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Positivestellensatz refutations

• Consider the polynomial system f(x) = r, fi(x) = 0 ∀i ∈ [n], a
refutation of the system is a proof that the system has no
solutions.

• A Positivestellensatz refutation of degree d is an identity of the
form:

g(x)(f(x)− r) +
n∑
i=1

gi(x)fi(x) = 1 + h(x) .

where deg(fg) ≤ d, deg(figi) ≤ d and h(x) =
∑

i hi(x)
2 with

deg(hi) ≤ d/2.

• If there is a solution x to the polynomial system, the left side
evaluates to 0 while the right side is at least 1.

• How to lower bound the degree of Positivestellensatz refutations?
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Pseudo Expectations

• A degree-d pseudo-expectation Ẽ is a linear function on the space
of degree-d polynomials such that Ẽ[h2] ≥ 0 for all h s.t.
deg(h) ≤ d/2.

• Construct a pseudo-expectation Ẽ[fi(x)gi(x)] = 0 and
Ẽ[(f(x)− r).g(x)] = 0 for all polynomials g(x), gi(x) such that
deg(fig), deg(fg) ≤ d.

• Suppose there is a Positivestellensatz refutation of degree d,

g(x)(f(x)− r) +
n∑
i=1

gi(x)fi(x) = 1 + h(x) .

• Then the pseudo-expectation function Ẽ for the left side evaluates
to 0, while that for the right side is at least 1.
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to 0, while that for the right side is at least 1.

Anupam Prakash



PSD rank workshop. > Grigoriev’s knapsack lower bound 4 / 24

Pseudo Expectations

• A degree-d pseudo-expectation Ẽ is a linear function on the space
of degree-d polynomials such that Ẽ[h2] ≥ 0 for all h s.t.
deg(h) ≤ d/2.

• Construct a pseudo-expectation Ẽ[fi(x)gi(x)] = 0 and
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The knapsack system

• The knapsack system consists of the equations
∑

i xi = r where
r 6∈ Z and x2i = xi, ∀i ∈ [n]. Clearly there is no solution.

• What is the degree of the PS refutation for the knapsack?

g(x) ·

(
n∑
i=1

xi − r

)
+

n∑
i=1

gi(x) · (x2i − xi) = 1 + h(x) .

• Theorem (Grigoriev 01)

If 0 < r < (n− 1)/2, then there is no Positivstellensatz refutation of
the knapsack system with parameter r with degree 2brc+ 2.
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Grigoriev’s proof

• The proof defines a pseudo-expectation Ẽ on monomials:

Ẽ[xS ] =
r.(r − 1). · · · .(r − |S|+ 1)

n.(n− 1). · · · .(n− |S|+ 1)

and by extension on all multilinear polynomials.

• It is easy to show that Ẽ[g.(
∑

i xi − r)] = 0.

• The proof of positivity Ẽ[h2] ≥ 0 if deg(h) ≤ brc+ 2 is involved.

• We present here a simple proof of Grigoriev’s lower bound.

• All known Sum of Squares hierarchy lower bounds reduce to either
the 3XOR or knapsack lower bounds of Grigoriev.
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Symmetric polynomials on the hypercube

• Let Mn be the space of n-variate multilinear polynomials.

• Mn is the coordinate ring of the hypercube H = {0, 1}n, that is
Mn := R[x1, x2, · · · , xn]/〈x2i − xi : i ∈ [n]〉.

• The symmetric group Sn acts on Mn by permuting the indices of
the monomials.

• Example: If σ(1234) = 3142 then σ(x1x2 + x3x4) = x3x1 + x4x2.

• A multilinear polynomial can be symmetrized:

Sym(p)(x) :=
1

n!

∑
σ∈Sn

p(σx)

• What is the symmetrization the degree 2 monomial x1x2?

Anupam Prakash



PSD rank workshop. > Symmetrizing SoS polynomials on hypercube 7 / 24

Symmetric polynomials on the hypercube

• Let Mn be the space of n-variate multilinear polynomials.

• Mn is the coordinate ring of the hypercube H = {0, 1}n, that is
Mn := R[x1, x2, · · · , xn]/〈x2i − xi : i ∈ [n]〉.

• The symmetric group Sn acts on Mn by permuting the indices of
the monomials.

• Example: If σ(1234) = 3142 then σ(x1x2 + x3x4) = x3x1 + x4x2.

• A multilinear polynomial can be symmetrized:

Sym(p)(x) :=
1

n!

∑
σ∈Sn

p(σx)

• What is the symmetrization the degree 2 monomial x1x2?

Anupam Prakash



PSD rank workshop. > Symmetrizing SoS polynomials on hypercube 7 / 24

Symmetric polynomials on the hypercube

• Let Mn be the space of n-variate multilinear polynomials.

• Mn is the coordinate ring of the hypercube H = {0, 1}n, that is
Mn := R[x1, x2, · · · , xn]/〈x2i − xi : i ∈ [n]〉.

• The symmetric group Sn acts on Mn by permuting the indices of
the monomials.

• Example: If σ(1234) = 3142 then σ(x1x2 + x3x4) = x3x1 + x4x2.

• A multilinear polynomial can be symmetrized:

Sym(p)(x) :=
1

n!

∑
σ∈Sn

p(σx)

• What is the symmetrization the degree 2 monomial x1x2?

Anupam Prakash



PSD rank workshop. > Symmetrizing SoS polynomials on hypercube 7 / 24

Symmetric polynomials on the hypercube

• Let Mn be the space of n-variate multilinear polynomials.

• Mn is the coordinate ring of the hypercube H = {0, 1}n, that is
Mn := R[x1, x2, · · · , xn]/〈x2i − xi : i ∈ [n]〉.

• The symmetric group Sn acts on Mn by permuting the indices of
the monomials.

• Example: If σ(1234) = 3142 then σ(x1x2 + x3x4) = x3x1 + x4x2.

• A multilinear polynomial can be symmetrized:

Sym(p)(x) :=
1

n!

∑
σ∈Sn

p(σx)

• What is the symmetrization the degree 2 monomial x1x2?

Anupam Prakash



PSD rank workshop. > Symmetrizing SoS polynomials on hypercube 7 / 24

Symmetric polynomials on the hypercube

• Let Mn be the space of n-variate multilinear polynomials.

• Mn is the coordinate ring of the hypercube H = {0, 1}n, that is
Mn := R[x1, x2, · · · , xn]/〈x2i − xi : i ∈ [n]〉.

• The symmetric group Sn acts on Mn by permuting the indices of
the monomials.

• Example: If σ(1234) = 3142 then σ(x1x2 + x3x4) = x3x1 + x4x2.

• A multilinear polynomial can be symmetrized:

Sym(p)(x) :=
1

n!

∑
σ∈Sn

p(σx)

• What is the symmetrization the degree 2 monomial x1x2?

Anupam Prakash



PSD rank workshop. > Symmetrizing SoS polynomials on hypercube 7 / 24

Symmetric polynomials on the hypercube

• Let Mn be the space of n-variate multilinear polynomials.

• Mn is the coordinate ring of the hypercube H = {0, 1}n, that is
Mn := R[x1, x2, · · · , xn]/〈x2i − xi : i ∈ [n]〉.

• The symmetric group Sn acts on Mn by permuting the indices of
the monomials.

• Example: If σ(1234) = 3142 then σ(x1x2 + x3x4) = x3x1 + x4x2.

• A multilinear polynomial can be symmetrized:

Sym(p)(x) :=
1

n!

∑
σ∈Sn

p(σx)

• What is the symmetrization the degree 2 monomial x1x2?

Anupam Prakash



PSD rank workshop. > Symmetrizing SoS polynomials on hypercube 8 / 24

Symmetrization

• Sym(x1x2) =
1
n!

∑
σ σ(x1x2) =

(n−2)!2!
n!

∑
i 6=j xixj .

• Let x ∈ {0, 1}n and |x| =
∑

i xi,

Sym(x1x2 · · ·xk) =
(|x|
k

)(
n
k

) =
|x|.(|x| − 1). · · · .(|x| − k + 1)

n.(n− 1). · · · .(n− k + 1)

• In fact, this is an identity over Mn valid for all x.

• The symmetrization Sym(p)(x) is a univariate polynomial in
z = |x| and is denoted as Symuni(p)(z).

• Is the symmetrization of a square polynomial Symuni(p2)(z)
positive on [0, n]? What are its positivity properties?
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Symmetrizing squares

• If p = x1x2, then Symuni(p2)(z) = z.(z−1)
n.(n−1) is negative for

z ∈ (0, 1).

• However, Symuni(p2)(z) is positive on the integer points
z ∈ [0, n].

• Theorem (Blekherman)

The polynomial Symuni(p2)(z) where deg(p) = d, d ≤ n/2 can be
expressed as

Symuni(p2)(z) = qd(z) + z(n− z)qd−1(z) + · · ·
· · · z(z − 1)(n− z)(n− 1− z)qd−2(z) + · · ·

· · ·+
∏

0≤i<t
(z − i)(n− z − i)q0(z) (1)

where qt(z) is a sum of squares of degree at most t polynomials.
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Positivity properties

• Symmetrization of the sum of squares of degree-d polynomials on
the hypercube is a positive combination of (d+ 1) terms.

• Eg: If polynomials pi have degree at most 2, then Symuni(
∑

i p
2
i )

has the expansion:

q2(z) + z(n− z)q1(z) + z(z − 1)(n− z)(n− z − 1)q0(x).

• The SoS polynomial qd−i(x) is multiplied by a polynomial that is
non negative on [i− 1, n− i+ 1].

• The i+ 1st term in the expansion is therefore non negative in the
interval [i− 1, n− i+ 1].

• Symuni(
∑

i p
2
i ) is non negative on [d− 1, n− d+1] if deg(pi) ≤ d.
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Proof of Grigoriev’s bound

• How does Grigoriev’s certificate Ẽ[p] relate to symmetric
polynomials?

•
Ẽ[p] = Symuni(p)(r)

• By the previous slide, Symuni(p2)(r) ≥ 0 if deg(p) ≤ d and
r ∈ [d− 1, n− d+ 1].

• Grigoriev’s certificate is positive if the degree d ≤ brc+ 1.

• Theorem (Grigoriev 01)

If 0 < r < (n− 1)/2, then there is no Positivstellensatz refutation of
the knapsack system with parameter r with degree 2brc+ 2.
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Partial derivatives

• Let Wt be the operator that sums over partial derivatives of a
degree-t polynomial,

Wtp(x) =

∑
i∈[n]

∂

∂xi

 p(x) .

• Example: W3(x1x2x3) = x1x2 + x2x3 + x3x1.

• For t > 0, the matrix Wt has rows, columns indexed by S, T ⊂ [n]
with |S| = t− 1 and |T | = t and (Wt)S,T = 1 if S ⊂ T and 0
otherwise.

• The transpose acts as a multiplication operator:

W T
t x

S =
∑
i 6∈S

xS∪{i} = xS(|x| − t+ 1) .
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Johnson graphs and Ker(Wt)

• Wt has a non trivial kernel as its domain has dimension
(
n
t

)
while

the image has dimension at most
(
n
t−1
)
.

• Johnson graph: J(n, t) has vertices corresponding to the t subsets
of [n] with S, T adjacent if |S ∩ T | = t− 1.

• We have the relations:

W T
t Wt = tI +AJ(n, t)

WtW
T
t = (n− t+ 1)I +AJ(n, t− 1) . (2)

• Ker(Wt) is the eigenspaces of Johnson graph J(n, t) with
eigenvalue −t.

• The dimension of Ker(Wt) is
(
n
t

)
−
(
n
t−1
)
, this follows from the

spectrum of the Johnson graph.
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The representations of Sn

• The symmetric group Sn acts on the polynomial ring Mn by
permuting indices of monomials.

• An irreducible representation is a subspace of Mn invariant under
the action of Sn that do not contain non trivial invariant
subspaces.

• The subspace of degree t polynomials is invariant under Sn. Is it
an irreducible representation?

• It contains a non trivial invariant subspace Ker(Wt) as it the
kernel of a ’symmetric’ differential operator.

• It turns out that the Ker(Wt) are the irreducible representations
of Sn, this follows in a more general setting from the intersecting
kernels theorem of G.D.James.
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An explicit basis for Ker(Wt).

• Example: The polynomial p(x) = (x1 − x2).(x3 − x4).(x5 − x6)
belongs to Ker(W3).

• Partial derivatives of p(x) cancel in pairs:
∂p
∂x1

= − ∂p
∂x2

= (x3 − x4).(x5 − x6).
• For an array A = (a(1), a(2), . . . , a(2t)) let
pA(x) :=

∏
i∈[t](xa(2i−1) − xa(2i)).

• If elements in A are distinct, then pA(x) ∈ Ker(Wt). Is there a
basis for Ker(Wt) that consists of such polynomials?

• The polynomials pA(x) are linearly dependent, there are
(
n
2t

)
arrays of distinct elements but Ker(Wt) has dimension(
n
t

)
−
(
n
t−1
)
.

Anupam Prakash



PSD rank workshop. > Blekherman’s theorem 15 / 24

An explicit basis for Ker(Wt).

• Example: The polynomial p(x) = (x1 − x2).(x3 − x4).(x5 − x6)
belongs to Ker(W3).

• Partial derivatives of p(x) cancel in pairs:
∂p
∂x1

= − ∂p
∂x2

= (x3 − x4).(x5 − x6).

• For an array A = (a(1), a(2), . . . , a(2t)) let
pA(x) :=

∏
i∈[t](xa(2i−1) − xa(2i)).

• If elements in A are distinct, then pA(x) ∈ Ker(Wt). Is there a
basis for Ker(Wt) that consists of such polynomials?

• The polynomials pA(x) are linearly dependent, there are
(
n
2t

)
arrays of distinct elements but Ker(Wt) has dimension(
n
t

)
−
(
n
t−1
)
.

Anupam Prakash



PSD rank workshop. > Blekherman’s theorem 15 / 24

An explicit basis for Ker(Wt).

• Example: The polynomial p(x) = (x1 − x2).(x3 − x4).(x5 − x6)
belongs to Ker(W3).

• Partial derivatives of p(x) cancel in pairs:
∂p
∂x1

= − ∂p
∂x2

= (x3 − x4).(x5 − x6).
• For an array A = (a(1), a(2), . . . , a(2t)) let
pA(x) :=

∏
i∈[t](xa(2i−1) − xa(2i)).

• If elements in A are distinct, then pA(x) ∈ Ker(Wt). Is there a
basis for Ker(Wt) that consists of such polynomials?

• The polynomials pA(x) are linearly dependent, there are
(
n
2t

)
arrays of distinct elements but Ker(Wt) has dimension(
n
t

)
−
(
n
t−1
)
.

Anupam Prakash



PSD rank workshop. > Blekherman’s theorem 15 / 24

An explicit basis for Ker(Wt).

• Example: The polynomial p(x) = (x1 − x2).(x3 − x4).(x5 − x6)
belongs to Ker(W3).

• Partial derivatives of p(x) cancel in pairs:
∂p
∂x1

= − ∂p
∂x2

= (x3 − x4).(x5 − x6).
• For an array A = (a(1), a(2), . . . , a(2t)) let
pA(x) :=

∏
i∈[t](xa(2i−1) − xa(2i)).

• If elements in A are distinct, then pA(x) ∈ Ker(Wt). Is there a
basis for Ker(Wt) that consists of such polynomials?

• The polynomials pA(x) are linearly dependent, there are
(
n
2t

)
arrays of distinct elements but Ker(Wt) has dimension(
n
t

)
−
(
n
t−1
)
.

Anupam Prakash



PSD rank workshop. > Blekherman’s theorem 15 / 24

An explicit basis for Ker(Wt).

• Example: The polynomial p(x) = (x1 − x2).(x3 − x4).(x5 − x6)
belongs to Ker(W3).

• Partial derivatives of p(x) cancel in pairs:
∂p
∂x1

= − ∂p
∂x2

= (x3 − x4).(x5 − x6).
• For an array A = (a(1), a(2), . . . , a(2t)) let
pA(x) :=

∏
i∈[t](xa(2i−1) − xa(2i)).

• If elements in A are distinct, then pA(x) ∈ Ker(Wt). Is there a
basis for Ker(Wt) that consists of such polynomials?

• The polynomials pA(x) are linearly dependent, there are
(
n
2t

)
arrays of distinct elements but Ker(Wt) has dimension(
n
t

)
−
(
n
t−1
)
.

Anupam Prakash



PSD rank workshop. > Blekherman’s theorem 16 / 24

An explicit basis for Ker(Wt).

• A standard (n− t, t) Young tableau U is an arrangement of [n] in
two rows of size n− t and t, such that each row and column is
sorted in ascending order.

• The straightening algorithm [CSST08]: The polynomials pA(x)
for where (a(2i− i), a(2i)) are entries of the i-th column of a
standard Young tableau are linearly independent.

• Hook length formula: The number of standard Young tableau is(
n
t

)
−
(
n
t−1
)
.

• We therefore have an explicit basis for Ker(Wt) consisting of
polynomials pA(x), that come from standard Young tableau.
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polynomials pA(x), that come from standard Young tableau.
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Polynomial decompositions

• Let Lt be the space of degree t polynomials, then
Lt = Im(W t

t )⊕Ker(Wt).

• Recall that W t
t q(x) = (|x| − t+ 1)q(x), thus every polynomial

p(x) ∈ Lt can be written as pt(x) + (|x| − t+ 1)q(x) where
q(x) ∈ Lt−1.

• By induction we have the decomposition:

p(x) = pt(x) +
t∑
i=1

pt−i(x)
i∏

j=1

(|x| − t+ j)

where pi ∈ Ker(Wi).

• Let Mt be the space of degree at most t polynomials, decompose
the degree j component of Mt as above and and collect all terms
that belong to Ker(Wj).
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Proof overview

• Lemma

Polynomials p(x) ∈Mt can be decomposed as p(x) =
∑t

j=0 qj(x),

where qj(x) =
∑

0≤i≤t−j |x|ipij(x) and each pij(x) ∈ Ker(Wj).

• The proof of Blekherman’s theorem uses above decomposition for
p(x) and two more lemmas.

• First, Sym(gh) = 0 if g ∈ Ker(Wj), h ∈ Ker(W ′j) such that
n/2 > j > j′.

• Second, we need to evaluate Sym(gh) when g, h ∈ Ker(Wj)
belong to the same kernel.

• We use explicit bases for Ker(Wt) constructed earlier to prove
these lemmas.
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Different kernels

• Lemma: Sym(gh) = 0 if g ∈ Ker(Wj), h ∈ Ker(W ′j) for
n/2 > j > j′.

• It suffices to prove for x ∈ {0, 1}n and when g, h are basis vectors
pU (x), pV(x).

• Example: g(x) = (x1 − x2)(x3 − x4)(x5 − x6) and
h(x) = (x1 − x2)(x3 − x5).

• g, h correspond to matchings of size j, j′ = 3, 2 respectively. The
union of these matchings has an odd length path.

• The path for this example is 4356, thus
g(x)h(x) = (x4 − x3)(x3 − x5)(x5 − x6)t(x) where t(x) does not
depend on variables in the path.
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Different kernels

• Let σ(4356) = abcd define σ(4356) = badc and σ(l) = σ(l) for all
other l. This defines an involution on Sn.

• As x ∈ {0, 1}n, the path polynomial (xa − xb)(xb − xc)(xc − xd)
is non zero if and only if xabcd = (0, 1, 0, 1) or xabcd = (1, 0, 1, 0).

• The involution flips between the two cases above, thus
σ(g(x)h(x)) + σ(g(x)h(x)) = 0.

• Sym(gh)(x) = 0 is an average over all permutations and is
therefore 0 for x ∈ {0, 1}n.
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Same Kernels

• Define the following inner product for degree t polynomials:

〈g|h〉 :=
∑

S⊆[n],|S|=t

gShS .

• Symuni(gh) for g, h ∈ Ker(Wt) is a polynomial of degree at most
2t.

• The basis polynomial
pU (x) = (xu(1) − xu(2)). · · · .(xu(2t−1) − xu(2t)) = 0 if x ∈ {0, 1}n
has less than t zeros or less than t ones.

• The polynomial Symuni(gh) has roots at
|x| = {0, 1, · · · , t− 1} ∪ {n, n− 1, · · · , n− t+ 1}.

• Sym(gh)(x) = λ
∏

0≤i<t(|x| − i)(n− |x| − i), how to evaluate the
constant λ?
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Same Kernels

• As g, h are homogeneous degree t polynomials, for all
x ∈ {0, 1}n, |x| = t there is a unique coefficient S such that
g(x) = gS , h(x) = hS .

• There are t!(n− t)! different permutations σ ∈ Sn such that
g(σx) = gS , that is:

Sym(gh)(x) =
t!(n− t)!

n!

∑
|S|=t

gShS .

• Solving for λ we obtain:

Sym(gh)(x) = 〈g|h〉(n− 2t)!

n!

∏
0≤i<t

(|x| − i)(n− |x| − i) .
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Completing the proof

• Recall that p(x) =
∑t

j=0 qj(x) where

qj(x) =
∑

0≤k≤t−j |x|kpkj(x) such that each pkj ∈ Ker(Wj).

• As the symmetrization of the product of polynomials in different

kernels vanishes, Sym(p2) =
∑t

j=0 Sym
(
q2j

)
.

• Using previous lemma, Sym(q2j ) =
∑

0≤k,l≤t−j Sym(|x|k+lpkjplj)
evaluates to,

c
∏

0≤i<j
(|x| − i)(n− |x| − i)

∑
0≤k,l≤t−j

〈pkj |plj〉|x|k+l

= c

 ∏
0≤i<j

(|x| − i)(n− |x| − i)

xTPx
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Concluding remarks

• Lower bounds on the sum of squares degree of functions
f(x) = (x− k)(x− k + 1) can be proved using Blekherman’s
theorem.

• Can Blekherman’s theorem be used to simplify sum of squares
lower bounds for planted clique?

• Can a representation theoretic approach help prove further sum of
squares lower bounds?
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