Rounding the Sparsest-Cut SDP on Low Threshold-Rank Graphs

Rakesh Venkat

Tata Institute of Fundamental Research (TIFR), Mumbai

(Joint work with Amit Deshpande, MSR and Prahladh Harsha, TIFR)

SDP and Matrix Methods, NUS 2016

1 Introduction

2 Cheeger or Spectral Approach

3 Rounding a stronger SDPOur Algorithm

4 Goemans' Theorem

The Sparsest Cut Problem

d-regular graph G

• Sparsity of a cut (S, \overline{S}) is $\Phi(S) = \frac{|E(S, \overline{S})|}{|S||\overline{S}|}$

Sparsest Cut in G is

$$\Phi(G) = \min_{S \subseteq V} \frac{|E(S, \bar{S})|}{|S||\bar{S}|}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The Sparsest Cut Problem

d-regular graph G

• Sparsity of a cut (S, \overline{S}) is $\Phi(S) = \frac{|E(S, \overline{S})|}{|S||\overline{S}|}$

■ Sparsest Cut in *G* is

$$\Phi(G) = \min_{S \subseteq V} \frac{|E(S, \overline{S})|}{|S||\overline{S}|}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The Sparsest Cut Problem

d-regular graph G

• Sparsity of a cut (S, \overline{S}) is $\Phi(S) = \frac{|E(S, \overline{S})|}{|S||\overline{S}|}$

■ Sparsest Cut in *G* is

$$\Phi(G) = \min_{S \subseteq V} \frac{|E(S, \bar{S})|}{|S||\bar{S}|}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

d-regular graph G

• Sparsity of a cut (S, \overline{S}) is $\Phi(S) = \frac{|E(S, \overline{S})|}{|S||\overline{S}|}$

Sparsest Cut in G is

$$\Phi(G) = \min_{S \subseteq V} \frac{|E(S, \overline{S})|}{|S||\overline{S}|}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

d-regular graph G

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

- NP-hard to compute exactly
- Assuming the Unique Games Conjecture, it is NP-hard to approximate to any constant factor [CKKRS '05, Khot-Vishnoi '05]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Sparsest Cut Objective

$$\Phi_{OPT} = \min_{S} \frac{|E(S,\bar{S})|}{|S||\bar{S}|} \quad \blacksquare \text{ Original Objective}$$
$$\Phi_{OPT} = \min_{x_i \in \{0,1\}} \frac{\sum_{ij \in E} (x_i - x_j)^2}{\sum_{ij \in V \times V} (x_i - x_j)^2} \quad \blacksquare \text{ Where } x_i = 1 \text{ if } i \in S,$$
$$x_i = 0 \text{ if } i \in \bar{S}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sparsest Cut Objective

$$\Phi_{OPT} = \min_{S} \frac{|E(S,\bar{S})|}{|S||\bar{S}|} \qquad \text{Original Objective}$$

$$p_{OPT} = \min_{x_i \in \{0,1\}} \frac{\sum_{ij \in E} (x_i - x_j)^2}{\sum_{ij \in V \times V} (x_i - x_j)^2} \qquad \text{Where } x_i = 1 \text{ if } i \in S,$$

$$x_i = 0 \text{ if } i \in \bar{S}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sparsest Cut Objective

$$\Phi_{OPT} = \min_{S} \frac{|E(S,S)|}{|S||\overline{S}|} \qquad \text{Original Objective}$$

$$\Phi_{OPT} = \min_{x_i \in \{0,1\}} \frac{\sum_{ij \in E} (x_i - x_j)^2}{\sum_{ij \in V \times V} (x_i - x_j)^2} \qquad \text{Where } x_i = 1 \text{ if } i \in S,$$

$$x_i = 0 \text{ if } i \in \overline{S}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Assign a vector $x_i \in \mathbb{R}^m$ for each 0/1 variable
- Ideally, the vectors should be just scalars 0 or 1, i.e. one-dimensional
- Sparsest Cut objective relaxation (a SDP):

$$\Phi_1 = \min_{x_i \in \mathbb{R}^m} \quad \frac{\sum_{ij \in E} \|x_i - x_j\|_2^2}{\sum_{ij \in V \times V} \|x_i - x_j\|_2^2}$$

$$\Phi_1 \leq \Phi_{\textit{OPT}}$$

 Can add in more constraints on vectors that 0/1 variables satisfy, e.g.

$$x_i^{\text{old}} \in [0,1]$$
 becomes $||x_i||^2 \leq 1$

- Assign a vector $x_i \in \mathbb{R}^m$ for each 0/1 variable
- Ideally, the vectors should be just scalars 0 or 1, i.e. one-dimensional
- Sparsest Cut objective relaxation (a SDP):

$$\Phi_1 = \min_{x_i \in \mathbb{R}^m} \quad \frac{\sum_{ij \in E} \|x_i - x_j\|_2^2}{\sum_{ij \in V \times V} \|x_i - x_j\|_2^2}$$

$\Phi_1 \leq \Phi_{\textit{OPT}}$

 Can add in more constraints on vectors that 0/1 variables satisfy, e.g.

$$x_i^{\text{old}} \in [0,1]$$
 becomes $||x_i||^2 \leq 1$

- Assign a vector $x_i \in \mathbb{R}^m$ for each 0/1 variable
- Ideally, the vectors should be just scalars 0 or 1, i.e. one-dimensional
- Sparsest Cut objective relaxation (a SDP):

$$\Phi_{1} = \min_{x_{i} \in \mathbb{R}^{m}} \quad \frac{\sum_{ij \in E} \|x_{i} - x_{j}\|_{2}^{2}}{\sum_{ij \in V \times V} \|x_{i} - x_{j}\|_{2}^{2}}$$

$\Phi_1 \leq \Phi_{\textit{OPT}}$

 Can add in more constraints on vectors that 0/1 variables satisfy, e.g.

 $x_i^{\text{old}} \in [0,1]$ becomes $||x_i||^2 \leq 1$

- Assign a vector $x_i \in \mathbb{R}^m$ for each 0/1 variable
- Ideally, the vectors should be just scalars 0 or 1, i.e. one-dimensional
- Sparsest Cut objective relaxation (a SDP):

$$\Phi_1 = \min_{x_i \in \mathbb{R}^m} \quad \frac{\sum_{ij \in E} \|x_i - x_j\|_2^2}{\sum_{ij \in V \times V} \|x_i - x_j\|_2^2}$$

$$\Phi_1 \leq \Phi_{\textit{OPT}}$$

 Can add in more constraints on vectors that 0/1 variables satisfy, e.g.

$$x_i^{\mathsf{old}} \in [0,1]$$
 becomes $\|x_i\|^2 \leq 1$

- Extract out a 1-dimensional 0/1 solution {y_i} from the SDP solution {x_i} in *m* dimensions
- We will lose in objective value since $\Phi_{ALG} = \Phi(\{y_1, \dots, y_n\}) \ge \Phi(\{x_1, \dots, x_n\}) = \Phi_1$
- For Sparsest Cut, suffices to get an *embedding* into ℓ_1 , rather than pure $\{0, 1\}$ solutions for y_i 's.

- Extract out a 1-dimensional 0/1 solution {y_i} from the SDP solution {x_i} in *m* dimensions
- We will lose in objective value since $\Phi_{ALG} = \Phi(\{y_1, \dots, y_n\}) \ge \Phi(\{x_1, \dots, x_n\}) = \Phi_1$
- For Sparsest Cut, suffices to get an *embedding* into l₁, rather than pure {0, 1} solutions for y_i's.

- Extract out a 1-dimensional 0/1 solution {y_i} from the SDP solution {x_i} in *m* dimensions
- We will lose in objective value since $\Phi_{ALG} = \Phi(\{y_1, \dots, y_n\}) \ge \Phi(\{x_1, \dots, x_n\}) = \Phi_1$
- For Sparsest Cut, suffices to get an *embedding* into ℓ_1 , rather than pure $\{0, 1\}$ solutions for y_i 's.

Given a mapping of the points: $Y : V \to \mathbb{R}^{m'}$, we can produce a cut T of cost:

$$\Phi(T) \leq \frac{\sum_{ij \in V} \|y_i - y_j\|_1}{\sum_{kl \in V \times V} \|y_k - y_l\|_1}$$

Sufficient to produce an *embedding* of the SDP solutions into ℓ_1 -space

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ℓ_1 embeddings of SDP solutions

• Will compare $||y_i - y_j||_1$ to $||x_i - x_j||^2$

lf

• (Contraction):

$$\|y_i - y_j\|_1 \le \|x_i - x_j\|^2$$
, for every i, j

(Average Dilation)

$$\sum_{ij} \|y_i - y_j\|_1 \ge \frac{1}{D} \cdot \sum_{ij} \|x_i - x_j\|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

then we have a O(D) - approximation.

lf

• (Contraction):

$$\|y_i - y_j\|_1 \le \|x_i - x_j\|^2$$
, for every i, j

(Average Dilation)

$$\sum_{ij} \|y_i - y_j\|_1 \ge \frac{1}{D} \cdot \sum_{ij} \|x_i - x_j\|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

then we have a O(D) - approximation.

lf

• (Contraction):

$$\left\|y_{i}-y_{j}
ight\|_{1}\leq\left\|x_{i}-x_{j}
ight\|^{2}, ext{ for every }i,j$$

(Average Dilation)

$$\sum_{ij} \|y_i - y_j\|_1 \ge \frac{1}{D} \cdot \sum_{ij} \|x_i - x_j\|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

then we have a O(D) - approximation.

1 Introduction

2 Cheeger or Spectral Approach

- 3 Rounding a stronger SDPOur Algorithm
- 4 Goemans' Theorem

Cheeger Rounding (Alon-Milman '85)

$$\Phi_1 = \min_{x_i \in \mathbb{R}^m} \quad \frac{\sum_{ij \in E} \|x_i - x_j\|^2}{\sum_{ij \in V \times V} \|x_i - x_j\|^2}$$

- Given a SDP solution $\{x_i\}_i$ with objective value $\Phi_1 = \frac{\epsilon d}{n}$, can get a rounded solution (a cut) with value $O(\frac{\sqrt{\epsilon}d}{n})$.
- The l₁ mapping is a simple one-dimensional embedding: find a specific co-ordinate t and set y_i = x_i[t]

Works well for expander graphs

Spectral Graph Theory- Preliminaries

Eigenvalues of the Laplacian

$$0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq 2d$$

Eigenvalues predict connectivity properties
 λ₂ = 0 ↔ G is disconnected
 λ_n = 2d ↔ G is bipartite

Spectral Graph Theory- Preliminaries

Eigenvalues of the Laplacian

$$0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq 2d$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Eigenvalues predict connectivity properties

- $\lambda_2 = 0 \iff G$ is disconnected
- $\lambda_n = 2d \iff G$ is bipartite

Can show the following:

 $\Phi_1 = \frac{\lambda_2}{-}$

• x_i 's are in fact, one-dimensional. Furthermore, $x_i = u_2(i)$, where

 $Lu_2 = \lambda_2 u_2$

•
$$\Phi_{\mathsf{ALG}} \leq O(\sqrt{rac{d}{\lambda_2}}) \Phi_{\mathsf{OPT}}$$

• This works when $\lambda_2 \ge \epsilon d$ (an *expander*)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cheeger Rounding Guarantee

Can show the following:

•
$$\Phi_1 = \frac{\lambda_2}{n}$$

• x_i 's are in fact, one-dimensional. Furthermore, $x_i = u_2(i)$, where

 $Lu_2 = \lambda_2 u_2$

•
$$\Phi_{\mathsf{ALG}} \leq O(\sqrt{rac{d}{\lambda_2}}) \; \Phi_{\mathsf{OPT}}$$

• This works when $\lambda_2 \ge \epsilon d$ (an *expander*)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Can show the following:

•
$$\Phi_1 = \frac{\lambda_2}{n}$$

• x_i 's are in fact, one-dimensional. Furthermore, $x_i = u_2(i)$, where

 $Lu_2 = \lambda_2 u_2$

•
$$\Phi_{\mathsf{ALG}} \leq O(\sqrt{rac{d}{\lambda_2}}) \Phi_{\mathsf{OPT}}$$

• This works when $\lambda_2 \ge \epsilon d$ (an *expander*)

An improved analysis by Kwok et al. gives the guarantee:

$$\Phi_{\mathsf{ALG}} \leq O(r) \sqrt{rac{d}{\lambda_r}} \Phi_{\mathsf{OPT}}$$

• This is a O(r) guarantee on graphs where $\lambda_r \geq \epsilon d$.

Such graphs are said to have threshold rank *r*

 Requires significantly more work than the original Cheeger analysis

Dependence on *r* is tight

An improved analysis by Kwok et al. gives the guarantee:

$$\Phi_{\mathsf{ALG}} \leq O(r) \sqrt{rac{d}{\lambda_r}} \Phi_{\mathsf{OPT}}$$

- This is a O(r) guarantee on graphs where $\lambda_r \geq \epsilon d$.
- Such graphs are said to have threshold rank r

- Requires significantly more work than the original Cheeger analysis
- Dependence on *r* is tight

An improved analysis by Kwok et al. gives the guarantee:

$$\Phi_{\mathsf{ALG}} \leq O(r) \sqrt{rac{d}{\lambda_r}} \Phi_{\mathsf{OPT}}$$

• This is a O(r) guarantee on graphs where $\lambda_r \geq \epsilon d$.

Such graphs are said to have threshold rank r

 Requires significantly more work than the original Cheeger analysis

Dependence on r is tight

An improved analysis by Kwok et al. gives the guarantee:

$$\Phi_{\mathsf{ALG}} \leq O(r) \sqrt{rac{d}{\lambda_r}} \Phi_{\mathsf{OPT}}$$

• This is a O(r) guarantee on graphs where $\lambda_r \geq \epsilon d$.

Such graphs are said to have threshold rank r

 Requires significantly more work than the original Cheeger analysis

Dependence on r is tight

1 Introduction

2 Cheeger or Spectral Approach

3 Rounding a stronger SDPOur Algorithm

4 Goemans' Theorem

$$\Phi_{\Delta} = \min_{x_i \in \mathbb{R}^m} \frac{\sum_{ij \in E} \|x_i - x_j\|^2}{\sum_{ij \in V \times V} \|x_i - x_j\|^2}$$

s.t. $\|x_i - x_j\|^2 + \|x_j - x_k\|^2 \ge \|x_i - x_k\|^2 \quad \forall i, j, k \in [n]$
 $(\ell_2^2 \text{ inequality constraints})$

Constraints are triangle inequalities on squares of distances
 Satisfied by 0, 1 integral solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
$$\Phi_{\Delta} = \min_{x_i \in \mathbb{R}^m} \quad \frac{\sum_{ij \in E} \|x_i - x_j\|^2}{\sum_{ij \in V \times V} \|x_i - x_j\|^2}$$

s.t. $\|x_i - x_j\|^2 + \|x_j - x_k\|^2 \ge \|x_i - x_k\|^2 \quad \forall i, j, k \in [n]$
 $(\ell_2^2 \text{ inequality constraints})$

• Here: A simple rounding algorithm for the above SDP with an O(r) approximation when $\lambda_r \ge \epsilon d$.

• Equivalently: $\langle x_i - x_j, x_k - x_j \rangle \ge 0$

One-dimensional solutions can't have three distinct points!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Equivalently: $\langle x_i x_j, x_k x_j \rangle \ge 0$
- One-dimensional solutions can't have three distinct points!

 Best known unconditional guarantee for Sparsest Cut by Arora-Rao-Vazirani (ARV) rounds the above SDP to give

$$\Phi_{\mathsf{ARV}} \leq O(\sqrt{\log n}) \Phi_{\Delta}$$

- Can we leverage them to do better on low threshold-rank graphs?
- Note: Can assume that $\Phi_{\Delta} \leq \frac{\epsilon d}{100n} \leq \frac{\lambda_r}{100n}$

■ Else, use Cheeger rounding to get a cut of sparsity $O(\frac{\sqrt{\epsilon}d}{n}) \leq \frac{1}{\sqrt{\epsilon}} \Phi_{\Delta}$ Best known unconditional guarantee for Sparsest Cut by Arora-Rao-Vazirani (ARV) rounds the above SDP to give

$$\Phi_{\mathsf{ARV}} \leq O(\sqrt{\log n}) \Phi_{\Delta}$$

- Can we leverage them to do better on low threshold-rank graphs?
- Note: Can assume that $\Phi_{\Delta} \leq rac{\epsilon d}{100n} \leq rac{\lambda_r}{100n}$

Else, use Cheeger rounding to get a cut of sparsity $O(\frac{\sqrt{\epsilon}d}{n}) \leq \frac{1}{\sqrt{\epsilon}} \Phi_{\Delta}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

SDP Solutions

Can't beat NP-Hardness:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Difference Matrix M has some structure

• Let $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_m$ be the singular values

The Difference Matrix M has some structure

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• Let $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_m$ be the singular values

$$rac{\lambda_r}{n} \ge 100 \Phi_\Delta \implies \sum_{i=1}^r \sigma_i^2 \ge 0.99 \sum_{i=1}^n \sigma_i^2$$

- Constant fraction of the squared mass of the vectors {x_i - x_j}_{ij} lies in a *r*-dimensional subspace
- Shift vectors x_i to have centroid as origin, above works with x_i
 Stable Rank: sr(M) \approx \frac{||M||_F^2}{\sigma_1(M)^2} \le r/0.99

$$\frac{\lambda_r}{n} \ge 100 \Phi_\Delta \implies \sum_{i=1}^r \sigma_i^2 \ge 0.99 \sum_{i=1}^n \sigma_i^2$$

■ Constant fraction of the squared mass of the vectors {x_i - x_j}_{ij} lies in a *r*-dimensional subspace

Shift vectors x_i to have centroid as origin, above works with x_i Stable Rank: $\operatorname{sr}(M) \triangleq \frac{\|M\|_F^2}{\sigma_1(M)^2} \le r/0.99$

$$\frac{\lambda_r}{n} \ge 100 \Phi_\Delta \implies \sum_{i=1}^r \sigma_i^2 \ge 0.99 \sum_{i=1}^n \sigma_i^2$$

- Constant fraction of the squared mass of the vectors {x_i - x_j}_{ij} lies in a *r*-dimensional subspace
- Shift vectors x_i to have centroid as origin, above works with x_i
- Stable Rank: $\operatorname{sr}(M) \triangleq \frac{\|M\|_F^2}{\sigma_1(M)^2} \le r/0.99$

$$\frac{\lambda_r}{n} \ge 100 \Phi_\Delta \implies \sum_{i=1}^r \sigma_i^2 \ge 0.99 \sum_{i=1}^n \sigma_i^2$$

- Constant fraction of the squared mass of the vectors {*x_i* − *x_j*}*_{ij}* lies in a *r*-dimensional subspace
- Shift vectors x_i to have centroid as origin, above works with x_i
 Stable Rank: sr(M) ≜ ^{||M||²_F}/_{σ₁(M)²} ≤ r/0.99

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proposition

If x_i satisfy ℓ_2^2 -inequalities, then $\forall i, j, k, l$, we have:

$$|\langle x_i - x_j, x_k - x_l \rangle| \le \min \{ ||x_i - x_j||^2, ||x_k - x_l||^2 \}$$

Proof.

Left as easy exercise (see board).

■ Note: Simple Cauchy Schwarz would give: $|\langle x_i - x_j, x_k - x_l \rangle| \le ||x_i - x_j|| ||x_k - x_l||$

Proposition

If x_i satisfy ℓ_2^2 -inequalities, then $\forall i, j, k, l$, we have:

$$|\langle x_i - x_j, x_k - x_l \rangle| \le \min \{ \|x_i - x_j\|^2, \|x_k - x_l\|^2 \}$$

Proof.

Left as easy exercise (see board).

■ Note: Simple Cauchy Schwarz would give: $|\langle x_i - x_j, x_k - x_l \rangle| \le ||x_i - x_j|| ||x_k - x_l||$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

・ロト・4回ト・4回ト・4回ト・4回ト

Expander-like Reality

1 Compute the top left-singular vector u, with singular value σ_1 of the matrix M

2 v is the top right-singular vector

3 1-dimensional solutions are
$$y_i = \frac{\sigma_1}{\|v\|_1} \langle x_i, u \rangle$$

Expander-like Reality

1 Compute the top left-singular vector u, with singular value σ_1 of the matrix M

2 v is the top right-singular vector

3 1-dimensional solutions are
$$y_i = \frac{\sigma_1}{\|v\|_1} \langle x_i, u \rangle$$

Analysis

$$y_i = \frac{\sigma_1}{\|v\|_1} \langle x_i, u \rangle$$

Will show:

Contraction:

$$|y_i - y_j| \le ||x_i - x_j||^2 \quad \forall i, j$$

• (Average) Dilation:

$$\mathbb{E}_{ij} \left[|y_i - y_j| \right] \ge rac{0.99}{r} \mathbb{E}_{ij} \left[||x_i - x_j||^2
ight]$$

Analysis

$$y_i = \frac{\sigma_1}{\|v\|_1} \langle x_i, u \rangle$$

Will show:

Contraction:

$$|y_i - y_j| \le ||x_i - x_j||^2 \quad \forall i, j$$

• (Average) Dilation:

$$\mathbb{E}_{ij} \, \left[|y_i - y_j|
ight] \geq rac{0.99}{r} \, \mathbb{E}_{ij} \, \left[\|x_i - x_j\|^2
ight]$$

•
$$Mv = \sigma_1 u$$
, or equivalently, $\sigma_1 u = \sum_{kl} v_{kl} (x_k - x_l)$

Pick any (i, j). We have: $|y_i - y_j|_1 =$

$$\begin{split} \frac{\sigma_1}{\|v\|_1} \left| \langle x_i - x_j, u \rangle \right| &= \frac{1}{\|v\|_1} \left| \left\langle x_i - x_j, \sum_{kl} v_{kl} (x_k - x_l) \right\rangle \right| \\ &\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left| \langle x_i - x_j, x_k - x_l \rangle \right| \\ &\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left\| x_i - x_j \right\|_2^2 \quad \text{[By Stronger CS for } \ell_2^2 \text{]} \\ &= \|x_i - x_j\|_2^2 \,. \end{split}$$

•
$$Mv = \sigma_1 u$$
, or equivalently, $\sigma_1 u = \sum_{kl} v_{kl} (x_k - x_l)$

Pick any (i, j). We have: $|y_i - y_j|_1 =$

$$\begin{split} \frac{\sigma_1}{\|v\|_1} \left| \langle x_i - x_j, u \rangle \right| &= \frac{1}{\|v\|_1} \left| \left\langle x_i - x_j, \sum_{kl} v_{kl} (x_k - x_l) \right\rangle \right| \\ &\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left| \langle x_i - x_j, x_k - x_l \rangle \right| \\ &\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left\| x_i - x_j \right\|_2^2 \quad \text{[By Stronger CS for } \ell_2^2 \text{]} \\ &= \left\| x_i - x_j \right\|_2^2. \end{split}$$

•
$$Mv = \sigma_1 u$$
, or equivalently, $\sigma_1 u = \sum_{kl} v_{kl} (x_k - x_l)$

Pick any (i, j). We have: $|y_i - y_j|_1 =$

$$\begin{split} \frac{\sigma_{1}}{\|\mathbf{v}\|_{1}} \left| \langle x_{i} - x_{j}, u \rangle \right| &= \frac{1}{\|\mathbf{v}\|_{1}} \left| \left\langle x_{i} - x_{j}, \sum_{kl} \mathbf{v}_{kl} (x_{k} - x_{l}) \right\rangle \right| \\ &\leq \frac{1}{\|\mathbf{v}\|_{1}} \sum_{kl} |v_{kl}| \left| \langle x_{i} - x_{j}, x_{k} - x_{l} \rangle \right| \\ &\leq \frac{1}{\|\mathbf{v}\|_{1}} \sum_{kl} |v_{kl}| \left\| x_{i} - x_{j} \right\|_{2}^{2} \quad \text{[By Stronger CS for } \ell_{2}^{2} \text{]} \\ &= \left\| x_{i} - x_{j} \right\|_{2}^{2}. \end{split}$$

•
$$Mv = \sigma_1 u$$
, or equivalently, $\sigma_1 u = \sum_{kl} v_{kl} (x_k - x_l)$

Pick any (i, j). We have: $|y_i - y_j|_1 =$

$$\begin{split} \frac{\sigma_1}{\|\mathbf{v}\|_1} \left| \langle x_i - x_j, u \rangle \right| &= \frac{1}{\|\mathbf{v}\|_1} \left| \left\langle x_i - x_j, \sum_{kl} \mathbf{v}_{kl} (x_k - x_l) \right\rangle \right| \\ &\leq \frac{1}{\|\mathbf{v}\|_1} \sum_{kl} |\mathbf{v}_{kl}| \left| \langle x_i - x_j, x_k - x_l \rangle \right| \\ &\leq \frac{1}{\|\mathbf{v}\|_1} \sum_{kl} |\mathbf{v}_{kl}| \left\| x_i - x_j \right\|_2^2 \quad \text{[By Stronger CS for } \ell_2^2 \text{]} \\ &= \|x_i - x_j\|_2^2 \,. \end{split}$$

•
$$Mv = \sigma_1 u$$
, or equivalently, $\sigma_1 u = \sum_{kl} v_{kl} (x_k - x_l)$

Pick any (i, j). We have: $|y_i - y_j|_1 =$

$$\begin{split} \frac{\sigma_1}{\|v\|_1} \left| \langle x_i - x_j, u \rangle \right| &= \frac{1}{\|v\|_1} \left| \left\langle x_i - x_j, \sum_{kl} v_{kl} (x_k - x_l) \right\rangle \right| \\ &\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left| \langle x_i - x_j, x_k - x_l \rangle \right| \\ &\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left\| x_i - x_j \right\|_2^2 \quad \text{[By Stronger CS for } \ell_2^2 \text{]} \\ &= \left\| x_i - x_j \right\|_2^2 \,. \end{split}$$

•
$$Mv = \sigma_1 u$$
, or equivalently, $\sigma_1 u = \sum_{kl} v_{kl} (x_k - x_l)$

Pick any (i, j). We have: $|y_i - y_j|_1 =$

$$\begin{split} \frac{\sigma_1}{\|v\|_1} \left| \langle x_i - x_j, u \rangle \right| &= \frac{1}{\|v\|_1} \left| \left\langle x_i - x_j, \sum_{kl} v_{kl} (x_k - x_l) \right\rangle \right| \\ &\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left| \langle x_i - x_j, x_k - x_l \rangle \right| \\ &\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left\| x_i - x_j \right\|_2^2 \quad \text{[By Stronger CS for } \ell_2^2 \text{]} \\ &= \|x_i - x_j\|_2^2 \,. \end{split}$$

$$\sum_{ij} |y_i - y_j|_1 = \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u\rangle|$$

$$= \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\sigma_1 v_{ij}| \quad [\text{Since } u^T M = \sigma_1 v^T]$$

$$= \sigma_1^2$$

$$= \frac{\|M\|_F^2}{\operatorname{sr}(M)}$$

$$= \frac{1}{\operatorname{sr}(M)} \sum_{ij} \|x_i - x_j\|_2^2$$

$$\ge \frac{0.99}{r} \sum_{ij} \|x_i - x_j\|_2^2.$$

<□ > < @ > < E > < E > E のQ @

$$\sum_{ij} |y_i - y_j|_1 = \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u\rangle|$$

$$= \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\sigma_1 v_{ij}| \quad [\text{Since } u^T M = \sigma_1 v^T]$$

$$= \sigma_1^2$$

$$= \frac{\|M\|_F^2}{\operatorname{sr}(M)}$$

$$= \frac{1}{\operatorname{sr}(M)} \sum_{ij} \|x_i - x_j\|_2^2$$

$$\ge \frac{0.99}{r} \sum_{ij} \|x_i - x_j\|_2^2.$$

<□ > < @ > < E > < E > E のQ @

$$\sum_{ij} |y_i - y_j|_1 = \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u\rangle|$$

$$= \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\sigma_1 v_{ij}| \quad [\text{Since } u^T M = \sigma_1 v^T]$$

$$= \sigma_1^2$$

$$= \frac{\|M\|_F^2}{\operatorname{sr}(M)}$$

$$= \frac{1}{\operatorname{sr}(M)} \sum_{ij} \|x_i - x_j\|_2^2$$

$$\ge \frac{0.99}{r} \sum_{ij} \|x_i - x_j\|_2^2.$$

<□ > < @ > < E > < E > E のQ @

$$\sum_{ij} |y_i - y_j|_1 = \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u\rangle|$$

$$= \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\sigma_1 v_{ij}| \quad [\text{Since } u^T M = \sigma_1 v^T]$$

$$= \sigma_1^2$$

$$= \frac{\|M\|_F^2}{\operatorname{sr}(M)}$$

$$= \frac{1}{\operatorname{sr}(M)} \sum_{ij} \|x_i - x_j\|_2^2$$

$$\ge \frac{0.99}{r} \sum_{ij} \|x_i - x_j\|_2^2.$$
Analysis: Dilation

$$\sum_{ij} |y_i - y_j|_1 = \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u\rangle|$$

= $\sum_{ij} \frac{\sigma_1}{\|v\|_1} |\sigma_1 v_{ij}|$ [Since $u^T M = \sigma_1 v^T$]
= σ_1^2
= $\frac{\|M\|_F^2}{\operatorname{sr}(M)}$
= $\frac{1}{\operatorname{sr}(M)} \sum_{ij} \|x_i - x_j\|_2^2$
 $\geq \frac{0.99}{r} \sum_{ij} \|x_i - x_j\|_2^2$.

<□ > < @ > < E > < E > E のQ @

SoS hierarchies and comparison

- Algorithm by Guruswami and Sinop based on SoS hierarchy at level O(r) gives a better result: O(1) approximation
- GS algorithm runs in time 2^{O(r)}poly(n), but needs a specific solver
- Our algorithm does not need to know r a-priori
 Runs in time poly(n), conceptually simpler

SoS hierarchies and comparison

- Algorithm by Guruswami and Sinop based on SoS hierarchy at level O(r) gives a better result: O(1) approximation
- GS algorithm runs in time 2^{O(r)}poly(n), but needs a specific solver
- Our algorithm does not need to know r a-priori
 Runs in time poly(n), conceptually simpler
- Compared to improved Cheeger analysis, there is scope torimprovement in dependence on r

■ Gives a projective embedding, as against other known embeddings of ℓ₂ into ℓ₁ that are Frechet embeddings.

- Algorithm by Guruswami and Sinop based on SoS hierarchy at level O(r) gives a better result: O(1) approximation
- GS algorithm runs in time 2^{O(r)}poly(n), but needs a specific solver
 - Our algorithm does not need to know r a-priori
 - Runs in time poly(n), conceptually simpler
 - Compared to improved Cheeger analysis, there is scope for improvement in dependence on r

■ Gives a projective embedding, as against other known embeddings of *ℓ*₂ into *ℓ*₁ that are Frechet embeddings.

- Algorithm by Guruswami and Sinop based on SoS hierarchy at level O(r) gives a better result: O(1) approximation
- GS algorithm runs in time 2^{O(r)}poly(n), but needs a specific solver
 - Our algorithm does not need to know r a-priori
 - Runs in time poly(n), conceptually simpler
 - Compared to improved Cheeger analysis, there is scope for improvement in dependence on r

 Gives a projective embedding, as against other known embeddings of l²/₂ into l₁ that are Frechet embeddings

1 Introduction

2 Cheeger or Spectral Approach

3 Rounding a stronger SDPOur Algorithm

4 Goemans' Theorem

5 Summary

・ 日 ・ ・ 日 ・ ・ モ ・ ・ 日 ・ ・ つ く ()

Theorem (Goemans '00)

A set of points in \mathbb{R}^m satisfying ℓ_2^2 triangle inequalities can be embedded into ℓ_1 with distortion $O(\sqrt{m})$

- Implies a \sqrt{m} approximation to Sparsest Cut on instances where solution has dimension m
- Does dimension reduction work in ℓ_2^2 ?

No. Very strong lower bounds [Magen-Moharammi '00].
 Caveat: Only in worst-case distortion

Theorem (Goemans '00)

A set of points in \mathbb{R}^m satisfying ℓ_2^2 triangle inequalities can be embedded into ℓ_1 with distortion $O(\sqrt{m})$

- Implies a \sqrt{m} approximation to SPARSEST CUT on instances where solution has dimension m
- Does dimension reduction work in ℓ_2^2 ?

No. Very strong lower bounds [Magen-Moharammi '00].
 Caveat: Only in worst-case distortion

Theorem (Goemans '00)

A set of points in \mathbb{R}^m satisfying ℓ_2^2 triangle inequalities can be embedded into ℓ_1 with distortion $O(\sqrt{m})$

- Implies a \sqrt{m} approximation to SPARSEST CUT on instances where solution has dimension m
- Does dimension reduction work in ℓ_2^2 ?

No. Very strong lower bounds [Magen-Moharammi '00].
Caveat: Only in worst-case distortion

Theorem (Goemans '00)

A set of points in \mathbb{R}^m satisfying ℓ_2^2 triangle inequalities can be embedded into ℓ_1 with distortion $O(\sqrt{m})$

- Implies a \sqrt{m} approximation to SPARSEST CUT on instances where solution has dimension m
- Does dimension reduction work in ℓ_2^2 ?
 - No. Very strong lower bounds [Magen-Moharammi '00].

(日) (同) (三) (三) (三) (○) (○)

Caveat: Only in worst-case distortion

- Our rounding technique gives an embedding for ℓ_2^2 points with low *stable rank*: $||M||_F^2 / ||M||^2$
- Stable rank is a well-known robust proxy for the rank
 ML, column subset selection..
- Should be able to improve our bound to $O(\sqrt{\text{Stable Rank}})$.
- Is dimension reduction possible in terms of *stable rank*?
 Only average distortion required
- Btw, our result also recovers Goemans' theorem using a (arguably) cleaner proof

- Our rounding technique gives an embedding for ℓ_2^2 points with low *stable rank*: $||M||_F^2 / ||M||^2$
- Stable rank is a well-known robust proxy for the rank
 ML, column subset selection..
- Should be able to improve our bound to $O(\sqrt{\text{Stable Rank}})$.
- Is dimension reduction possible in terms of *stable rank*?
 Only average distortion required
- Btw, our result also recovers Goemans' theorem using a (arguably) cleaner proof

- Our rounding technique gives an embedding for ℓ_2^2 points with low *stable rank*: $||M||_F^2 / ||M||^2$
- Stable rank is a well-known robust proxy for the rank
 ML, column subset selection..
- Should be able to improve our bound to $O(\sqrt{\text{Stable Rank}})$.
- Is dimension reduction possible in terms of *stable rank*?
 Only average distortion required
- Btw, our result also recovers Goemans' theorem using a (arguably) cleaner proof

- Our rounding technique gives an embedding for ℓ_2^2 points with low *stable rank*: $||M||_F^2 / ||M||^2$
- Stable rank is a well-known robust proxy for the rank
 ML, column subset selection..
- Should be able to improve our bound to $O(\sqrt{\text{Stable Rank}})$.
- Is dimension reduction possible in terms of *stable rank*?
 Only average distortion required
- Btw, our result also recovers Goemans' theorem using a (arguably) cleaner proof

- Our rounding technique gives an embedding for ℓ_2^2 points with low *stable rank*: $||M||_F^2 / ||M||^2$
- Stable rank is a well-known robust proxy for the rank
 ML, column subset selection..
- Should be able to improve our bound to $O(\sqrt{\text{Stable Rank}})$.
- Is dimension reduction possible in terms of *stable rank*?
 Only average distortion required
- Btw, our result also recovers Goemans' theorem using a (arguably) cleaner proof

 Standard Johnson-Lindenstrauss dimension reduction preserves ℓ₂² triangle inequalities *approximately* (in O(log n/ε²) dimensions)

$$\|z_i - z_j\|^2 + \|z_k - z_j\|^2 \ge (1 - O(\epsilon)) \|z_i - z_k\|^2$$

- Goemans' theorem is true with approximate ℓ_2^2 inequalities, but requires ARV analysis [Trevisan]
- Can we modify our algorithm to work with approximate triangle inequalities?
 - Or 'fix' ℓ_2^2 inequalities without blowing up approximate dimension

 Standard Johnson-Lindenstrauss dimension reduction preserves ℓ₂² triangle inequalities *approximately* (in O(log n/ε²) dimensions)

$$\|z_i - z_j\|^2 + \|z_k - z_j\|^2 \ge (1 - O(\epsilon)) \|z_i - z_k\|^2$$

- Goemans' theorem is true with approximate ℓ_2^2 inequalities, but requires ARV analysis [Trevisan]
- Can we modify our algorithm to work with approximate triangle inequalities?
 - Or 'fix' ℓ_2^2 inequalities without blowing up approximate dimension

 Standard Johnson-Lindenstrauss dimension reduction preserves ℓ₂² triangle inequalities *approximately* (in O(log n/ε²) dimensions)

$$\|z_i - z_j\|^2 + \|z_k - z_j\|^2 \ge (1 - O(\epsilon)) \|z_i - z_k\|^2$$

- Goemans' theorem is true with approximate ℓ_2^2 inequalities, but requires ARV analysis [Trevisan]
- Can we modify our algorithm to work with approximate triangle inequalities?
 - Or 'fix' ℓ_2^2 inequalities without blowing up approximate dimension

1 Introduction

- 2 Cheeger or Spectral Approach
- 3 Rounding a stronger SDPOur Algorithm
- 4 Goemans' Theorem

A simple SDP algorithm that gives non-trivial guarantees, using ℓ_2^2 inequalities

- Unconditional guarantees?
- Dimension reduction techniques to get ARV-like guarantees?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A simple SDP algorithm that gives non-trivial guarantees, using ℓ_2^2 inequalities
- Unconditional guarantees?

Dimension reduction techniques to get ARV-like guarantees?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A simple SDP algorithm that gives non-trivial guarantees, using ℓ_2^2 inequalities
- Unconditional guarantees?
- Dimension reduction techniques to get ARV-like guarantees?

Thank you.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>