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Correspondences between machine learning and
communication complexity quantities

Communication Machine
complexity learning

1. Unbounded error comm. complexity vs dimension complexity
[Paturi and Simon '86, Ben-David, Eiron, and Simon '03]

2. One-way complexity under product distributions vs VC dimension
[Kremer, Nissan, and Ron '94]

3. Discrepancy vs margin complexity

[Linial and Shraibman '08]
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Deterministic, randomized, and unbounded error
communication complexity

f — a boolean function
D(f) - deterministic communication complexity

Re(f) - randomized (private coin) communication complexity

Roo(f) =min{R.(f) e < %}



Rank, approximate rank, and sign rank

M — a boolean matrix
rank(M)
rankc(M) = min{rank(R) : |R;j — M; j| < €}

1
signrank(M) = min{rank.(M) : € < 5}



Rank, approximate rank, and sign rank

M — a boolean matrix

rank(M)

rankc(M) = min{rank(R) : |R;j — M; j| < €}
signrank(M) = min{rank.(M) : € < %}

Equivalently, for a sign matrix S, the sign rank is defined as
min{rank(R) : sign(R) = S}



The logarithms of ranks lower bound the communication
complexities

f — boolean function
My — matrix representing f

log rank(My) < D(f) [Mehlhorn and Schmidt '82]
log rank. (M) < R(f) [Krause '96]

log signrank(M) < Roo(f) [Paturi and Simon '86]



Are the log-ranks lower bounds tight?

f — boolean function
My — matrix representing f

Log rank conjecture: D(f) < poly log rank(Mg)?
[Lovész and Saks '88]

Log approx. rank conjecture: R.(f) < poly logrank.(M)?
[Lee and Shraibman '09]

Log sign rank theorem: Ro.(f) < logsignrank(M) + 2!!!
[Paturi and Simon '86]



Recapitulation

1. Sign rank captures unbounded error communication complexity
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Sign rank in machine learning



The support vector machine algorithm

Input: two linearly separable sets R, B C RY

Output: hyperplane of maximum margin which separates R from B



Support vector machines: illustration



Support vector machines: illustration



Support vector machines: illustration




Extending the applicability of SVM

X —aset
C C {£1}* - a concept class

SVM can be applied when X = RY and C contains half-spaces

Q: How to use SVM when C is arbitrary?
A: Reduce C to to half spaces:



Extending the applicability of SVM

X —aset
C C {£1}* - a concept class

SVM can be applied when X = RY and C contains half-spaces

Q: How to use SVM when C is arbitrary?
A: Reduce C to to half spaces:

r: X — RY separates C if

Ve € C, r(c Y(+1)) is linearly separable from r(c™(—1)).

e.g. kernel functions
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Dimension complexity

C C {£1}* - a concept class

r — a C-separating map to R?
the dimension of r is d

Definition: The dimension complexity of C is the minimum
dimension of a separating map for it.



Low dimension complexity implies succesful learning

C C {£1}* - a concept class with dimension complexity d
r —a C-separating map to R?

L — a learning algorithm that applies r and then uses SVM
(e.g. kernel machines)

The sample complexity of L is O(d)




Margin

C C {#+1}* - a concept class

r —a C-separating map to B9 C R
the margin of r is the minimum distance between conv(c™}(+1))
and conv(c™(1)) overall ce C

Definition: The margin complexity of C is the maximum margin
of a separating map for it.



Large margin complexity implies succesfull learning

C C {£1}* — a concept class with margin complexity ~
r —a C-separating map with margin ~

L — a learning algorithm that applies r and then uses SVM
(e.g. kernel machines)

1
The sample complexity of L is O < 2)
"}/




Large margin complexity implies low dimension complexity

If there exists a C-separating map with large margin then there
exists a C-separating map with low dimension

- apply a random projection



Large margin complexity implies low dimension complexity

If there exists a C-separating map with large margin then there
exists a C-separating map with low dimension

- apply a random projection

“Corollary”: If C is efficiently learned by a kernel machine then its
dimension complexity is low.



Sign rank and dimension complexity are equivalent

C C {#+1}* - a concept class with dimension complexity d

M — a matrix whose rows are the concepts of C

d <signrank(M) < d +1




Recapitulation

1. Sign rank captures unbounded error communication complexity

2. Good performance of kernel machines on C implies it has a low
sign rank
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“In theory”: most learnable classes have large sign rank

Theorem [BES '02, AMY '15]
For any fixed d > 2, most concept classes C C {jzl}N of
VC dimension d have sign rank N?(1),

Thus, a random concept class with a constant sample complexity
can not be learned by first embedding the data to a point set with
(i) a constant dimension, or

(ii) a constant margin.



“In practice”: many learning tasks are performed by kernel
machines

Many practical learning problems are efficiently learned by
kernel machines.

listed among the top classifiers to try first [e.g. by stackexchange.com]

handwriting recognition, image classification, medical science,
bioinformatics, and more...



Recapitulation

1. Sign rank captures unbounded error communication complexity

2. Good performance of kernel machines on C implies it has a low

sign rank

3. "A paradox”:
» In practice kernel machines perform many learning tasks

> Most learnable classes have a large sign rank
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Resolution 1: A sublinear upper bound on the sign rank of
learnable classes

Theorem[Alon, M, Yehudayoff]

For any fixed d, every class C C {#1}" with VC dimension d
has sign rank o(N).

- (almost) matches the lower bound



Resolution 1: A sublinear upper bound on the sign rank of
learnable classes

Theorem[Alon, M, Yehudayoff]

For any fixed d, every class C C {#1}" with VC dimension d
has sign rank o(N).

- (almost) matches the lower bound

How can this be used to bridge the gap?



Resolution 1: A sublinear upper bound on the sign rank of
learnable classes

Theorem[Alon, M, Yehudayoff]
For any fixed d, every class C C {:l:l}N with VC dimension d
has sign rank o(N).




Resolution 1: A sublinear upper bound on the sign rank of
learnable classes

Theorem[Alon, M, Yehudayoff]
For any fixed d, every class C C {:i:l}N with VC dimension d
has sign rank o(N).

Definition A class C C {+1}* is weakly separable if for every
{x1,- s xm} © X, Clix,...xm} has sign rank at most k = o(m).




Resolution 1: A sublinear upper bound on the sign rank of
learnable classes

Theorem[Alon, M, Yehudayoff]
For any fixed d, every class C C {:i:l}N with VC dimension d
has sign rank o(N).

Definition A class C C {+1}* is weakly separable if for every
{x1,- s xm} © X, Clix,...xm} has sign rank at most k = o(m).

Corollary
Every learnable class is weakly separable




Weak separability is useful for learning

Definition. A class C C {£1}* is weakly separable if for every
{x1,- s xm} € X, Clx,...xn} has sign rank at most k = o(m).

A recipe for learning weakly separable classes:
(Xl’)/1)a sy (vaym) - ianIt Sample
1. Embed {x1,...,xm} in RX.

2. Output ¢ € C that agrees withimum margin separating
hyperplane.



Weak separability is useful for learning

Definition. A class C C {£1}* is weakly separable if for every
{x1,- s xm} € X, Clx,...xn} has sign rank at most k = o(m).

A recipe for learning weakly separable classes:
(Xl’)/1)a sy (vaym) - ianIt Sample
1. Embed {x1,...,xm} in RX.

2. Output ¢ € C that agrees withimum margin separating
hyperplane.

A generalization bound. As m grows, The error decays like

1
elog =, where e = k/m = o(1).
€




Recapitulation

1. Sign rank captures unbounded error communication complexity

2. Good performance of kernel machines on C implies it has a low
sign rank

3. “A paradox”:
> In practice kernel machines perform many learning tasks

» Most learnable classes have a large sign rank

4. "Resolution” 1: Every learnable class has a sublinear sign rank
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Resolution 2: practical learning problems have structure

“A paradox’:
> In practice, kernel machines perform many learning tasks

» Most learnable classes have a large sign rank

Perhaps concept classes that appear in practical applications
typically have a low sign rank.



Resolution 2: practical learning problems have structure

“A paradox’:
> In practice, kernel machines perform many learning tasks

» Most learnable classes have a large sign rank

Perhaps concept classes that appear in practical applications
typically have a low sign rank.

Goal. Study the structure of concept classes/matrices with
low sign rank.
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An open problem



How do standard operations affect the sign rank?

A basic type of “structural’ questions concerns variability under
standard operations.



How do standard operations affect the sign rank?

A basic type of “structural’ questions concerns variability under
standard operations.

(1, G, — two concept classes of sign rank at most r.

Consider a class obtained by some natural operation on (i, Co:
1. {~c1:c1€ G}
2 {a®:aeG,ae G}
3 {ara:acCG,ae G}

Is the sign rank of these classes bounded in terms of r?




How do standard operations affect the sign rank?

A basic type of “structural’ questions concerns variability under
standard operations.

(1, G, — two concept classes of sign rank at most r.

Consider a class obtained by some natural operation on (i, Co:
1. {~c1:c1€ G}
2 {a®:aeG,ae G}
3 {ara:acCG,ae G}

Is the sign rank of these classes bounded in terms of r?

1. the sign rank is at most r

2. the sign rank is at most r? [Derzinsky and Warmuth]
3. 777



A question

(1, G — two concept classes of sign rank at most r.

Question.
Is the sign rank of {ci A2 : 1 € Ci,c € G} bounded in
terms of r?




Interpretation in machine learning

(i, G5 — two concept classes of sign rank at most r.

Question.
Is the sign rank of {c; A :c1 € Ci,cx € (o} bounded in
terms of r?

Given efficient kernel machines for C; and (5, can we construct an
efficient kernel machine for {ci A : c1 € Ci, 0 € G}?



Interpretation in communication complexity

f1, f> — two function with unbounded complexity at most c.

define fi A f> as follows:

Alice's input is x1, x2

Bob's input is y1, y»

Their goal is to compute fi(x1,y1) A fa(x2, y2)

Question.
Is the unbounded complexity of f; A f, bounded in terms of r?




Interpretation in communication complexity

f1, f> — two function with unbounded complexity at most c.

define fi A f> as follows:

Alice's input is x1, x2

Bob's input is y1, y»

Their goal is to compute fi(x1,y1) A fa(x2, y2)

Question.
Is the unbounded complexity of f; A f, bounded in terms of r?

Are repetitions necessary for computing two decision problems in a
randomized fashion?
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Recapitulation
1. Sign rank captures unbounded error communication complexity

2. Good performance of kernel machines on C implies it has a low
sign rank

3. “A paradox”:
» In practice kernel machines perform many learning tasks
» Most learnable classes have a large sign rank

4. “Resolution” 1: Every learnable class has a sublinear sign rank
5. “Resolution” 2: Practical classes have low sign rank

6. Goal: Study the structure of classes/matrices with low sign rank
» How do the sign-rank changes under standard operations?
> Interpretation in machine learning
> Interpretation in communication complexity



	Sign rank in communication complexity
	Sign rank in machine learning
	A ``paradox''
	Resolution 1
	Resolution 2

	An open problem
	Summary

