h^{2}\right] \geq 0$ for all h s.t. $\operatorname{deg}(h) \leq d / 2$.

Pseudo Expectations

- A degree- d pseudo-expectation \widetilde{E} is a linear function on the space of degree- d polynomials such that $\widetilde{E}\left[h^{2}\right] \geq 0$ for all h s.t. $\operatorname{deg}(h) \leq d / 2$.
- Construct a pseudo-expectation $\widetilde{E}\left[f_{i}(x) g_{i}(x)\right]=0$ and $\widetilde{E}[(f(x)-r) \cdot g(x)]=0$ for all polynomials $g(x), g_{i}(x)$ such that $\operatorname{deg}\left(f_{i} g\right), \operatorname{deg}(f g) \leq d$.

Pseudo Expectations

- A degree- d pseudo-expectation \widetilde{E} is a linear function on the space of degree- d polynomials such that $\widetilde{E}\left[h^{2}\right] \geq 0$ for all h s.t. $\operatorname{deg}(h) \leq d / 2$.
- Construct a pseudo-expectation $\widetilde{E}\left[f_{i}(x) g_{i}(x)\right]=0$ and $\widetilde{E}[(f(x)-r) \cdot g(x)]=0$ for all polynomials $g(x), g_{i}(x)$ such that $\operatorname{deg}\left(f_{i} g\right), \operatorname{deg}(f g) \leq d$.
- Suppose there is a Positivestellensatz refutation of degree d,

$$
g(x)(f(x)-r)+\sum_{i=1}^{n} g_{i}(x) f_{i}(x)=1+h(x) .
$$

Pseudo Expectations

- A degree- d pseudo-expectation \widetilde{E} is a linear function on the space of degree- d polynomials such that $\widetilde{E}\left[h^{2}\right] \geq 0$ for all h s.t. $d e g(h) \leq d / 2$.
- Construct a pseudo-expectation $\widetilde{E}\left[f_{i}(x) g_{i}(x)\right]=0$ and $\widetilde{E}[(f(x)-r) . g(x)]=0$ for all polynomials $g(x), g_{i}(x)$ such that $\operatorname{deg}\left(f_{i} g\right), \operatorname{deg}(f g) \leq d$.
- Suppose there is a Positivestellensatz refutation of degree d,

$$
g(x)(f(x)-r)+\sum_{i=1}^{n} g_{i}(x) f_{i}(x)=1+h(x) .
$$

- Then the pseudo-expectation function \widetilde{E} for the left side evaluates to 0 , while that for the right side is at least 1 .

The knapsack system

- The knapsack system consists of the equations $\sum_{i} x_{i}=r$ where $r \notin \mathbb{Z}$ and $x_{i}^{2}=x_{i}, \forall i \in[n]$. Clearly there is no solution.

The knapsack system

- The knapsack system consists of the equations $\sum_{i} x_{i}=r$ where $r \notin \mathbb{Z}$ and $x_{i}^{2}=x_{i}, \forall i \in[n]$. Clearly there is no solution.
- What is the degree of the $P S$ refutation for the knapsack?

$$
g(x) \cdot\left(\sum_{i=1}^{n} x_{i}-r\right)+\sum_{i=1}^{n} g_{i}(x) \cdot\left(x_{i}^{2}-x_{i}\right)=1+h(x)
$$

The knapsack system

- The knapsack system consists of the equations $\sum_{i} x_{i}=r$ where $r \notin \mathbb{Z}$ and $x_{i}^{2}=x_{i}, \forall i \in[n]$. Clearly there is no solution.
- What is the degree of the $P S$ refutation for the knapsack?

$$
g(x) \cdot\left(\sum_{i=1}^{n} x_{i}-r\right)+\sum_{i=1}^{n} g_{i}(x) \cdot\left(x_{i}^{2}-x_{i}\right)=1+h(x)
$$

The knapsack system

- The knapsack system consists of the equations $\sum_{i} x_{i}=r$ where $r \notin \mathbb{Z}$ and $x_{i}^{2}=x_{i}, \forall i \in[n]$. Clearly there is no solution.
- What is the degree of the $P S$ refutation for the knapsack?

$$
g(x) \cdot\left(\sum_{i=1}^{n} x_{i}-r\right)+\sum_{i=1}^{n} g_{i}(x) \cdot\left(x_{i}^{2}-x_{i}\right)=1+h(x)
$$

- Theorem (Grigoriev 01)

If $0<r<(n-1) / 2$, then there is no Positivstellensatz refutation of the knapsack system with parameter r with degree $2\lfloor r\rfloor+2$.

Grigoriev's proof

- The proof defines a pseudo-expectation \widetilde{E} on monomials:

$$
\widetilde{E}\left[x^{S}\right]=\frac{r \cdot(r-1) \cdot \cdots \cdot(r-|S|+1)}{n \cdot(n-1) \cdot \cdots \cdot(n-|S|+1)}
$$

and by extension on all multilinear polynomials.

Grigoriev's proof

- The proof defines a pseudo-expectation \widetilde{E} on monomials:

$$
\widetilde{E}\left[x^{S}\right]=\frac{r \cdot(r-1) \cdots \cdot(r-|S|+1)}{n \cdot(n-1) \cdot \cdots \cdot(n-|S|+1)}
$$

and by extension on all multilinear polynomials.

- It is easy to show that $\widetilde{E}\left[g \cdot\left(\sum_{i} x_{i}-r\right)\right]=0$.

Grigoriev's proof

- The proof defines a pseudo-expectation \widetilde{E} on monomials:

$$
\widetilde{E}\left[x^{S}\right]=\frac{r \cdot(r-1) \cdots \cdot(r-|S|+1)}{n \cdot(n-1) \cdot \cdots \cdot(n-|S|+1)}
$$

and by extension on all multilinear polynomials.

- It is easy to show that $\widetilde{E}\left[g \cdot\left(\sum_{i} x_{i}-r\right)\right]=0$.
- The proof of positivity $\widetilde{E}\left[h^{2}\right] \geq 0$ if $\operatorname{deg}(h) \leq\lfloor r\rfloor+2$ is involved.

Grigoriev's proof

- The proof defines a pseudo-expectation \widetilde{E} on monomials:

$$
\widetilde{E}\left[x^{S}\right]=\frac{r \cdot(r-1) \cdots \cdot(r-|S|+1)}{n \cdot(n-1) \cdot \cdots \cdot(n-|S|+1)}
$$

and by extension on all multilinear polynomials.

- It is easy to show that $\widetilde{E}\left[g \cdot\left(\sum_{i} x_{i}-r\right)\right]=0$.
- The proof of positivity $\widetilde{E}\left[h^{2}\right] \geq 0$ if $\operatorname{deg}(h) \leq\lfloor r\rfloor+2$ is involved.
- We present here a simple proof of Grigoriev's lower bound.

Grigoriev's proof

- The proof defines a pseudo-expectation \widetilde{E} on monomials:

$$
\widetilde{E}\left[x^{S}\right]=\frac{r \cdot(r-1) \cdots \cdot(r-|S|+1)}{n \cdot(n-1) \cdot \cdots \cdot(n-|S|+1)}
$$

and by extension on all multilinear polynomials.

- It is easy to show that $\widetilde{E}\left[g \cdot\left(\sum_{i} x_{i}-r\right)\right]=0$.
- The proof of positivity $\widetilde{E}\left[h^{2}\right] \geq 0$ if $\operatorname{deg}(h) \leq\lfloor r\rfloor+2$ is involved.
- We present here a simple proof of Grigoriev's lower bound.
- All known Sum of Squares hierarchy lower bounds reduce to either the $3 X O R$ or knapsack lower bounds of Grigoriev.

Symmetric polynomials on the hypercube

- Let M_{n} be the space of n-variate multilinear polynomials.

Symmetric polynomials on the hypercube

- Let M_{n} be the space of n-variate multilinear polynomials.
- M_{n} is the coordinate ring of the hypercube $H=\{0,1\}^{n}$, that is $M_{n}:=\mathbb{R}\left[x_{1}, x_{2}, \cdots, x_{n}\right] /\left\langle x_{i}^{2}-x_{i}: i \in[n]\right\rangle$.

Symmetric polynomials on the hypercube

- Let M_{n} be the space of n-variate multilinear polynomials.
- M_{n} is the coordinate ring of the hypercube $H=\{0,1\}^{n}$, that is $M_{n}:=\mathbb{R}\left[x_{1}, x_{2}, \cdots, x_{n}\right] /\left\langle x_{i}^{2}-x_{i}: i \in[n]\right\rangle$.
- The symmetric group S_{n} acts on M_{n} by permuting the indices of the monomials.

Symmetric polynomials on the hypercube

- Let M_{n} be the space of n-variate multilinear polynomials.
- M_{n} is the coordinate ring of the hypercube $H=\{0,1\}^{n}$, that is $M_{n}:=\mathbb{R}\left[x_{1}, x_{2}, \cdots, x_{n}\right] /\left\langle x_{i}^{2}-x_{i}: i \in[n]\right\rangle$.
- The symmetric group S_{n} acts on M_{n} by permuting the indices of the monomials.
- Example: If $\sigma(1234)=3142$ then $\sigma\left(x_{1} x_{2}+x_{3} x_{4}\right)=x_{3} x_{1}+x_{4} x_{2}$.

Symmetric polynomials on the hypercube

- Let M_{n} be the space of n-variate multilinear polynomials.
- M_{n} is the coordinate ring of the hypercube $H=\{0,1\}^{n}$, that is $M_{n}:=\mathbb{R}\left[x_{1}, x_{2}, \cdots, x_{n}\right] /\left\langle x_{i}^{2}-x_{i}: i \in[n]\right\rangle$.
- The symmetric group S_{n} acts on M_{n} by permuting the indices of the monomials.
- Example: If $\sigma(1234)=3142$ then $\sigma\left(x_{1} x_{2}+x_{3} x_{4}\right)=x_{3} x_{1}+x_{4} x_{2}$.
- A multilinear polynomial can be symmetrized:

$$
\operatorname{Sym}(p)(x):=\frac{1}{n!} \sum_{\sigma \in S_{n}} p(\sigma x)
$$

Symmetric polynomials on the hypercube

- Let M_{n} be the space of n-variate multilinear polynomials.
- M_{n} is the coordinate ring of the hypercube $H=\{0,1\}^{n}$, that is $M_{n}:=\mathbb{R}\left[x_{1}, x_{2}, \cdots, x_{n}\right] /\left\langle x_{i}^{2}-x_{i}: i \in[n]\right\rangle$.
- The symmetric group S_{n} acts on M_{n} by permuting the indices of the monomials.
- Example: If $\sigma(1234)=3142$ then $\sigma\left(x_{1} x_{2}+x_{3} x_{4}\right)=x_{3} x_{1}+x_{4} x_{2}$.
- A multilinear polynomial can be symmetrized:

$$
\operatorname{Sym}(p)(x):=\frac{1}{n!} \sum_{\sigma \in S_{n}} p(\sigma x)
$$

- What is the symmetrization the degree 2 monomial $x_{1} x_{2}$?

Symmetrization

- $\operatorname{Sym}\left(x_{1} x_{2}\right)=\frac{1}{n!} \sum_{\sigma} \sigma\left(x_{1} x_{2}\right)=\frac{(n-2)!2!}{n!} \sum_{i \neq j} x_{i} x_{j}$.

Symmetrization

- $\operatorname{Sym}\left(x_{1} x_{2}\right)=\frac{1}{n!} \sum_{\sigma} \sigma\left(x_{1} x_{2}\right)=\frac{(n-2)!2!}{n!} \sum_{i \neq j} x_{i} x_{j}$.
- Let $x \in\{0,1\}^{n}$ and $|x|=\sum_{i} x_{i}$,

$$
\operatorname{Sym}\left(x_{1} x_{2} \cdots x_{k}\right)=\frac{\binom{|x|}{k}}{\binom{n}{k}}=\frac{|x| \cdot(|x|-1) \cdot \cdots \cdot(|x|-k+1)}{n \cdot(n-1) \cdot \cdots \cdot(n-k+1)}
$$

Symmetrization

- $\operatorname{Sym}\left(x_{1} x_{2}\right)=\frac{1}{n!} \sum_{\sigma} \sigma\left(x_{1} x_{2}\right)=\frac{(n-2)!2!}{n!} \sum_{i \neq j} x_{i} x_{j}$.
- Let $x \in\{0,1\}^{n}$ and $|x|=\sum_{i} x_{i}$,

$$
\operatorname{Sym}\left(x_{1} x_{2} \cdots x_{k}\right)=\frac{\binom{|x|}{k}}{\binom{n}{k}}=\frac{|x| \cdot(|x|-1) \cdot \cdots \cdot(|x|-k+1)}{n \cdot(n-1) \cdot \cdots \cdot(n-k+1)}
$$

- In fact, this is an identity over M_{n} valid for all x.

Symmetrization

- $\operatorname{Sym}\left(x_{1} x_{2}\right)=\frac{1}{n!} \sum_{\sigma} \sigma\left(x_{1} x_{2}\right)=\frac{(n-2)!2!}{n!} \sum_{i \neq j} x_{i} x_{j}$.
- Let $x \in\{0,1\}^{n}$ and $|x|=\sum_{i} x_{i}$,

$$
\operatorname{Sym}\left(x_{1} x_{2} \cdots x_{k}\right)=\frac{\binom{|x|}{k}}{\binom{n}{k}}=\frac{|x| \cdot(|x|-1) \cdot \cdots \cdot(|x|-k+1)}{n \cdot(n-1) \cdot \cdots \cdot(n-k+1)}
$$

- In fact, this is an identity over M_{n} valid for all x.
- The symmetrization $\operatorname{Sym}(p)(x)$ is a univariate polynomial in $z=|x|$ and is denoted as $\operatorname{Sym}^{u n i}(p)(z)$.

Symmetrization

- $\operatorname{Sym}\left(x_{1} x_{2}\right)=\frac{1}{n!} \sum_{\sigma} \sigma\left(x_{1} x_{2}\right)=\frac{(n-2)!2!}{n!} \sum_{i \neq j} x_{i} x_{j}$.
- Let $x \in\{0,1\}^{n}$ and $|x|=\sum_{i} x_{i}$,

$$
\operatorname{Sym}\left(x_{1} x_{2} \cdots x_{k}\right)=\frac{\binom{|x|}{k}}{\binom{n}{k}}=\frac{|x| \cdot(|x|-1) \cdot \cdots \cdot(|x|-k+1)}{n \cdot(n-1) \cdot \cdots \cdot(n-k+1)}
$$

- In fact, this is an identity over M_{n} valid for all x.
- The symmetrization $\operatorname{Sym}(p)(x)$ is a univariate polynomial in $z=|x|$ and is denoted as $\operatorname{Sym}^{u n i}(p)(z)$.
- Is the symmetrization of a square polynomial $\operatorname{Sym}^{u n i}\left(p^{2}\right)(z)$ positive on $[0, n]$? What are its positivity properties?

Symmetrizing squares

- If $p=x_{1} x_{2}$, then $\operatorname{Sym}^{u n i}\left(p^{2}\right)(z)=\frac{z \cdot(z-1)}{n .(n-1)}$ is negative for $z \in(0,1)$.

Symmetrizing squares

- If $p=x_{1} x_{2}$, then $\operatorname{Sym}^{u n i}\left(p^{2}\right)(z)=\frac{z \cdot(z-1)}{n .(n-1)}$ is negative for $z \in(0,1)$.
- However, $\operatorname{Sym}^{u n i}\left(p^{2}\right)(z)$ is positive on the integer points $z \in[0, n]$.

Symmetrizing squares

- If $p=x_{1} x_{2}$, then $\operatorname{Sym}^{u n i}\left(p^{2}\right)(z)=\frac{z \cdot(z-1)}{n .(n-1)}$ is negative for $z \in(0,1)$.
- However, $\operatorname{Sym}^{u n i}\left(p^{2}\right)(z)$ is positive on the integer points $z \in[0, n]$.

Symmetrizing squares

- If $p=x_{1} x_{2}$, then $\operatorname{Sym}^{u n i}\left(p^{2}\right)(z)=\frac{z \cdot(z-1)}{n .(n-1)}$ is negative for $z \in(0,1)$.
- However, $\operatorname{Sym}^{u n i}\left(p^{2}\right)(z)$ is positive on the integer points $z \in[0, n]$.

Theorem (Blekherman)

The polynomial Sym ${ }^{u n i}\left(p^{2}\right)(z)$ where $\operatorname{deg}(p)=d, d \leq n / 2$ can be expressed as

$$
\begin{align*}
\operatorname{Sym}^{u n i}\left(p^{2}\right)(z) & =q_{d}(z)+z(n-z) q_{d-1}(z)+\cdots \\
& \cdots z(z-1)(n-z)(n-1-z) q_{d-2}(z)+\cdots \\
& \cdots+\prod_{0 \leq i<t}(z-i)(n-z-i) q_{0}(z) \tag{1}
\end{align*}
$$

where $q_{t}(z)$ is a sum of squares of degree at most t polynomials.

Positivity properties

- Symmetrization of the sum of squares of degree- d polynomials on the hypercube is a positive combination of $(d+1)$ terms.

Positivity properties

- Symmetrization of the sum of squares of degree- d polynomials on the hypercube is a positive combination of $(d+1)$ terms.
- Eg: If polynomials p_{i} have degree at most 2 , then $\operatorname{Sym}^{u n i}\left(\sum_{i} p_{i}^{2}\right)$ has the expansion:

$$
q_{2}(z)+z(n-z) q_{1}(z)+z(z-1)(n-z)(n-z-1) q_{0}(x) .
$$

Positivity properties

- Symmetrization of the sum of squares of degree- d polynomials on the hypercube is a positive combination of $(d+1)$ terms.
- Eg: If polynomials p_{i} have degree at most 2 , then $\operatorname{Sym}^{u n i}\left(\sum_{i} p_{i}^{2}\right)$ has the expansion:

$$
q_{2}(z)+z(n-z) q_{1}(z)+z(z-1)(n-z)(n-z-1) q_{0}(x) .
$$

- The $S o S$ polynomial $q_{d-i}(x)$ is multiplied by a polynomial that is non negative on $[i-1, n-i+1]$.

Positivity properties

- Symmetrization of the sum of squares of degree- d polynomials on the hypercube is a positive combination of $(d+1)$ terms.
- Eg: If polynomials p_{i} have degree at most 2 , then $\operatorname{Sym}^{u n i}\left(\sum_{i} p_{i}^{2}\right)$ has the expansion:

$$
q_{2}(z)+z(n-z) q_{1}(z)+z(z-1)(n-z)(n-z-1) q_{0}(x) .
$$

- The $S o S$ polynomial $q_{d-i}(x)$ is multiplied by a polynomial that is non negative on $[i-1, n-i+1]$.
- The $i+1$ st term in the expansion is therefore non negative in the interval $[i-1, n-i+1]$.

Positivity properties

- Symmetrization of the sum of squares of degree- d polynomials on the hypercube is a positive combination of $(d+1)$ terms.
- Eg: If polynomials p_{i} have degree at most 2 , then $\operatorname{Sym}^{u n i}\left(\sum_{i} p_{i}^{2}\right)$ has the expansion:

$$
q_{2}(z)+z(n-z) q_{1}(z)+z(z-1)(n-z)(n-z-1) q_{0}(x) .
$$

- The $S o S$ polynomial $q_{d-i}(x)$ is multiplied by a polynomial that is non negative on $[i-1, n-i+1]$.
- The $i+1$ st term in the expansion is therefore non negative in the interval $[i-1, n-i+1]$.
- $\operatorname{Sym}^{u n i}\left(\sum_{i} p_{i}^{2}\right)$ is non negative on $[d-1, n-d+1]$ if $\operatorname{deg}\left(p_{i}\right) \leq d$.

Proof of Grigoriev's bound

- How does Grigoriev's certificate $\widetilde{E}[p]$ relate to symmetric polynomials?

Proof of Grigoriev's bound

- How does Grigoriev's certificate $\widetilde{E}[p]$ relate to symmetric polynomials?

$$
\widetilde{E}[p]=\operatorname{Sym}^{u n i}(p)(r)
$$

Proof of Grigoriev's bound

- How does Grigoriev's certificate $\widetilde{E}[p]$ relate to symmetric polynomials?

$$
\widetilde{E}[p]=\operatorname{Sym}^{u n i}(p)(r)
$$

- By the previous slide, $\operatorname{Sym}^{u n i}\left(p^{2}\right)(r) \geq 0$ if $\operatorname{deg}(p) \leq d$ and $r \in[d-1, n-d+1]$.

Proof of Grigoriev's bound

- How does Grigoriev's certificate $\widetilde{E}[p]$ relate to symmetric polynomials?

$$
\widetilde{E}[p]=\operatorname{Sym}^{u n i}(p)(r)
$$

- By the previous slide, $\operatorname{Sym}^{u n i}\left(p^{2}\right)(r) \geq 0$ if $\operatorname{deg}(p) \leq d$ and $r \in[d-1, n-d+1]$.
- Grigoriev's certificate is positive if the degree $d \leq\lfloor r\rfloor+1$.

Proof of Grigoriev's bound

- How does Grigoriev's certificate $\widetilde{E}[p]$ relate to symmetric polynomials?

$$
\widetilde{E}[p]=\operatorname{Sym}^{u n i}(p)(r)
$$

- By the previous slide, $\operatorname{Sym}^{u n i}\left(p^{2}\right)(r) \geq 0$ if $\operatorname{deg}(p) \leq d$ and $r \in[d-1, n-d+1]$.
- Grigoriev's certificate is positive if the degree $d \leq\lfloor r\rfloor+1$.

Proof of Grigoriev's bound

- How does Grigoriev's certificate $\widetilde{E}[p]$ relate to symmetric polynomials?

$$
\widetilde{E}[p]=\operatorname{Sym}^{u n i}(p)(r)
$$

- By the previous slide, $\operatorname{Sym}^{u n i}\left(p^{2}\right)(r) \geq 0$ if $\operatorname{deg}(p) \leq d$ and $r \in[d-1, n-d+1]$.
- Grigoriev's certificate is positive if the degree $d \leq\lfloor r\rfloor+1$.

Theorem (Grigoriev 01)

If $0<r<(n-1) / 2$, then there is no Positivstellensatz refutation of the knapsack system with parameter r with degree $2\lfloor r\rfloor+2$.

Partial derivatives

- Let W_{t} be the operator that sums over partial derivatives of a degree- t polynomial,

$$
W_{t} p(x)=\left(\sum_{i \in[n]} \frac{\partial}{\partial x_{i}}\right) p(x) .
$$

Partial derivatives

- Let W_{t} be the operator that sums over partial derivatives of a degree- t polynomial,

$$
W_{t} p(x)=\left(\sum_{i \in[n]} \frac{\partial}{\partial x_{i}}\right) p(x) .
$$

- Example: $W_{3}\left(x_{1} x_{2} x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}$.

Partial derivatives

- Let W_{t} be the operator that sums over partial derivatives of a degree- t polynomial,

$$
W_{t} p(x)=\left(\sum_{i \in[n]} \frac{\partial}{\partial x_{i}}\right) p(x) .
$$

- Example: $W_{3}\left(x_{1} x_{2} x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}$.
- For $t>0$, the matrix W_{t} has rows, columns indexed by $S, T \subset[n]$ with $|S|=t-1$ and $|T|=t$ and $\left(W_{t}\right)_{S, T}=1$ if $S \subset T$ and 0 otherwise.

Partial derivatives

- Let W_{t} be the operator that sums over partial derivatives of a degree- t polynomial,

$$
W_{t} p(x)=\left(\sum_{i \in[n]} \frac{\partial}{\partial x_{i}}\right) p(x) .
$$

- Example: $W_{3}\left(x_{1} x_{2} x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}$.
- For $t>0$, the matrix W_{t} has rows, columns indexed by $S, T \subset[n]$ with $|S|=t-1$ and $|T|=t$ and $\left(W_{t}\right)_{S, T}=1$ if $S \subset T$ and 0 otherwise.
- The transpose acts as a multiplication operator:

$$
W_{t}^{T} x^{S}=\sum_{i \notin S} x^{S \cup\{i\}}=x^{S}(|x|-t+1)
$$

Johnson graphs and $\operatorname{Ker}\left(W_{t}\right)$

- W_{t} has a non trivial kernel as its domain has dimension $\binom{n}{t}$ while the image has dimension at most $\binom{n}{t-1}$.

Johnson graphs and $\operatorname{Ker}\left(W_{t}\right)$

- W_{t} has a non trivial kernel as its domain has dimension $\binom{n}{t}$ while the image has dimension at most $\binom{n}{t-1}$.
- Johnson graph: $J(n, t)$ has vertices corresponding to the t subsets of $[n]$ with S, T adjacent if $|S \cap T|=t-1$.

Johnson graphs and $\operatorname{Ker}\left(W_{t}\right)$

- W_{t} has a non trivial kernel as its domain has dimension $\binom{n}{t}$ while the image has dimension at most $\binom{n}{t-1}$.
- Johnson graph: $J(n, t)$ has vertices corresponding to the t subsets of $[n$] with S, T adjacent if $|S \cap T|=t-1$.
- We have the relations:

$$
\begin{align*}
& W_{t}^{T} W_{t}=t I+A_{J}(n, t) \\
& W_{t} W_{t}^{T}=(n-t+1) I+A_{J}(n, t-1) \tag{2}
\end{align*}
$$

Johnson graphs and $\operatorname{Ker}\left(W_{t}\right)$

- W_{t} has a non trivial kernel as its domain has dimension $\binom{n}{t}$ while the image has dimension at most $\binom{n}{t-1}$.
- Johnson graph: $J(n, t)$ has vertices corresponding to the t subsets of $[n$] with S, T adjacent if $|S \cap T|=t-1$.
- We have the relations:

$$
\begin{align*}
& W_{t}^{T} W_{t}=t I+A_{J}(n, t) \\
& W_{t} W_{t}^{T}=(n-t+1) I+A_{J}(n, t-1) \tag{2}
\end{align*}
$$

- $\operatorname{Ker}\left(W_{t}\right)$ is the eigenspaces of Johnson graph $J(n, t)$ with eigenvalue $-t$.

Johnson graphs and $\operatorname{Ker}\left(W_{t}\right)$

- W_{t} has a non trivial kernel as its domain has dimension $\binom{n}{t}$ while the image has dimension at most $\binom{n}{t-1}$.
- Johnson graph: $J(n, t)$ has vertices corresponding to the t subsets of $[n$] with S, T adjacent if $|S \cap T|=t-1$.
- We have the relations:

$$
\begin{align*}
& W_{t}^{T} W_{t}=t I+A_{J}(n, t) \\
& W_{t} W_{t}^{T}=(n-t+1) I+A_{J}(n, t-1) \tag{2}
\end{align*}
$$

- $\operatorname{Ker}\left(W_{t}\right)$ is the eigenspaces of Johnson graph $J(n, t)$ with eigenvalue $-t$.
- The dimension of $\operatorname{Ker}\left(W_{t}\right)$ is $\binom{n}{t}-\binom{n}{t-1}$, this follows from the spectrum of the Johnson graph.

The representations of S_{n}

- The symmetric group S_{n} acts on the polynomial ring M_{n} by permuting indices of monomials.

The representations of S_{n}

- The symmetric group S_{n} acts on the polynomial ring M_{n} by permuting indices of monomials.
- An irreducible representation is a subspace of M_{n} invariant under the action of S_{n} that do not contain non trivial invariant subspaces.

The representations of S_{n}

- The symmetric group S_{n} acts on the polynomial ring M_{n} by permuting indices of monomials.
- An irreducible representation is a subspace of M_{n} invariant under the action of S_{n} that do not contain non trivial invariant subspaces.
- The subspace of degree t polynomials is invariant under S_{n}. Is it an irreducible representation?

The representations of S_{n}

- The symmetric group S_{n} acts on the polynomial ring M_{n} by permuting indices of monomials.
- An irreducible representation is a subspace of M_{n} invariant under the action of S_{n} that do not contain non trivial invariant subspaces.
- The subspace of degree t polynomials is invariant under S_{n}. Is it an irreducible representation?
- It contains a non trivial invariant subspace $\operatorname{Ker}\left(W_{t}\right)$ as it the kernel of a 'symmetric' differential operator.

The representations of S_{n}

- The symmetric group S_{n} acts on the polynomial ring M_{n} by permuting indices of monomials.
- An irreducible representation is a subspace of M_{n} invariant under the action of S_{n} that do not contain non trivial invariant subspaces.
- The subspace of degree t polynomials is invariant under S_{n}. Is it an irreducible representation?
- It contains a non trivial invariant subspace $\operatorname{Ker}\left(W_{t}\right)$ as it the kernel of a 'symmetric' differential operator.
- It turns out that the $\operatorname{Ker}\left(W_{t}\right)$ are the irreducible representations of S_{n}, this follows in a more general setting from the intersecting kernels theorem of G.D.James.

An explicit basis for $\operatorname{Ker}\left(W_{t}\right)$.

- Example: The polynomial $p(x)=\left(x_{1}-x_{2}\right) \cdot\left(x_{3}-x_{4}\right) \cdot\left(x_{5}-x_{6}\right)$ belongs to $\operatorname{Ker}\left(W_{3}\right)$.

An explicit basis for $\operatorname{Ker}\left(W_{t}\right)$.

- Example: The polynomial $p(x)=\left(x_{1}-x_{2}\right) \cdot\left(x_{3}-x_{4}\right) \cdot\left(x_{5}-x_{6}\right)$ belongs to $\operatorname{Ker}\left(W_{3}\right)$.
- Partial derivatives of $p(x)$ cancel in pairs:

$$
\frac{\partial p}{\partial x_{1}}=-\frac{\partial p}{\partial x_{2}}=\left(x_{3}-x_{4}\right) \cdot\left(x_{5}-x_{6}\right) .
$$

An explicit basis for $\operatorname{Ker}\left(W_{t}\right)$.

- Example: The polynomial $p(x)=\left(x_{1}-x_{2}\right) \cdot\left(x_{3}-x_{4}\right) \cdot\left(x_{5}-x_{6}\right)$ belongs to $\operatorname{Ker}\left(W_{3}\right)$.
- Partial derivatives of $p(x)$ cancel in pairs:

$$
\frac{\partial p}{\partial x_{1}}=-\frac{\partial p}{\partial x_{2}}=\left(x_{3}-x_{4}\right) \cdot\left(x_{5}-x_{6}\right) .
$$

- For an array $\mathcal{A}=(a(1), a(2), \ldots, a(2 t))$ let $p_{\mathcal{A}}(x):=\prod_{i \in[t]}\left(x_{a(2 i-1)}-x_{a(2 i)}\right)$.

An explicit basis for $\operatorname{Ker}\left(W_{t}\right)$.

- Example: The polynomial $p(x)=\left(x_{1}-x_{2}\right) \cdot\left(x_{3}-x_{4}\right) \cdot\left(x_{5}-x_{6}\right)$ belongs to $\operatorname{Ker}\left(W_{3}\right)$.
- Partial derivatives of $p(x)$ cancel in pairs:

$$
\frac{\partial p}{\partial x_{1}}=-\frac{\partial p}{\partial x_{2}}=\left(x_{3}-x_{4}\right) \cdot\left(x_{5}-x_{6}\right) .
$$

- For an array $\mathcal{A}=(a(1), a(2), \ldots, a(2 t))$ let

$$
p_{\mathcal{A}}(x):=\prod_{i \in[t]}\left(x_{a(2 i-1)}-x_{a(2 i)}\right) .
$$

- If elements in \mathcal{A} are distinct, then $p_{\mathcal{A}}(x) \in \operatorname{Ker}\left(W_{t}\right)$. Is there a basis for $\operatorname{Ker}\left(W_{t}\right)$ that consists of such polynomials?

An explicit basis for $\operatorname{Ker}\left(W_{t}\right)$.

- Example: The polynomial $p(x)=\left(x_{1}-x_{2}\right) \cdot\left(x_{3}-x_{4}\right) \cdot\left(x_{5}-x_{6}\right)$ belongs to $\operatorname{Ker}\left(W_{3}\right)$.
- Partial derivatives of $p(x)$ cancel in pairs:

$$
\frac{\partial p}{\partial x_{1}}=-\frac{\partial p}{\partial x_{2}}=\left(x_{3}-x_{4}\right) \cdot\left(x_{5}-x_{6}\right) .
$$

- For an array $\mathcal{A}=(a(1), a(2), \ldots, a(2 t))$ let $p_{\mathcal{A}}(x):=\prod_{i \in[t]}\left(x_{a(2 i-1)}-x_{a(2 i)}\right)$.
- If elements in \mathcal{A} are distinct, then $p_{\mathcal{A}}(x) \in \operatorname{Ker}\left(W_{t}\right)$. Is there a basis for $\operatorname{Ker}\left(W_{t}\right)$ that consists of such polynomials?
- The polynomials $p_{\mathcal{A}}(x)$ are linearly dependent, there are $\binom{n}{2 t}$ arrays of distinct elements but $\operatorname{Ker}\left(W_{t}\right)$ has dimension $\binom{n}{t}-\binom{n}{t-1}$.

An explicit basis for $\operatorname{Ker}\left(W_{t}\right)$.

- A standard $(n-t, t)$ Young tableau \mathcal{U} is an arrangement of $[n]$ in two rows of size $n-t$ and t, such that each row and column is sorted in ascending order.

An explicit basis for $\operatorname{Ker}\left(W_{t}\right)$.

- A standard $(n-t, t)$ Young tableau \mathcal{U} is an arrangement of $[n]$ in two rows of size $n-t$ and t, such that each row and column is sorted in ascending order.
- The straightening algorithm [CSST08]: The polynomials $p_{\mathcal{A}}(x)$ for where $(a(2 i-i), a(2 i))$ are entries of the i-th column of a standard Young tableau are linearly independent.

An explicit basis for $\operatorname{Ker}\left(W_{t}\right)$.

- A standard $(n-t, t)$ Young tableau \mathcal{U} is an arrangement of $[n]$ in two rows of size $n-t$ and t, such that each row and column is sorted in ascending order.
- The straightening algorithm [CSST08]: The polynomials $p_{\mathcal{A}}(x)$ for where $(a(2 i-i), a(2 i))$ are entries of the i-th column of a standard Young tableau are linearly independent.
- Hook length formula: The number of standard Young tableau is $\binom{n}{t}-\binom{n}{t-1}$.

An explicit basis for $\operatorname{Ker}\left(W_{t}\right)$.

- A standard $(n-t, t)$ Young tableau \mathcal{U} is an arrangement of $[n]$ in two rows of size $n-t$ and t, such that each row and column is sorted in ascending order.
- The straightening algorithm [CSST08]: The polynomials $p_{\mathcal{A}}(x)$ for where $(a(2 i-i), a(2 i))$ are entries of the i-th column of a standard Young tableau are linearly independent.
- Hook length formula: The number of standard Young tableau is $\binom{n}{t}-\binom{n}{t-1}$.
- We therefore have an explicit basis for $\operatorname{Ker}\left(W_{t}\right)$ consisting of polynomials $p_{\mathcal{A}}(x)$, that come from standard Young tableau.

Polynomial decompositions

- Let L_{t} be the space of degree t polynomials, then $L_{t}=\operatorname{Im}\left(W_{t}^{t}\right) \oplus \operatorname{Ker}\left(W_{t}\right)$.

Polynomial decompositions

- Let L_{t} be the space of degree t polynomials, then $L_{t}=\operatorname{Im}\left(W_{t}^{t}\right) \oplus \operatorname{Ker}\left(W_{t}\right)$.
- Recall that $W_{t}^{t} q(x)=(|x|-t+1) q(x)$, thus every polynomial $p(x) \in L_{t}$ can be written as $p_{t}(x)+(|x|-t+1) q(x)$ where $q(x) \in L_{t-1}$.

Polynomial decompositions

- Let L_{t} be the space of degree t polynomials, then $L_{t}=\operatorname{Im}\left(W_{t}^{t}\right) \oplus \operatorname{Ker}\left(W_{t}\right)$.
- Recall that $W_{t}^{t} q(x)=(|x|-t+1) q(x)$, thus every polynomial $p(x) \in L_{t}$ can be written as $p_{t}(x)+(|x|-t+1) q(x)$ where $q(x) \in L_{t-1}$.
- By induction we have the decomposition:

$$
p(x)=p_{t}(x)+\sum_{i=1}^{t} p_{t-i}(x) \prod_{j=1}^{i}(|x|-t+j)
$$

where $p_{i} \in \operatorname{Ker}\left(W_{i}\right)$.

Polynomial decompositions

- Let L_{t} be the space of degree t polynomials, then $L_{t}=\operatorname{Im}\left(W_{t}^{t}\right) \oplus \operatorname{Ker}\left(W_{t}\right)$.
- Recall that $W_{t}^{t} q(x)=(|x|-t+1) q(x)$, thus every polynomial $p(x) \in L_{t}$ can be written as $p_{t}(x)+(|x|-t+1) q(x)$ where $q(x) \in L_{t-1}$.
- By induction we have the decomposition:

$$
p(x)=p_{t}(x)+\sum_{i=1}^{t} p_{t-i}(x) \prod_{j=1}^{i}(|x|-t+j)
$$

where $p_{i} \in \operatorname{Ker}\left(W_{i}\right)$.

- Let M_{t} be the space of degree at most t polynomials, decompose the degree j component of M_{t} as above and and collect all terms that belong to $\operatorname{Ker}\left(W_{j}\right)$.

Proof overview

Proof overview

- Lemma

Polynomials $p(x) \in M_{t}$ can be decomposed as $p(x)=\sum_{j=0}^{t} q_{j}(x)$, where $q_{j}(x)=\sum_{0 \leq i \leq t-j}|x|^{i} p_{i j}(x)$ and each $p_{i j}(x) \in \operatorname{Ker}\left(W_{j}\right)$.

Proof overview

- Lemma

Polynomials $p(x) \in M_{t}$ can be decomposed as $p(x)=\sum_{j=0}^{t} q_{j}(x)$, where $q_{j}(x)=\sum_{0 \leq i \leq t-j}|x|^{i} p_{i j}(x)$ and each $p_{i j}(x) \in \operatorname{Ker}\left(W_{j}\right)$.

- The proof of Blekherman's theorem uses above decomposition for $p(x)$ and two more lemmas.

Proof overview

- Lemma

Polynomials $p(x) \in M_{t}$ can be decomposed as $p(x)=\sum_{j=0}^{t} q_{j}(x)$, where $q_{j}(x)=\sum_{0 \leq i \leq t-j}|x|^{i} p_{i j}(x)$ and each $p_{i j}(x) \in \operatorname{Ker}\left(W_{j}\right)$.

- The proof of Blekherman's theorem uses above decomposition for $p(x)$ and two more lemmas.
- First, $\operatorname{Sym}(g h)=0$ if $g \in \operatorname{Ker}\left(W_{j}\right), h \in \operatorname{Ker}\left(W_{j}^{\prime}\right)$ such that $n / 2>j>j^{\prime}$.

Proof overview

- Lemma

Polynomials $p(x) \in M_{t}$ can be decomposed as $p(x)=\sum_{j=0}^{t} q_{j}(x)$, where $q_{j}(x)=\sum_{0 \leq i \leq t-j}|x|^{i} p_{i j}(x)$ and each $p_{i j}(x) \in \operatorname{Ker}\left(W_{j}\right)$.

- The proof of Blekherman's theorem uses above decomposition for $p(x)$ and two more lemmas.
- First, $\operatorname{Sym}(g h)=0$ if $g \in \operatorname{Ker}\left(W_{j}\right), h \in \operatorname{Ker}\left(W_{j}^{\prime}\right)$ such that $n / 2>j>j^{\prime}$.
- Second, we need to evaluate $\operatorname{Sym}(g h)$ when $g, h \in \operatorname{Ker}\left(W_{j}\right)$ belong to the same kernel.

Proof overview

Lemma

Polynomials $p(x) \in M_{t}$ can be decomposed as $p(x)=\sum_{j=0}^{t} q_{j}(x)$, where $q_{j}(x)=\sum_{0 \leq i \leq t-j}|x|^{i} p_{i j}(x)$ and each $p_{i j}(x) \in \operatorname{Ker}\left(W_{j}\right)$.

- The proof of Blekherman's theorem uses above decomposition for $p(x)$ and two more lemmas.
- First, $\operatorname{Sym}(g h)=0$ if $g \in \operatorname{Ker}\left(W_{j}\right), h \in \operatorname{Ker}\left(W_{j}^{\prime}\right)$ such that $n / 2>j>j^{\prime}$.
- Second, we need to evaluate $\operatorname{Sym}(g h)$ when $g, h \in \operatorname{Ker}\left(W_{j}\right)$ belong to the same kernel.
- We use explicit bases for $\operatorname{Ker}\left(W_{t}\right)$ constructed earlier to prove these lemmas.

Different kernels

- Lemma: $\operatorname{Sym}(g h)=0$ if $g \in \operatorname{Ker}\left(W_{j}\right), h \in \operatorname{Ker}\left(W_{j}^{\prime}\right)$ for $n / 2>j>j^{\prime}$.

Different kernels

- Lemma: $\operatorname{Sym}(g h)=0$ if $g \in \operatorname{Ker}\left(W_{j}\right), h \in \operatorname{Ker}\left(W_{j}^{\prime}\right)$ for $n / 2>j>j^{\prime}$.
- It suffices to prove for $x \in\{0,1\}^{n}$ and when g, h are basis vectors $p_{\mathcal{U}}(x), p_{\mathcal{V}}(x)$.

Different kernels

- Lemma: $\operatorname{Sym}(g h)=0$ if $g \in \operatorname{Ker}\left(W_{j}\right), h \in \operatorname{Ker}\left(W_{j}^{\prime}\right)$ for $n / 2>j>j^{\prime}$.
- It suffices to prove for $x \in\{0,1\}^{n}$ and when g, h are basis vectors $p_{\mathcal{U}}(x), p_{\mathcal{V}}(x)$.
- Example: $g(x)=\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)\left(x_{5}-x_{6}\right)$ and $h(x)=\left(x_{1}-x_{2}\right)\left(x_{3}-x_{5}\right)$.

Different kernels

- Lemma: $\operatorname{Sym}(g h)=0$ if $g \in \operatorname{Ker}\left(W_{j}\right), h \in \operatorname{Ker}\left(W_{j}^{\prime}\right)$ for $n / 2>j>j^{\prime}$.
- It suffices to prove for $x \in\{0,1\}^{n}$ and when g, h are basis vectors $p_{\mathcal{U}}(x), p_{\mathcal{V}}(x)$.
- Example: $g(x)=\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)\left(x_{5}-x_{6}\right)$ and $h(x)=\left(x_{1}-x_{2}\right)\left(x_{3}-x_{5}\right)$.
- g, h correspond to matchings of size $j, j^{\prime}=3,2$ respectively. The union of these matchings has an odd length path.

Different kernels

- Lemma: $\operatorname{Sym}(g h)=0$ if $g \in \operatorname{Ker}\left(W_{j}\right), h \in \operatorname{Ker}\left(W_{j}^{\prime}\right)$ for $n / 2>j>j^{\prime}$.
- It suffices to prove for $x \in\{0,1\}^{n}$ and when g, h are basis vectors $p_{\mathcal{U}}(x), p_{\mathcal{V}}(x)$.
- Example: $g(x)=\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)\left(x_{5}-x_{6}\right)$ and $h(x)=\left(x_{1}-x_{2}\right)\left(x_{3}-x_{5}\right)$.
- g, h correspond to matchings of size $j, j^{\prime}=3,2$ respectively. The union of these matchings has an odd length path.
- The path for this example is 4356 , thus
$g(x) h(x)=\left(x_{4}-x_{3}\right)\left(x_{3}-x_{5}\right)\left(x_{5}-x_{6}\right) t(x)$ where $t(x)$ does not depend on variables in the path.

Different kernels

- Let $\sigma(4356)=a b c d$ define $\bar{\sigma}(4356)=b a d c$ and $\bar{\sigma}(l)=\sigma(l)$ for all other l. This defines an involution on S_{n}.

Different kernels

- Let $\sigma(4356)=a b c d$ define $\bar{\sigma}(4356)=b a d c$ and $\bar{\sigma}(l)=\sigma(l)$ for all other l. This defines an involution on S_{n}.
- As $x \in\{0,1\}^{n}$, the path polynomial $\left(x_{a}-x_{b}\right)\left(x_{b}-x_{c}\right)\left(x_{c}-x_{d}\right)$ is non zero if and only if $x_{a b c d}=(0,1,0,1)$ or $x_{a b c d}=(1,0,1,0)$.

Different kernels

- Let $\sigma(4356)=a b c d$ define $\bar{\sigma}(4356)=b a d c$ and $\bar{\sigma}(l)=\sigma(l)$ for all other l. This defines an involution on S_{n}.
- As $x \in\{0,1\}^{n}$, the path polynomial $\left(x_{a}-x_{b}\right)\left(x_{b}-x_{c}\right)\left(x_{c}-x_{d}\right)$ is non zero if and only if $x_{a b c d}=(0,1,0,1)$ or $x_{a b c d}=(1,0,1,0)$.
- The involution flips between the two cases above, thus $\sigma(g(x) h(x))+\bar{\sigma}(g(x) h(x))=0$.

Different kernels

- Let $\sigma(4356)=a b c d$ define $\bar{\sigma}(4356)=b a d c$ and $\bar{\sigma}(l)=\sigma(l)$ for all other l. This defines an involution on S_{n}.
- As $x \in\{0,1\}^{n}$, the path polynomial $\left(x_{a}-x_{b}\right)\left(x_{b}-x_{c}\right)\left(x_{c}-x_{d}\right)$ is non zero if and only if $x_{a b c d}=(0,1,0,1)$ or $x_{a b c d}=(1,0,1,0)$.
- The involution flips between the two cases above, thus $\sigma(g(x) h(x))+\bar{\sigma}(g(x) h(x))=0$.
- $\operatorname{Sym}(g h)(x)=0$ is an average over all permutations and is therefore 0 for $x \in\{0,1\}^{n}$.

Same Kernels

- Define the following inner product for degree t polynomials:

$$
\langle g \mid h\rangle:=\sum_{S \subseteq[n],|S|=t} g_{S} h_{S} .
$$

Same Kernels

- Define the following inner product for degree t polynomials:

$$
\langle g \mid h\rangle:=\sum_{S \subseteq[n],|S|=t} g_{S} h_{S} .
$$

- $\operatorname{Sym}^{u n i}(g h)$ for $g, h \in \operatorname{Ker}\left(W_{t}\right)$ is a polynomial of degree at most $2 t$.

Same Kernels

- Define the following inner product for degree t polynomials:

$$
\langle g \mid h\rangle:=\sum_{S \subseteq[n],|S|=t} g_{S} h_{S} .
$$

- $\operatorname{Sym}^{u n i}(g h)$ for $g, h \in \operatorname{Ker}\left(W_{t}\right)$ is a polynomial of degree at most $2 t$.
- The basis polynomial

$$
p_{\mathcal{U}}(x)=\left(x_{u(1)}-x_{u(2)}\right) \cdots \cdot\left(x_{u(2 t-1)}-x_{u(2 t)}\right)=0 \text { if } x \in\{0,1\}^{n}
$$ has less than t zeros or less than t ones.

Same Kernels

- Define the following inner product for degree t polynomials:

$$
\langle g \mid h\rangle:=\sum_{S \subseteq[n],|S|=t} g_{S} h_{S} .
$$

- $\operatorname{Sym}^{u n i}(g h)$ for $g, h \in \operatorname{Ker}\left(W_{t}\right)$ is a polynomial of degree at most $2 t$.
- The basis polynomial
$p_{\mathcal{U}}(x)=\left(x_{u(1)}-x_{u(2)}\right) \cdot \cdots .\left(x_{u(2 t-1)}-x_{u(2 t)}\right)=0$ if $x \in\{0,1\}^{n}$ has less than t zeros or less than t ones.
- The polynomial $\operatorname{Sym}^{u n i}(g h)$ has roots at

$$
|x|=\{0,1, \cdots, t-1\} \cup\{n, n-1, \cdots, n-t+1\} .
$$

Same Kernels

- Define the following inner product for degree t polynomials:

$$
\langle g \mid h\rangle:=\sum_{S \subseteq[n],|S|=t} g_{S} h_{S} .
$$

- $\operatorname{Sym}^{u n i}(g h)$ for $g, h \in \operatorname{Ker}\left(W_{t}\right)$ is a polynomial of degree at most $2 t$.
- The basis polynomial
$p_{\mathcal{U}}(x)=\left(x_{u(1)}-x_{u(2)}\right) . \cdots .\left(x_{u(2 t-1)}-x_{u(2 t)}\right)=0$ if $x \in\{0,1\}^{n}$ has less than t zeros or less than t ones.
- The polynomial $\operatorname{Sym}^{u n i}(g h)$ has roots at $|x|=\{0,1, \cdots, t-1\} \cup\{n, n-1, \cdots, n-t+1\}$.
- $\operatorname{Sym}(g h)(x)=\lambda \prod_{0 \leq i<t}(|x|-i)(n-|x|-i)$, how to evaluate the constant λ ?

Same Kernels

- As g, h are homogeneous degree t polynomials, for all $x \in\{0,1\}^{n},|x|=t$ there is a unique coefficient S such that $g(x)=g_{S}, h(x)=h_{S}$.

Same Kernels

- As g, h are homogeneous degree t polynomials, for all $x \in\{0,1\}^{n},|x|=t$ there is a unique coefficient S such that $g(x)=g_{S}, h(x)=h_{S}$.
- There are t ! $(n-t)$! different permutations $\sigma \in S_{n}$ such that $g(\sigma x)=g_{S}$, that is:

$$
\operatorname{Sym}(g h)(x)=\frac{t!(n-t)!}{n!} \sum_{|S|=t} g_{S} h_{S} .
$$

Same Kernels

- As g, h are homogeneous degree t polynomials, for all $x \in\{0,1\}^{n},|x|=t$ there is a unique coefficient S such that $g(x)=g_{S}, h(x)=h_{S}$.
- There are t ! $(n-t)$! different permutations $\sigma \in S_{n}$ such that $g(\sigma x)=g_{S}$, that is:

$$
\operatorname{Sym}(g h)(x)=\frac{t!(n-t)!}{n!} \sum_{|S|=t} g_{S} h_{S} .
$$

- Solving for λ we obtain:

$$
\operatorname{Sym}(g h)(x)=\langle g \mid h\rangle \frac{(n-2 t)!}{n!} \prod_{0 \leq i<t}(|x|-i)(n-|x|-i) .
$$

Completing the proof

- Recall that $p(x)=\sum_{j=0}^{t} q_{j}(x)$ where $q_{j}(x)=\sum_{0 \leq k \leq t-j}|x|^{k} p_{k j}(x)$ such that each $p_{k j} \in \operatorname{Ker}\left(W_{j}\right)$.

Completing the proof

- Recall that $p(x)=\sum_{j=0}^{t} q_{j}(x)$ where $q_{j}(x)=\sum_{0 \leq k \leq t-j}|x|^{k} p_{k j}(x)$ such that each $p_{k j} \in \operatorname{Ker}\left(W_{j}\right)$.
- As the symmetrization of the product of polynomials in different kernels vanishes, $\operatorname{Sym}\left(p^{2}\right)=\sum_{j=0}^{t} \operatorname{Sym}\left(q_{j}^{2}\right)$.

Completing the proof

- Recall that $p(x)=\sum_{j=0}^{t} q_{j}(x)$ where $q_{j}(x)=\sum_{0 \leq k \leq t-j}|x|^{k} p_{k j}(x)$ such that each $p_{k j} \in \operatorname{Ker}\left(W_{j}\right)$.
- As the symmetrization of the product of polynomials in different kernels vanishes, $\operatorname{Sym}\left(p^{2}\right)=\sum_{j=0}^{t} \operatorname{Sym}\left(q_{j}^{2}\right)$.
- Using previous lemma, $\operatorname{Sym}\left(q_{j}^{2}\right)=\sum_{0 \leq k, l \leq t-j} \operatorname{Sym}\left(|x|^{k+l} p_{k j} p_{l j}\right)$ evaluates to,

$$
\begin{aligned}
& c \prod_{0 \leq i<j}(|x|-i)(n-|x|-i) \sum_{0 \leq k, l \leq t-j}\left\langle p_{k j} \mid p_{l j}\right\rangle|x|^{k+l} \\
& =c\left(\prod_{0 \leq i<j}(|x|-i)(n-|x|-i)\right) \mathbf{x}^{T} P \mathbf{x}
\end{aligned}
$$

Concluding remarks

- Lower bounds on the sum of squares degree of functions $f(x)=(x-k)(x-k+1)$ can be proved using Blekherman's theorem.

Concluding remarks

- Lower bounds on the sum of squares degree of functions $f(x)=(x-k)(x-k+1)$ can be proved using Blekherman's theorem.
- Can Blekherman's theorem be used to simplify sum of squares lower bounds for planted clique?

Concluding remarks

- Lower bounds on the sum of squares degree of functions $f(x)=(x-k)(x-k+1)$ can be proved using Blekherman's theorem.
- Can Blekherman's theorem be used to simplify sum of squares lower bounds for planted clique?
- Can a representation theoretic approach help prove further sum of squares lower bounds?

