A lower degree bound for the Real Nullstellensatz and pseudo-densities with minimal norm

Sebastian Gruler

doctoral student supervised by Markus Schweighofer

University of Konstanz, Germany

Workshop on Positive Semidefinite Rank

Institute for Matheical Sciences National University of Singapore

February 05, 2016

< □ > < (四 > < (回 >) < (回 >) < (回 >)) [三

Outline

A lower degree bound for the Real Nullstellensatz

- Real Nullstellensatz refutation
- Grigorievs lower bound
- Blekhermans Theorem

Pseudo-densities with minimal norm

- The result of L-R-S
- pseudo-densities with minimal norm
- A small theorem for pseudo-densities with minimal norm

(I) < (II) < (II) < (II) < (II) < (II) < (III) </p>

Given a set of polynomials $f_1, \ldots, f_s \in \mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \ldots, X_n]$. The system $f_1 = 0, \ldots, f_r = 0$ has a Real Nullstellensatz refutation (RNR), if there exist $g_1, \ldots, g_s, h_1, \ldots, h_t \in \mathbb{R}[\underline{X}]$ with

$$\sum_{i=1}^{s} f_i g_i = 1 + \sum_{j=1}^{t} h_j^2.$$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

Given a set of polynomials $f_1, \ldots, f_s \in \mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \ldots, X_n]$. The system $f_1 = 0, \ldots, f_r = 0$ has a Real Nullstellensatz refutation (RNR), if there exist $g_1, \ldots, g_s, h_1, \ldots, h_t \in \mathbb{R}[\underline{X}]$ with

$$\sum_{i=1}^{s} f_i g_i = 1 + \sum_{j=1}^{t} h_j^2$$

Such a RNR certify, that the system

$$f_1=0,\ldots,f_s=0$$

has no solution in \mathbb{R}^n .

イロト イポト イヨト イヨト 二日

Given a set of polynomials $f_1, \ldots, f_s \in \mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \ldots, X_n]$. The system $f_1 = 0, \ldots, f_r = 0$ has a Real Nullstellensatz refutation (RNR), if there exist $g_1, \ldots, g_s, h_1, \ldots, h_t \in \mathbb{R}[\underline{X}]$ with

$$\sum_{i=1}^{s} f_{i}g_{i} = 1 + \sum_{j=1}^{t} h_{j}^{2}$$

Such a RNR certify, that the system

$$f_1=0,\ldots,f_s=0$$

has no solution in \mathbb{R}^n . The degree of such a RNR is defined as

$$\max_{\substack{1 \le i \le s \\ 1 \le j \le t}} \{ \deg f_i g_i, 2 \cdot \deg h_j \}$$

Sebastian Gruler (University of Konstanz)

イロト 不得下 イヨト イヨト 二日

Consider the system

$$f = X_1 + \ldots + X_n - r = 0, \quad f_i = X_i^2 - X_i = 0, \ 1 \le i \le n$$
 (1)

with 0 < r < n and $r \notin \mathbb{N}$.

æ

< □ > < □ > < □ > < □ > < □ >

Consider the system

$$f = X_1 + \ldots + X_n - r = 0, \quad f_i = X_i^2 - X_i = 0, \ 1 \le i \le n$$
 (1)

with 0 < r < n and $r \notin \mathbb{N}$.

Theorem (Grigoriev, 2001)

Let $0 \le k$ be an integer with k < r < n-k. Then the degree of any RNR of (1) is at least $d := \min \{2k+4, n+1\}$

Sketch of the proof:

3

<ロト <問ト < 国ト < 国ト

Sketch of the proof: Assume there is a RNR with degree < d. Then there exist $g,g_1,\ldots,g_n, \in \mathbb{R}[\underline{X}], h \in \sum \mathbb{R}[\underline{X}]^2$ with $\deg g \le n-1, \deg h \le \min\{2k+2,n-1\}$ with

$$fg + \sum_{i=1}^{n} f_i g_i = 1 + h.$$
 (2)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Sketch of the proof: Assume there is a RNR with degree < d. Then there exist $g,g_1,\ldots,g_n, \in \mathbb{R}[\underline{X}], h \in \sum \mathbb{R}[\underline{X}]^2$ with $\deg g \le n-1, \deg h \le \min\{2k+2,n-1\}$ with

$$fg + \sum_{i=1}^{n} f_i g_i = 1 + h.$$
 (2)

As Grigoriev, we construct a linear functional $L : \mathbb{R}[\underline{X}] \to \mathbb{R}$, that applied to the left-hand side of (2) evalates to 0 and with L(1) = 1 and $L(h) \ge 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sketch of the proof: Assume there is a RNR with degree < d. Then there exist $g,g_1,\ldots,g_n, \in \mathbb{R}[\underline{X}], h \in \sum \mathbb{R}[\underline{X}]^2$ with $\deg g \le n-1, \deg h \le \min\{2k+2,n-1\}$ with

$$fg + \sum_{i=1}^{n} f_i g_i = 1 + h.$$
 (2)

As Grigoriev, we construct a linear functional $L : \mathbb{R}[\underline{X}] \to \mathbb{R}$, that applied to the left-hand side of (2) evalates to 0 and with L(1) = 1 and $L(h) \ge 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We first define L on the ring $\mathbb{R}[\mathbf{x}] := \mathbb{R}[\mathbf{x}_1, \dots, \mathbf{x}_n] := \mathbb{R}[\underline{X}] / (X_i^2 - X_i)$

- 2

<ロト <問ト < 国ト < 国ト

We first define *L* on the ring $\mathbb{R}[\mathbf{x}] := \mathbb{R}[\mathbf{x}_1, \dots, \mathbf{x}_n] := \mathbb{R}[\underline{X}] / (X_i^2 - X_i)$ and then extend it to $\mathbb{R}[\underline{X}]$ by letting $L(p) := L(\bar{p})$.

イロト 不得下 イヨト イヨト 二日

We first define *L* on the ring $\mathbb{R}[\mathbf{x}] := \mathbb{R}[\mathbf{x}_1, \dots, \mathbf{x}_n] := \mathbb{R}[\underline{X}] / (X_i^2 - X_i)$ and then extend it to $\mathbb{R}[\underline{X}]$ by letting $L(p) := L(\bar{p})$. For such a $p \in \mathbb{R}[\mathbf{x}]$, we define

$$\operatorname{Sym}(p) := rac{1}{n!} \sum_{\sigma \in S_n} p(\mathbf{x}_{\sigma})$$

Fact

For every symmetric multilinear polynomial $f \in \mathbb{R}[x]$ exists a unique univariate polynomial $\tilde{f} \in \mathbb{R}[T]$ with $f(x) = \tilde{f}(\sum x_i)$ and deg $f = \deg \tilde{f}$

< □ > < □ > < □ > < □ > < □ > < □ >

$$L(p) := \widetilde{\operatorname{Sym}(p)}(r)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$L(p) := \widetilde{\operatorname{Sym}(p)}(r)$$

L(1) = 1 is obvious and it is not hard to show that $L(f \cdot g) = 0$ for all $g \in \mathbb{R}[x]$ with deg $g \leq n-1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$L(p) := \widetilde{\operatorname{Sym}(p)}(r)$$

L(1) = 1 is obvious and it is not hard to show that $L(f \cdot g) = 0$ for all $g \in \mathbb{R}[x]$ with deg $g \le n-1$. So it remains to show that $L(h^2) \ge$ for all $h \in \mathbb{R}[x]$ with deg $h \le \min\{k+1, \lfloor \frac{n}{2} \rfloor\}$.

イロト 不得下 イヨト イヨト 二日

$$L(p) := \widetilde{\operatorname{Sym}(p)}(r)$$

L(1) = 1 is obvious and it is not hard to show that $L(f \cdot g) = 0$ for all $g \in \mathbb{R}[x]$ with deg $g \le n-1$. So it remains to show that $L(h^2) \ge$ for all $h \in \mathbb{R}[x]$ with deg $h \le \min\{k+1, \lfloor \frac{n}{2} \rfloor\}$. Note that Sym (h^2) is a symmetric sum of squares in $\mathbb{R}[x]$.

Theorem (Blekherman, 2015)

 $f \in \mathbb{R}[x]$ is a symmetric sum of squares of polynomials of degree at most diff $\tilde{f} \in \operatorname{sos}_d + T(n-T)\operatorname{sos}_{d-1} + T(T-1)(n-T)(n-1-T)\operatorname{sos}_{d-2} + \ldots + T \cdot \ldots (T-(d-1)) \cdot (n-T) \cdot \ldots \cdot (n-(d-1)-T)$, with $\operatorname{sos}_i = \sum \mathbb{R}[T]_i^2$.

$$L(p) := \widetilde{\operatorname{Sym}(p)}(r)$$

L(1) = 1 is obvious and it is not hard to show that $L(f \cdot g) = 0$ for all $g \in \mathbb{R}[x]$ with deg $g \le n-1$. So it remains to show that $L(h^2) \ge$ for all $h \in \mathbb{R}[x]$ with deg $h \le \min\{k+1, \lfloor \frac{n}{2} \rfloor\}$. Note that Sym (h^2) is a symmetric sum of squares in $\mathbb{R}[x]$.

Theorem (Blekherman, 2015)

 $f \in \mathbb{R}[x]$ is a symmetric sum of squares of polynomials of degree at most diff $\tilde{f} \in sos_d + T(n-T)sos_{d-1} + T(T-1)(n-T)(n-1-T)sos_{d-2} + ... + T \cdot ... (T-(d-1)) \cdot (n-T) \cdot ... \cdot (n-(d-1)-T)$, with $sos_i = \sum \mathbb{R}[T]_i^2$.

Together with k < r < n-k, this theorem applied to Sym (h^2) , easily shows $L(h^2) = Sym(h^2)(r) \ge 0$.

Definition

A degree-d pseudo density is a function $D: \{0,1\}^m \to \mathbb{R}$ such that $\mathbb{E}_x D(x) = 1$ and $\mathbb{E}_x D(x) p(x)^2 \ge 0$ for all $p \in \mathbb{R}[x_1, \dots, x_m]$ with $\deg(p) \le d$.

• • • • • • • • • • • • •

Definition

A degree-d pseudo density is a function $D: \{0,1\}^m \to \mathbb{R}$ such that $\mathbb{E}_x D(x) = 1$ and $\mathbb{E}_x D(x) p(x)^2 \ge 0$ for all $p \in \mathbb{R}[x_1, \dots, x_m]$ with $\deg(p) \le d$.

Theorem (LRS, 2015)

For any $m,d \ge 1$ the following holds. Let $f : \{0,1\}^m \to [0,1]$ be a nonngegative function with $d := \deg_{sos}(f) - 1$ and let $D : \{0,1\}^m \to \mathbb{R}$ a degree-d pseudo-density with $\mathbb{E}_x D(x)f(x) < -\varepsilon$ for an $\varepsilon \in (0,1]$, then for every $n \ge 2m$, we have

$$rk_{psd}(M_n^f) \ge \left(\frac{c\varepsilon n}{dm^2 \|D\|_{\infty} \log n}\right)^{d/2} \left(\frac{\varepsilon}{\|D\|_{\infty}}\right)^{3/2} \sqrt{\mathbb{E}_x f(x)}$$

ヘロト 人間ト 人間ト 人間ト

For an odd *n* define

$$f:=\mathbf{x}_1+\ldots+\mathbf{x}_n-\frac{n}{2}.$$

We are looking for a degree- $\lfloor \frac{n}{2} \rfloor$ pseudo density $D : \{0,1\}^n \to \mathbb{R}$ with $\mathbb{E}_x D(x) f(x)^2 = 0$ and small norm.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For an odd *n* define

$$f:=\mathbf{x}_1+\ldots+\mathbf{x}_n-\frac{n}{2}.$$

We are looking for a degree- $\lfloor \frac{n}{2} \rfloor$ pseudo density $D : \{0,1\}^n \to \mathbb{R}$ with $\mathbb{E}_x D(x) f(x)^2 = 0$ and small norm. So, D has to satisfy the following properties:

- $\mathbb{E}_{x}D(x)=1$
- **2** $\mathbb{E}_{x}D(x)p(x)^{2} \geq 0$ f.a. $p \in \mathbb{R}[x]$ with deg $(p) \leq \lfloor \frac{n}{2} \rfloor$

For an odd *n* define

$$f:=\mathbf{x}_1+\ldots+\mathbf{x}_n-\frac{n}{2}.$$

We are looking for a degree- $\lfloor \frac{n}{2} \rfloor$ pseudo density $D : \{0,1\}^n \to \mathbb{R}$ with $\mathbb{E}_x D(x) f(x)^2 = 0$ and small norm. So, D has to satisfy the following properties:

■ E_xD(x) = 1
 ■ E_xD(x)p(x)² ≥ 0 f.a. p ∈ ℝ[x] with deg(p) ≤ ⌊ⁿ/₂⌋
 ■ E_xD(x)f(x)² = 0

Every Function $D: \{0,1\}^n \to \mathbb{R}$, that satisfies this three properties, is called feasible.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

Every feasible *D* corresponds to a linear functional $L_D : \mathbb{R}[x] \to \mathbb{R}$, via $L_D(p) = \mathbb{E}_x D(x)p(x)$, with

•
$$L(1) = 1$$

L(*p*²) ≥ 0 f.a. *p* ∈ ℝ[x] with deg(*p*) ≤ ⌊ⁿ/₂⌋
 L(*f*²) = 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Every feasible *D* corresponds to a linear functional $L_D : \mathbb{R}[x] \to \mathbb{R}$, via $L_D(p) = \mathbb{E}_x D(x)p(x)$, with

A small trick shows, that such a L also satisfies

$$L(fq) = 0$$
 f.a. $q \in \mathbb{R}[\mathbf{x}]$ with $\deg(q) \leq \lfloor \frac{n}{2} \rfloor$.

イロト イポト イヨト イヨト 二日

$L((af+bq)^2) \ge 0$ f.a. $a,b \in \mathbb{R}$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

$\begin{array}{ll} L((af+bq)^2) \geq 0 \text{ f.a. } a,b \in \mathbb{R} \\ & (a \quad b) \begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \geq 0 \quad \text{f.a } a,b \in \mathbb{R} \end{array}$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

$$\begin{split} L((af+bq)^2) &\geq 0 \text{ f.a. } a, b \in \mathbb{R} \\ & (a \quad b) \begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \geq 0 \quad \text{f.a } a, b \in \mathbb{R} \\ & \begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \succeq 0 \end{split}$$

$$\begin{split} L((af+bq)^2) &\geq 0 \text{ f.a. } a, b \in \mathbb{R} \\ & (a \quad b) \begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \geq 0 \quad \text{f.a } a, b \in \mathbb{R} \\ & \begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \succeq 0 \\ & L(f^2)L(q^2) - L(fq)^2 \geq 0 \end{split}$$

February 05, 2016 11 / 17

$$\begin{split} L((af+bq)^2) &\geq 0 \text{ f.a. } a, b \in \mathbb{R} \\ & (a \quad b) \begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \geq 0 \quad \text{f.a } a, b \in \mathbb{R} \\ & \begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \succeq 0 \\ & -L(fq)^2 \geq 0 \end{split}$$

$$L((af + bq)^2) \ge 0 \text{ f.a. } a, b \in \mathbb{R}$$

$$(a \quad b) \begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \ge 0 \quad \text{f.a } a, b \in \mathbb{R}$$

$$\begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \succeq 0$$

$$L(fq) = 0$$

February 05, 2016 11 / 17

$$L((af + bq)^2) \ge 0 \text{ f.a. } a, b \in \mathbb{R}$$

$$(a \quad b) \begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \ge 0 \quad \text{f.a } a, b \in \mathbb{R}$$

$$\begin{pmatrix} L(f^2) & L(fq) \\ L(fq) & L(q^2) \end{pmatrix} \succeq 0$$

$$L(fq) = 0$$

Remark: Grigorievs linear functional even satisfies

$$L(fq) = 0$$
 f.a. $q \in \mathbb{R}[x]$ with deg $(q) \le n-1$.

Sebastian Gruler (University of Konstanz)

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

We call a pseudo density symmetric, if

$$D(x) = D(y)$$
 f.a. $x, y \in \{0,1\}^n$ with $|x| = |y|$.

3

<ロト <問ト < 国ト < 国ト

We call a pseudo density symmetric, if

$$D(x) = D(y)$$
 f.a. $x, y \in \{0,1\}^n$ with $|x| = |y|$.

Observations:

• For every feasible function, there exists a feasible symmetric function with smaller norm.

< □ > < 同 > < 回 > < 回 > < 回 >

We call a pseudo density symmetric, if

$$D(x) = D(y)$$
 f.a. $x, y \in \{0,1\}^n$ with $|x| = |y|$.

Observations:

For every feasible function, there exists a feasible symmetric function with smaller norm. So it is sufficient to look only for symmetric pseudo densities and we consider a pseudo density D as a function D: {0,...,n} → ℝ.

< 日 > < 同 > < 三 > < 三 >

We call a pseudo density symmetric, if

$$D(x) = D(y)$$
 f.a. $x, y \in \{0,1\}^n$ with $|x| = |y|$.

Observations:

- For every feasible function, there exists a feasible symmetric function with smaller norm. So it is sufficient to look only for symmetric pseudo densities and we consider a pseudo density D as a function D: {0,...,n} → ℝ.
- If D is a feasible function, than $\widetilde{D}: \{0, \ldots, n\} \to \mathbb{R}, \ \widetilde{D}(i) := D(n-i)$ is also feasible.

We call a pseudo density symmetric, if

$$D(x) = D(y)$$
 f.a. $x, y \in \{0,1\}^n$ with $|x| = |y|$.

Observations:

- For every feasible function, there exists a feasible symmetric function with smaller norm. So it is sufficient to look only for symmetric pseudo densities and we consider a pseudo density D as a function D: {0,...,n} → ℝ.
- If D is a feasible function, than $\widetilde{D}: \{0, \ldots, n\} \to \mathbb{R}, \ \widetilde{D}(i) := D(n-i)$ is also feasible.
- If D is a feasible function, than D̂ := ½ · (D + D̃) is also a feasible function with smaller norm and D̂(i) = D̂(n-i) f.a. 0 ≤ i ≤ n.

< ロ ト < 同 ト < 三 ト < 三 ト - 三 .

We are looking for linear functions $L: \mathbb{R}[\mathbf{x}]^{S_n} \to \mathbb{R}$ with

- **1** L(1) = 1
- 2 $L(p^2) \ge 0$ f.a. $p \in \mathbb{R}[x]$ with deg $(p) \le \lfloor \frac{n}{2} \rfloor$
- **3** $L(f^2) = 0$
- $L(p(x_1,...,x_n)) = L(p(1-x_1,...,1-x_n))$

We are looking for linear functions $L: \mathbb{R}[T]/(T \cdot (T-1) \cdot \ldots \cdot (T-n)) \to \mathbb{R}$ with

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

We are looking for linear functions $L: \mathbb{R}[T]/(T \cdot (T-1) \cdot \ldots \cdot (T-n)) \rightarrow \mathbb{R}$ with **1** L(1) = 1

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

We are looking for linear functions $L: \mathbb{R}[T] / (T \cdot (T-1) \cdot ... \cdot (T-n)) \to \mathbb{R} \text{ with}$ $1 \quad (1) = 1$ $L(q) \ge 0$ $f.a. \ q \in \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \operatorname{sos}_{\lfloor \frac{n}{2} \rfloor - i} \left(\prod_{j=0}^{i-1} (T-j)(n-j-T) \right)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We are looking for linear functions $L: \mathbb{R}[T] / (T \cdot (T-1) \cdot \dots \cdot (T-n)) \to \mathbb{R} \text{ with}$ L(1) = 1 $L(q) \ge 0$ $f.a. \ q \in \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \operatorname{sos}_{\lfloor \frac{n}{2} \rfloor - i} \left(\prod_{j=0}^{i-1} (T-j)(n-j-T) \right)$ $L((T-\frac{n}{2})^2) = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We are looking for linear functions $L: \mathbb{R}[T]/(T \cdot (T-1) \cdot \dots \cdot (T-n)) \to \mathbb{R} \text{ with}$ L(1) = 1 $L(q) \ge 0$ $f.a. \ q \in \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \operatorname{sos}_{\lfloor \frac{n}{2} \rfloor - i} \left(\prod_{j=0}^{i-1} (T-j)(n-j-T) \right)$ $L((T-\frac{n}{2})^2) = 0$ L(p(T)) = L(p(n-T))

Sebastian Gruler (University of Konstanz)

We are looking for linear functions $L: \mathbb{R}[T]/(T \cdot (T-1) \cdot \ldots \cdot (T-n)) \to \mathbb{R}$ with **1** L(1) = 1 $L(q) \geq 0$ f.a. $q \in \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \operatorname{sos}_{\lfloor \frac{n}{2} \rfloor - i} \left(\prod_{i=0}^{i-1} (T-j)(n-j-T) \right)$ **3** $L((T-\frac{n}{2})^2) = 0$ • L(p(T)) = L(p(n-T))

Proposition

There is a unique linear functional $L: \mathbb{R}[T]/(T \cdot (T-1) \cdot \ldots \cdot (T-n)) \to \mathbb{R}$ with the above properties. In detail, it is the linear functional $L(T^k) = \left(\frac{n}{2}\right)^k$.

Observation: From L(p(T)) = L(p(n-T)) we immediately get $L(T) = \frac{n}{2}$.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Observation: From L(p(T)) = L(p(n-T)) we immediately get $L(T) = \frac{n}{2}$. This, together with $L((T - \frac{n}{2})^2) = 0$, leads to $L(T^2) = (\frac{n}{2})^2$. From an earlier observation, we get $L((T - \frac{n}{2})^2 \cdot T^k) = 0$ for all $k \le \lfloor \frac{n}{2} \rfloor$,

Observation: From L(p(T)) = L(p(n - T))

From L(p(T)) = L(p(n-T)) we immediately get $L(T) = \frac{n}{2}$. This, together with $L((T - \frac{n}{2})^2) = 0$, leads to $L(T^2) = (\frac{n}{2})^2$. From an earlier observation, we get $L((T - \frac{n}{2})^2 \cdot T^k) = 0$ for all $k \le \lfloor \frac{n}{2} \rfloor$, what easily shows $L(T^k) = (\frac{n}{2})^k$ for all $k \le \lfloor \frac{n}{2} \rfloor + 1$.

Observation:

From L(p(T)) = L(p(n-T)) we immediately get $L(T) = \frac{n}{2}$. This, together with $L((T - \frac{n}{2})^2) = 0$, leads to $L(T^2) = (\frac{n}{2})^2$. From an earlier observation, we get $L((T - \frac{n}{2})^2 \cdot T^k) = 0$ for all $k \le \lfloor \frac{n}{2} \rfloor$, what easily shows $L(T^k) = (\frac{n}{2})^k$ for all $k \le \lfloor \frac{n}{2} \rfloor + 1$.

Proof: We show $L(T^k) = \left(\frac{n}{2}\right)^k$ for all $1 \le k \le n$ by induction on k.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

Observation:

From L(p(T)) = L(p(n-T)) we immediately get $L(T) = \frac{n}{2}$. This, together with $L((T - \frac{n}{2})^2) = 0$, leads to $L(T^2) = (\frac{n}{2})^2$. From an earlier observation, we get $L((T - \frac{n}{2})^2 \cdot T^k) = 0$ for all $k \le \lfloor \frac{n}{2} \rfloor$, what easily shows $L(T^k) = (\frac{n}{2})^k$ for all $k \le \lfloor \frac{n}{2} \rfloor + 1$.

Proof:

We show $L(T^k) = \left(\frac{n}{2}\right)^k$ for all $1 \le k \le n$ by induction on k. The base clause is already done.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

Observation:

From L(p(T)) = L(p(n-T)) we immediately get $L(T) = \frac{n}{2}$. This, together with $L((T - \frac{n}{2})^2) = 0$, leads to $L(T^2) = (\frac{n}{2})^2$. From an earlier observation, we get $L((T - \frac{n}{2})^2 \cdot T^k) = 0$ for all $k \le \lfloor \frac{n}{2} \rfloor$, what easily shows $L(T^k) = (\frac{n}{2})^k$ for all $k \le \lfloor \frac{n}{2} \rfloor + 1$.

Proof:

We show $L(T^k) = \left(\frac{n}{2}\right)^k$ for all $1 \le k \le n$ by induction on k. The base clause is already done. For the induction step we distinguish the cases k odd and k even.

$$L(T^{k}) = L((n-T)^{k})$$
$$= L\left(\sum_{i=0}^{k} {k \choose i} n^{k-i} (-T)^{i}\right)$$

$$L(T^{k}) = L((n-T)^{k})$$

= $L\left(\sum_{i=0}^{k-1} {k \choose i} n^{k-i} (-T)^{i}\right) - L(T^{k})$

$$L(T^{k}) = L((n-T)^{k})$$

= $L\left(\sum_{i=0}^{k-1} {k \choose i} n^{k-i} (-T)^{i}\right) - L(T^{k})$
 $2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} (-1)^{i} L(T^{i})$

Sebastian Gruler (University of Konstanz)

$$L(T^{k}) = L((n-T)^{k})$$

= $L\left(\sum_{i=0}^{k-1} {k \choose i} n^{k-i} (-T)^{i}\right) - L(T^{k})$
 $2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} (-1)^{i} \left(\frac{n}{2}\right)^{i}$

$$L(T^{k}) = L((n-T)^{k})$$
$$= L\left(\sum_{i=0}^{k-1} {k \choose i} n^{k-i} (-T)^{i}\right) - L(T^{k})$$
$$2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} \left(-\frac{n}{2}\right)^{i}$$

Sebastian Gruler (University of Konstanz)

Case 1: k odd

$$L(T^{k}) = L((n - T)^{k})$$

= $L\left(\sum_{i=0}^{k-1} {k \choose i} n^{k-i} (-T)^{i}\right) - L(T^{k})$
 $2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} \left(-\frac{n}{2}\right)^{i}$
 $2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} \left(-\frac{n}{2}\right)^{i} + \left(-\frac{n}{2}\right)^{k} - \left(-\frac{n}{2}\right)^{k}$

Sebastian Gruler (University of Konstanz)

February 05, 2016 15 / 17

$$L(T^{k}) = L((n - T)^{k})$$

= $L\left(\sum_{i=0}^{k-1} {k \choose i} n^{k-i} (-T)^{i}\right) - L(T^{k})$
 $2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} \left(-\frac{n}{2}\right)^{i}$
 $2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} \left(-\frac{n}{2}\right)^{i} + \left(-\frac{n}{2}\right)^{k} - \left(-\frac{n}{2}\right)^{k}$
 $2L(T^{k}) = \left(n - \frac{n}{2}\right)^{k} + \left(\frac{n}{2}\right)^{k}$

Sebastian Gruler (University of Konstanz)

February 05, 2016 15 / 17

February 05, 2016

15 / 17

Case 1: k odd

$$L(T^{k}) = L((n - T)^{k})$$

= $L\left(\sum_{i=0}^{k-1} {k \choose i} n^{k-i} (-T)^{i}\right) - L(T^{k})$
 $2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} \left(-\frac{n}{2}\right)^{i}$
 $2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} \left(-\frac{n}{2}\right)^{i} + \left(-\frac{n}{2}\right)^{k} - \left(-\frac{n}{2}\right)^{k}$
 $2L(T^{k}) = 2\left(\frac{n}{2}\right)^{k}$

Sebastian Gruler (University of Konstanz)

$$L(T^{k}) = L((n - T)^{k})$$

= $L\left(\sum_{i=0}^{k-1} {k \choose i} n^{k-i} (-T)^{i}\right) - L(T^{k})$
 $2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} \left(-\frac{n}{2}\right)^{i}$
 $2L(T^{k}) = \sum_{i=0}^{k-1} {k \choose i} n^{k-i} \left(-\frac{n}{2}\right)^{i} + \left(-\frac{n}{2}\right)^{k} - \left(-\frac{n}{2}\right)^{k}$
 $2L(T^{k}) = 2\left(\frac{n}{2}\right)^{k}$
 $L(T^{k}) = \left(\frac{n}{2}\right)^{k}$

Sebastian Gruler (University of Konstanz)

Case 2: k even $(k \ge 4)$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国

Case 2:
$$k$$
 even $(k \ge 4)$
 $L\left(\left(aT^{k/2-1}+bT^{k/2}\right)^2\right) \ge 0$ f.a. $a,b \in \mathbb{R}$

Case 2: k even
$$(k \ge 4)$$

 $L\left(\left(aT^{k/2-1}+bT^{k/2}\right)^2\right) \ge 0$ f.a. $a,b \in \mathbb{R}$
 $\begin{pmatrix}a & b\end{pmatrix}\begin{pmatrix}L(T^{k-2}) & L(T^{k-1})\\L(T^{k-1}) & L(T^k)\end{pmatrix}\begin{pmatrix}a\\b\end{pmatrix} \ge 0$ f.a $a,b \in \mathbb{R}$
 $\begin{pmatrix}L(T^{k-2}) & L(T^{k-1})\\L(T^{k-1}) & L(T^k)\end{pmatrix} \ge 0$

Case 2:
$$k$$
 even $(k \ge 4)$
 $L\left(\left(aT^{k/2-1}+bT^{k/2}\right)^2\right) \ge 0$ f.a. $a,b \in \mathbb{R}$
 $\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} L(T^{k-2}) & L(T^{k-1}) \\ L(T^{k-1}) & L(T^k) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \ge 0$ f.a $a,b \in \mathbb{R}$
 $\begin{pmatrix} \left(\frac{n}{2}\right)^{k-2} & \left(\frac{n}{2}\right)^{k-1} \\ \left(\frac{n}{2}\right)^{k-1} & L(T^k) \end{pmatrix} \ge 0$

▲口▶▲圖▶▲圖▶▲圖▶ ■ のQ@

Case 2: k even
$$(k \ge 4)$$

 $L\left(\left(aT^{k/2-1}+bT^{k/2}\right)^2\right) \ge 0$ f.a. $a,b \in \mathbb{R}$
 $(a \ b) \begin{pmatrix} L(T^{k-2}) & L(T^{k-1}) \\ L(T^{k-1}) & L(T^k) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \ge 0$ f.a $a,b \in \mathbb{R}$
 $\begin{pmatrix} \left(\frac{n}{2}\right)^{k-2} & \left(\frac{n}{2}\right)^{k-1} \\ \left(\frac{n}{2}\right)^{k-1} & L(T^k) \end{pmatrix} \ge 0$
 $\begin{pmatrix} \left(\frac{n}{2}\right)^{k-2} L(T^k) - \left(\frac{n}{2}\right)^{2k-2} \ge 0$

▲口▶▲圖▶▲圖▶▲圖▶ ■ のQ@

Case 2: k even
$$(k \ge 4)$$

 $L\left(\left(aT^{k/2-1}+bT^{k/2}\right)^2\right) \ge 0$ f.a. $a,b \in \mathbb{R}$
 $(a \ b) \begin{pmatrix} L(T^{k-2}) & L(T^{k-1}) \\ L(T^{k-1}) & L(T^k) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \ge 0$ f.a $a,b \in \mathbb{R}$
 $\begin{pmatrix} \left(\frac{n}{2}\right)^{k-2} & \left(\frac{n}{2}\right)^{k-1} \\ \left(\frac{n}{2}\right)^{k-1} & L(T^k) \end{pmatrix} \ge 0$
 $\begin{pmatrix} \left(\frac{n}{2}\right)^{k-2} L(T^k) - \left(\frac{n}{2}\right)^{2k-2} \ge 0$
 $L(T^k) \ge \left(\frac{n}{2}\right)^k$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○

$$L\left(T\cdot(n-T)\cdot\left(aT^{k/2-2}+bT^{k/2-1}
ight)^2
ight)\geq 0$$
 f.a. $a,b\in\mathbb{R}$

・ロト・西ト・モン・ビー シック

$$L\left(T\cdot(n-T)\cdot\left(aT^{k/2-2}+bT^{k/2-1}\right)^2\right)\geq 0 \quad \text{f.a. } a,b\in\mathbb{R}$$

$$(a \quad b) \begin{pmatrix} L((nT - T^2)(T^{k-4})) & L((nT - T^2)(T^{k-3})) \\ L((nT - T^2)(T^{k-3})) & L((nT - T^2)(T^{k-2})) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \ge 0$$

$$\begin{pmatrix} nL(T^{k-3}) - L(T^{k-2}) & nL(T^{k-2} - L(T^{k-1})) \\ nL(T^{k-2}) - L(T^{k-1}) & nL(T^{k-1}) - L(T^{k}) \end{pmatrix} \succeq 0$$

▲口▶▲圖▶▲圖▶▲圖▶ ■ のQ@

$$L\left(T\cdot(n-T)\cdot\left(aT^{k/2-2}+bT^{k/2-1}\right)^2
ight)\geq 0$$
 f.a. $a,b\in\mathbb{R}$

$$\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} L((nT - T^2)(T^{k-4})) & L((nT - T^2)(T^{k-3})) \\ L((nT - T^2)(T^{k-3})) & L((nT - T^2)(T^{k-2})) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \ge 0$$

$$\binom{n \cdot \left(\frac{n}{2}\right)^{k-3} - \left(\frac{n}{2}\right)^{k-2}}{n \cdot \left(\frac{n}{2}\right)^{k-2} - \left(\frac{n}{2}\right)^{k-1}} \quad n \cdot \left(\frac{n}{2}\right)^{k-1} - L(T^k) \succeq 0$$

▲口▶▲圖▶▲圖▶▲圖▶ ■ のQ@

$$L\left(T \cdot (n-T) \cdot \left(aT^{k/2-2} + bT^{k/2-1}\right)^{2}\right) \ge 0 \quad \text{f.a. } a, b \in \mathbb{R}$$

$$(a \quad b) \begin{pmatrix} L((nT-T^{2})(T^{k-4})) & L((nT-T^{2})(T^{k-3})) \\ L((nT-T^{2})(T^{k-3})) & L((nT-T^{2})(T^{k-2})) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \ge 0$$

$$\begin{pmatrix} \left(\frac{n}{2}\right)^{k-2} & \left(\frac{n}{2}\right)^{k-1} \\ \left(\frac{n}{2}\right)^{k-1} & n \cdot \left(\frac{n}{2}\right)^{k-1} - L(T^{k}) \end{pmatrix} \ge 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$$L\left(T \cdot (n-T) \cdot \left(aT^{k/2-2} + bT^{k/2-1}\right)^{2}\right) \ge 0 \quad \text{f.a. } a, b \in \mathbb{R}$$

$$(a \quad b) \begin{pmatrix} L((nT-T^{2})(T^{k-4})) & L((nT-T^{2})(T^{k-3})) \\ L((nT-T^{2})(T^{k-3})) & L((nT-T^{2})(T^{k-2})) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \ge 0$$

$$\begin{pmatrix} \left(\frac{n}{2}\right)^{k-2} & \left(\frac{n}{2}\right)^{k-1} \\ \left(\frac{n}{2}\right)^{k-1} & n \cdot \left(\frac{n}{2}\right)^{k-1} - L(T^{k}) \end{pmatrix} \succeq 0$$

$$n\left(\frac{n}{2}\right)^{2k-3} - \left(\frac{n}{2}\right)^{k-2} L(T^{k}) - \left(\frac{n}{2}\right)^{2k-2} \ge 0$$

February 05, 2016 17 / 17

▲口▶▲圖▶▲圖▶▲圖▶ ■ のQ@

$$L\left(T \cdot (n-T) \cdot \left(aT^{k/2-2} + bT^{k/2-1}\right)^{2}\right) \ge 0 \quad \text{f.a. } a, b \in \mathbb{R}$$

$$(a \quad b) \left(\begin{array}{cc} L((nT-T^{2})(T^{k-4})) & L((nT-T^{2})(T^{k-3})) \\ L((nT-T^{2})(T^{k-3})) & L((nT-T^{2})(T^{k-2})) \end{array}\right) \begin{pmatrix} a \\ b \end{pmatrix} \ge 0$$

$$\left(\begin{pmatrix} \left(\frac{n}{2}\right)^{k-2} & \left(\frac{n}{2}\right)^{k-1} \\ \left(\frac{n}{2}\right)^{k-1} & n \cdot \left(\frac{n}{2}\right)^{k-1} - L(T^{k}) \end{pmatrix} \ge 0$$

$$n \left(\frac{n}{2}\right)^{2k-3} - \left(\frac{n}{2}\right)^{k-2} L(T^{k}) - \left(\frac{n}{2}\right)^{2k-2} \ge 0$$

$$L(T^{k}) \le \left(\frac{n}{2}\right)^{k}$$

▲口▶▲圖▶▲圖▶▲圖▶ ■ のQ@