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m Sparsest Cut in G is
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The Sparsest Cut Problem

d-regular graph G

of a cut (S,5) is

E(S.S)]

5) = =2l
|S1[S]

Cutin G is

q)(b) = min m
| sV s3]




Complexity of Sparsest Cut: Lower bounds

m NP-hard to compute exactly

m Assuming the Unique Games Conjecture, it is NP-hard to
approximate to any constant factor [CKKRS '05,
Khot-Vishnoi '05]
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Sparsest Cut Objective

. |E(S,S)] m Original Objective
q)OPT = MmN ——=—
s IS[IS]
. )2
dopr = min ZijeE(X’_XJ) m Where x;, =1ifi e S,

x;€{0,1} ZijeVX \/(Xi - XJ)Z xi=0if i€ S
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Relaxing the Objective

m Assign a vector x; € R for each 0/1 variable

m Ideally, the vectors should be just scalars 0 or 1, i.e.
one-dimensional

m Sparsest Cut objective relaxation (a SDP):

2
ZijeE X — XI5

2
i ER™ ZijerV B9 _Xj||2

1 < Popr

m Can add in more constraints on vectors that 0/1 variables
satisfy, e.g.

x?4 € [0,1] becomes ||x;||* <1
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Rounding the Relaxation

m Extract out a 1-dimensional 0/1 solution {y;} from the SDP
solution {x;} in m dimensions

m We will lose in objective value since
SPate =P({y1, .-y ¥n}) = P({x1, ..., Xn}) = P1

m For Sparsest Cut, suffices to get an embedding into /1, rather
than pure {0, 1} solutions for y;'s.



Connection to ¢; embeddings [LLR '94, AR '94]

m Given a mapping of the points: Y : V — R™  we can
produce a cut T of cost:

o(T) < >iiev i = yilla
 Ywevxy vk = yilla

m Sufficient to produce an embedding of the SDP solutions into
{1-space



{1 embeddings of SDP solutions

{1~ space

SDP solutions:

R™

OB/J = <2=cllzi==l3 ~  OBJ() = ZE.IIyz—yjHl

iev llwi—z;l3 ey iyl

m Wil compare |ly; — y;[l1 to [[x; — x;|?
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Average distortion and guarantee

If

m (Contraction):

Ilyi = yilly < lIxi = x>, for every i,j

m (Average Dilation)
1 2
S lyi—yilh = 53—

then we have a O(D) - approximation.
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Cheeger Rounding (Alon-Milman '85)

2
®, = min ZijeE [xi — x|

2
MERT D ey X =l

d
m Given a SDP solution {x;}; with objective value ®; = €2 can
n

m The /1 mapping is a simple one-dimensional embeddlng: find
a specific co-ordinate t and set y; = x;[t]

get a rounded solution (a cut) with value O(

m Works well for expander graphs



Spectral Graph Theory- Preliminaries
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Spectral Graph Theory- Preliminaries

m Laplacian of a graph: L=dl— A

ko J J
k d
7 -1 P
{ij}eE
i’ 0
! {5} ¢
n

m Eigenvalues of the Laplacian
0O=M< <.\, <2d

m Eigenvalues predict connectivity properties

m A\, =0 <= G is disconnected
B )\, =2d <= G is bipartite
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Cheeger Rounding Guarantee

m Can show the following:
| ¢’1 = &
n

m x;'s are in fact, one-dimensional. Furthermore, x; = (i),
where

d
m Pac < O(4y )\*2) ®opT

m This works when A\, > ed (an expander)

LU2 = )\2U2

/\1 .)\2 Z ed
0

L]
Cheeger works .



Improved Cheeger [KKLGT '13]
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Improved Cheeger [KKLGT '13]

m An improved analysis by Kwok et al. gives the guarantee:

d
PaLc < O(r)y/ )\*q’OPT

This is a O(r) guarantee on graphs where \, > ed.

Such graphs are said to have threshold rank r

AL eld °
0 \ " /4 2d
——

)‘27“ o »)\7‘—1 )\r

Requires significantly more work than the original Cheeger
analysis

m Dependence on r is tight



Rounding a stronger SDP



A stronger SDP relaxation

2
®p = min ZijeE l[xi = x|

m 2
sl ZijerVHXi—XJH
2 2 2 ..
st i = xil17 4 (x5 = xill” = llxi = xillI® Vi j, k€ [n]

(¢3 inequality constraints)

m Constraints are triangle inequalities on squares of distances
m Satisfied by 0,1 integral solutions



A stronger SDP relaxation

2
on— mn el

2
ERT D vy X = il

st [lxi =117 + b — xell® > Il — xell® Vi j, k € [n]

(43 inequality constraints)

m Here: A simple rounding algorithm for the above SDP with an
O(r) approximation when A\, > ed.



(5 constraints

2 2
m [lxi =017+ [ — xell® > llxi — x|
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(5 constraints

2 2 2
m{x; = xl|7 + g — Xl > [Ixi — x|

m Equivalently: (x; — xj,xx —xj) >0
m One-dimensional solutions can’t have three distinct points!



Do [3 inequalities help?

m Best known unconditional guarantee for Sparsest Cut by
Arora-Rao-Vazirani (ARV) rounds the above SDP to give

[CDARV < O(/log n) (DA]

m Can we leverage them to do better on low threshold-rank
graphs?
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Do [3 inequalities help?

m Best known unconditional guarantee for Sparsest Cut by
Arora-Rao-Vazirani (ARV) rounds the above SDP to give

[CDARV < O(/log n) (DA]

m Can we leverage them to do better on low threshold-rank
graphs?

ed Ar
<
100n — 100n
m Else, use Cheeger rounding to get a cut of sparsity
\f d
O(—) < N
Ve

m Note: Can assume that ®p <
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SDP Solutions

Can't beat NP-Hardness:

--7jn—r € S

EXPECTATIONS v/s REALITY



Life 101...

EXPECTATIONS REALITY




There is structure, though
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There is structure, though

m The Difference Matrix M has some structure

M = Ty — Ty Ti — Tk Ty — Tt

n2

m Let 03 > 09 > ... > o be the singular values
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Tool 1 : Approximately Low-Dimensional solutions [GS'13]

r-dim

General Reality Expander-like Reality

)\r r n
—>1000p = > 07 >099 ) o7

m Constant fraction of the squared mass of the vectors
{xi — xj}jj lies in a r-dimensional subspace

m Shift vectors x; to have centroid as origin, above works with x;

M 2
m Stable Rank: sr(M) & H(/\l/‘])F2 < r/0.99
01



Tool 1 : Approximately Low-Dimensional solutions [GS'13]




Tool 2: Stronger Cauchy-Schwarz using ¢35 inequalities
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Tool 2: Stronger Cauchy-Schwarz using ¢35 inequalities

If x; satisfy E%—inequalities, then Vi, j, k, I, we have:

[ (6 = x5, % = xi} ] < min {1xi = 1, oo = 1%}

Proof.

Left as easy exercise (see board). O

m Note: Simple Cauchy Schwarz would give:
| X0 = x5, 3= xi) | < llxi = Xl {1 = il
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Algorithm

Expander-like Reality

Compute the top left-singular vector u, with singular value o3
of the matrix M

v is the top right-singular vector

1-dimensional solutions are y; = ﬁ (xi, u)
Vi1
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Will show:
m Contraction:
2 ..
lyi =yl < lxi =l Vi,j
m (Average) Dilation:

0.99
By llyi —yill 2 == Ey [llxi — X1
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Analysis: Contraction

m Mv = oqu, or equivalently, o1u = E vir(Xk — x1)
kI

Pick any (i, /). We have: |y; — yj|1 =

<Xi = X, Z Vii (X — X/)>‘

kl

— || || Z|Vk/|| X.I-’Xk_XIH
1

Z | Vk/| ||Xl XJ ||2 [By Stronger CS for €2]

o1 1
g = )| =
vl HV||1

= vl ”1

=[x _Xj||2~
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Analysis: Dilation

Zly, yili = ZHVH — xj, u)]

= Z v ]alv,J] [Since u" M = o1vT]

:O'%

IM|%
sr(M)

1 2
S
0.99

Z [[xi — XJHQ

| \/
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SoS hierarchies and comparison

m Algorithm by Guruswami and Sinop based on SoS hierarchy at
level O(r) gives a better result: O(1) approximation

m GS algorithm runs in time 2°()poly(n), but needs a specific
solver

m Our algorithm does not need to know r a-priori

m Runs in time poly(n), conceptually simpler

m Compared to improved Cheeger analysis, there is scope for
improvement in dependence on r

m Gives a projective embedding, as against other known
embeddings of é% into ¢1 that are Frechet embeddings
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Recap: Embedding

SDP solutions: 83 - space {1~ space
o ©
Yj @)
] o
/\ ....... oyl o
§ o

R™ : /

OB.J — zze llzs—z,13 % OBJ((y) = S llyi—ysilh

i,jEV llzi—z;113 Yigev lvi—yjlh
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Goemans' Result

m Goemans' (unpublished) result:

Theorem (Goemans '00)

A set of points in R™ satisfying 65 triangle inequalities can be
embedded into {1 with distortion O(+/m)

m Implies a v/m approximation to SPARSEST CUT on instances
where solution has dimension m

m Does dimension reduction work in £3?

m No. Very strong lower bounds [Magen-Moharammi '00]. @
m Caveat: Only in worst-case distortion
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Comparison to our result

m Our rounding technique gives an embedding for E% points with
low stable rank: |M||% / ||M|?

m Stable rank is a well-known robust proxy for the rank
m ML, column subset selection..

m Should be able to improve our bound to O(V Stable Rank).

m Is dimension reduction possible in terms of stable rank?
m Only average distortion required

m Btw, our result also recovers Goemans' theorem using a
(arguably) cleaner proof
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Dimension Reduction

m Standard Johnson-Lindenstrauss dimension reduction
preserves (3 triangle inequalities approximately (in O(log n/e?)
dimensions)

2 2 2
120 = ZilI" + llz« = z[” = (1 = O(€)) |27 — 2]l

m Goemans' theorem is true with approximate f% inequalities,
but requires ARV analysis [Trevisan]

m Can we modify our algorithm to work with approximate
triangle inequalities?
m Or ‘fix’ Zg inequalities without blowing up approximate
dimension
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Summary and Future directions

m A simple SDP algorithm that gives non-trivial guarantees,
using 6% inequalities

m Unconditional guarantees?

m Dimension reduction techniques to get ARV-like guarantees?



Thank you.
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