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Φ(G ) = min
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Complexity of Sparsest Cut: Lower bounds

NP-hard to compute exactly

Assuming the Unique Games Conjecture, it is NP-hard to
approximate to any constant factor [CKKRS ’05,
Khot-Vishnoi ’05]



Sparsest Cut Objective

ΦOPT = min
S

|E (S , S̄)|
|S ||S̄ |

ΦOPT = min
xi∈{0,1}

∑
ij∈E (xi − xj)

2∑
ij∈V×V (xi − xj)2

Original Objective

Where xi = 1 if i ∈ S ,
xi = 0 if i ∈ S̄
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Relaxing the Objective

Assign a vector xi ∈ Rm for each 0/1 variable

Ideally, the vectors should be just scalars 0 or 1, i.e.
one-dimensional

Sparsest Cut objective relaxation (a SDP):

Φ1 = min
xi∈Rm

∑
ij∈E ‖xi − xj‖2

2∑
ij∈V×V ‖xi − xj‖2

2

Φ1 ≤ ΦOPT

Can add in more constraints on vectors that 0/1 variables
satisfy, e.g.

xold
i ∈ [0, 1] becomes ‖xi‖2 ≤ 1
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Rounding the Relaxation

Extract out a 1-dimensional 0/1 solution {yi} from the SDP
solution {xi} in m dimensions

We will lose in objective value since
ΦALG = Φ({y1, . . . , yn}) ≥ Φ({x1, . . . , xn}) = Φ1

For Sparsest Cut, suffices to get an embedding into `1, rather
than pure {0, 1} solutions for yi ’s.
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Connection to `1 embeddings [LLR ’94, AR ’94]

Given a mapping of the points: Y : V → Rm′
, we can

produce a cut T of cost:

Φ(T ) ≤
∑

ij∈V ‖yi − yj‖1∑
kl∈V×V ‖yk − yl‖1

Sufficient to produce an embedding of the SDP solutions into
`1-space



`1 embeddings of SDP solutions

Will compare ‖yi − yj‖1 to ‖xi − xj‖2



Average distortion and guarantee

If

(Contraction):

‖yi − yj‖1 ≤ ‖xi − xj‖2 , for every i , j

(Average Dilation)∑
ij

‖yi − yj‖1 ≥
1

D
·
∑
ij

‖xi − xj‖2

then we have a O(D) - approximation.
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Cheeger Rounding (Alon-Milman ’85)

Φ1 = min
xi∈Rm

∑
ij∈E ‖xi − xj‖2∑

ij∈V×V ‖xi − xj‖2

Given a SDP solution {xi}i with objective value Φ1 =
εd

n
, can

get a rounded solution (a cut) with value O(

√
εd

n
).

The `1 mapping is a simple one-dimensional embedding: find
a specific co-ordinate t and set yi = xi [t]

Works well for expander graphs



Spectral Graph Theory- Preliminaries

Laplacian of a graph: L = dI− A

Eigenvalues of the Laplacian

0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 2d

Eigenvalues predict connectivity properties

λ2 = 0 ⇐⇒ G is disconnected
λn = 2d ⇐⇒ G is bipartite
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Cheeger Rounding Guarantee

Can show the following:

Φ1 =
λ2

n
xi ’s are in fact, one-dimensional. Furthermore, xi = u2(i),
where

Lu2 = λ2u2

.

ΦALG ≤ O(

√
d

λ2
) ΦOPT

This works when λ2 ≥ εd (an expander)
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Improved Cheeger [KKLGT ’13]

An improved analysis by Kwok et al. gives the guarantee:

ΦALG ≤ O(r)

√
d

λr
ΦOPT

This is a O(r) guarantee on graphs where λr ≥ εd .

Such graphs are said to have threshold rank r

Requires significantly more work than the original Cheeger
analysis

Dependence on r is tight
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A stronger SDP relaxation

Φ∆ = min
xi∈Rm

∑
ij∈E ‖xi − xj‖2∑

ij∈V×V ‖xi − xj‖2

s.t. ‖xi − xj‖2 + ‖xj − xk‖2 ≥ ‖xi − xk‖2 ∀i , j , k ∈ [n]

(`22 inequality constraints)

Constraints are triangle inequalities on squares of distances

Satisfied by 0, 1 integral solutions



A stronger SDP relaxation

Φ∆ = min
xi∈Rm

∑
ij∈E ‖xi − xj‖2∑

ij∈V×V ‖xi − xj‖2

s.t. ‖xi − xj‖2 + ‖xj − xk‖2 ≥ ‖xi − xk‖2 ∀i , j , k ∈ [n]

(`22 inequality constraints)

Here: A simple rounding algorithm for the above SDP with an
O(r) approximation when λr ≥ εd .



`2
2 constraints

‖xi − xj‖2 + ‖xj − xk‖2 ≥ ‖xi − xk‖2

Equivalently: 〈xi − xj , xk − xj〉 ≥ 0

One-dimensional solutions can’t have three distinct points!
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Do `2
2 inequalities help?

Best known unconditional guarantee for Sparsest Cut by
Arora-Rao-Vazirani (ARV) rounds the above SDP to give

ΦARV ≤ O(
√

log n) Φ∆

Can we leverage them to do better on low threshold-rank
graphs?

Note: Can assume that Φ∆ ≤
εd

100n
≤ λr

100n
Else, use Cheeger rounding to get a cut of sparsity

O(

√
εd

n
) ≤ 1√

ε
Φ∆
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SDP Solutions



SDP Solutions

Can’t beat NP-Hardness:



Life 101...



There is structure, though

The Difference Matrix M has some structure

Let σ1 ≥ σ2 ≥ . . . ≥ σm be the singular values
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Tool 1 : Approximately Low-Dimensional solutions [GS’13]

λr
n
≥ 100Φ∆ =⇒

r∑
i=1

σ2
i ≥ 0.99

n∑
i=1

σ2
i

Constant fraction of the squared mass of the vectors
{xi − xj}ij lies in a r -dimensional subspace

Shift vectors xi to have centroid as origin, above works with xi

Stable Rank: sr(M) ,
‖M‖2

F

σ1(M)2
≤ r/0.99
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Tool 1 : Approximately Low-Dimensional solutions [GS’13]



Tool 2: Stronger Cauchy-Schwarz using `2
2 inequalities

Proposition

If xi satisfy `2
2-inequalities, then ∀i , j , k, l , we have:

| 〈xi − xj , xk − xl〉 | ≤ min
{
‖xi − xj‖2 , ‖xk − xl‖2

}

Proof.

Left as easy exercise (see board).

Note: Simple Cauchy Schwarz would give:
| 〈xi − xj , xk − xl〉 | ≤ ‖xi − xj‖ ‖xk − xl‖
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Algorithm

1 Compute the top left-singular vector u, with singular value σ1

of the matrix M

2 v is the top right-singular vector

3 1-dimensional solutions are yi =
σ1

‖v‖1
〈xi , u〉
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Analysis

yi =
σ1

‖v‖1
〈xi , u〉

Will show:

Contraction:

|yi − yj | ≤ ‖xi − xj‖2 ∀i , j

(Average) Dilation:

Eij [|yi − yj |] ≥
0.99

r
Eij [‖xi − xj‖2]
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Analysis: Contraction

Mv = σ1u, or equivalently, σ1u =
∑
kl

vkl(xk − xl)

Pick any (i , j). We have: |yi − yj |1 =

σ1

‖v‖1

|〈xi − xj , u〉| =
1

‖v‖1

∣∣∣∣∣
〈
xi − xj ,

∑
kl

vkl(xk − xl)

〉∣∣∣∣∣
≤ 1

‖v‖1

∑
kl

|vkl | |〈xi − xj , xk − xl〉|

≤ 1

‖v‖1

∑
kl

|vkl | ‖xi − xj‖2
2 [By Stronger CS for `2

2]

= ‖xi − xj‖2
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SoS hierarchies and comparison

Algorithm by Guruswami and Sinop based on SoS hierarchy at
level O(r) gives a better result: O(1) approximation

GS algorithm runs in time 2O(r)poly(n), but needs a specific
solver

Our algorithm does not need to know r a-priori

Runs in time poly(n), conceptually simpler

Compared to improved Cheeger analysis, there is scope for
improvement in dependence on r

Gives a projective embedding, as against other known
embeddings of `2

2 into `1 that are Frechet embeddings
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Goemans’ Result

Goemans’ (unpublished) result:

Theorem (Goemans ’00)

A set of points in Rm satisfying `2
2 triangle inequalities can be

embedded into `1 with distortion O(
√
m)

Implies a
√
m approximation to Sparsest Cut on instances

where solution has dimension m

Does dimension reduction work in `2
2?

No. Very strong lower bounds [Magen-Moharammi ’00].
Caveat: Only in worst-case distortion
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Comparison to our result

Our rounding technique gives an embedding for `2
2 points with

low stable rank: ‖M‖2
F / ‖M‖

2

Stable rank is a well-known robust proxy for the rank

ML, column subset selection..

Should be able to improve our bound to O(
√

Stable Rank).

Is dimension reduction possible in terms of stable rank?

Only average distortion required

Btw, our result also recovers Goemans’ theorem using a
(arguably) cleaner proof
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Dimension Reduction

Standard Johnson-Lindenstrauss dimension reduction
preserves `2

2 triangle inequalities approximately (in O(log n/ε2)
dimensions)

‖zi − zj‖2 + ‖zk − zj‖2 ≥ (1− O(ε)) ‖zi − zk‖2

Goemans’ theorem is true with approximate `2
2 inequalities,

but requires ARV analysis [Trevisan]

Can we modify our algorithm to work with approximate
triangle inequalities?

Or ‘fix’ `2
2 inequalities without blowing up approximate

dimension
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Summary and Future directions

A simple SDP algorithm that gives non-trivial guarantees,
using `2

2 inequalities

Unconditional guarantees?

Dimension reduction techniques to get ARV-like guarantees?
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Thank you.
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