Gadi Moran (16.05.38 - 01.01.16)

Sign rank, machine learning, and communication complexity

Shay Moran

Technion

January 18, 2016

Partially based on joint work with Noga Alon and Amir Yehudayoff.

Correspondences between machine learning and communication complexity quantities

- 1. Unbounded error comm. complexity vs dimension complexity [Paturi and Simon '86, Ben-David, Eiron, and Simon '03]
- 2. One-way complexity under product distributions vs VC dimension [Kremer, Nissan, and Ron '94]
- 3. Discrepancy vs margin complexity [Linial and Shraibman '08]

Plan

Sign rank in communication complexity

Sign rank in machine learning

A "paradox" Resolution 1 Resolution 2

An open problem

Summary

Deterministic, randomized, and unbounded error communication complexity

f – a boolean function

 $\mathcal{D}(f)$ - deterministic communication complexity

 $\mathcal{R}_{\epsilon}(f)$ - randomized (private coin) communication complexity

$$\mathcal{R}_{\infty}(f) = \min\{\mathcal{R}_{\epsilon}(f) : \epsilon < \frac{1}{2}\}$$

Rank, approximate rank, and sign rank

```
M – a boolean matrix  {\sf rank}(M)   {\sf rank}_{\epsilon}(M) = \min \{ {\sf rank}(R) : |R_{i,j} - M_{i,j}| \leq \epsilon \}   {\sf signrank}(M) = \min \{ {\sf rank}_{\epsilon}(M) : \epsilon < \frac{1}{2} \}
```

Rank, approximate rank, and sign rank

M – a boolean matrix ${\sf rank}(M)$ ${\sf rank}_{\epsilon}(M) = {\sf min}\{{\sf rank}(R): |R_{i,j} - M_{i,j}| \leq \epsilon\}$ ${\sf signrank}(M) = {\sf min}\{{\sf rank}_{\epsilon}(M): \epsilon < \frac{1}{2}\}$

Equivalently, for a sign matrix S, the sign rank is defined as $\min\{\operatorname{rank}(R) : \operatorname{sign}(R) = S\}$

The logarithms of ranks lower bound the communication complexities

```
f — boolean function M_f — matrix representing f log rank(M_f) \leq \mathcal{D}(f) [Mehlhorn and Schmidt '82] log rank_{\epsilon}(M) \leq \mathcal{R}_{\epsilon}(f) [Krause '96] log signrank(M) \leq \mathcal{R}_{\infty}(f) [Paturi and Simon '86]
```

Are the log-ranks lower bounds tight?

```
f - boolean function
M_f – matrix representing f
Log rank conjecture: \mathcal{D}(f) \leq \text{poly log rank}(M_f)?
[Lovász and Saks '88]
Log approx. rank conjecture: \mathcal{R}_{\epsilon}(f) \leq \text{poly} \log \text{rank}_{\epsilon}(M)?
[Lee and Shraibman '09]
Log sign rank theorem: \mathcal{R}_{\infty}(f) \leq \log \operatorname{signrank}(M) + 2!!!
[Paturi and Simon '86]
```

Recapitulation

1. Sign rank captures unbounded error communication complexity

Plan

Sign rank in communication complexity

Sign rank in machine learning

A "paradox" Resolution 1 Resolution 2

An open problem

Summary

The support vector machine algorithm

Input: two linearly separable sets $R, B \subseteq \mathbb{R}^d$

Output: hyperplane of maximum margin which separates R from B

Support vector machines: illustration

Support vector machines: illustration

Support vector machines: illustration

Extending the applicability of SVM

$$X$$
 – a set $C \subseteq \{\pm 1\}^X$ – a concept class

SVM can be applied when $X = \mathbb{R}^d$ and C contains half-spaces

Q: How to use SVM when *C* is arbitrary?

A: Reduce *C* to to half spaces:

Extending the applicability of SVM

$$X$$
 – a set $C \subseteq \{\pm 1\}^X$ – a concept class

SVM can be applied when $X = \mathbb{R}^d$ and C contains half-spaces

Q: How to use SVM when *C* is arbitrary?

A: Reduce *C* to to half spaces:

$$r: X \to \mathbb{R}^d$$
 separates C if

$$\forall c \in C$$
, $r(c^{-1}(+1))$ is linearly separable from $r(c^{-1}(-1))$.

e.g. kernel functions

$$A B C D E$$
 $c_1 + - - + c_2 + + + - c_3 + + - -$

$$r(A)$$
 $r(B)$ $r(C)$

$$A \ B \ C \ D \ E$$
 $c_1 \ + \ - \ - \ + \ c_2 \ + \ + \ + \ - \ c_3 \ + \ + \ - \ c_3 \ + \ + \ - \ c_4 \ / r(B)$
 $c_1 \ / r(E)$

$$A \ B \ C \ D \ E$$
 $c_1 + - - + c_2 + + + - c_3 + + - - r(A) \ r(B) \ r(C)$
 $r(C)$

Dimension complexity

$$C \subseteq \{\pm 1\}^X$$
 – a concept class

r – a C-separating map to \mathbb{R}^d the dimension of r is d

Definition: The dimension complexity of C is the minimum dimension of a separating map for it.

Low dimension complexity implies succesful learning

 $C \subseteq \{\pm 1\}^X$ – a concept class with dimension complexity d

r – a C-separating map to \mathbb{R}^d

L – a learning algorithm that applies r and then uses SVM (e.g. kernel machines)

The sample complexity of L is O(d)

Margin

$$C \subseteq \{\pm 1\}^X$$
 – a concept class

r – a C-separating map to $\mathcal{B}^d \subseteq \mathbb{R}^d$ the margin of r is the minimum distance between $\operatorname{conv}(c^{-1}(+1))$ and $\operatorname{conv}(c^{-1}(1))$ over all $c \in C$

Definition: The margin complexity of C is the maximum margin of a separating map for it.

Large margin complexity implies succesfull learning

$$\mathcal{C} \subseteq \{\pm 1\}^X$$
 – a concept class with margin complexity γ

r – a C-separating map with margin γ

L – a learning algorithm that applies r and then uses SVM (e.g. kernel machines)

The sample complexity of L is $O\left(\frac{1}{\gamma^2}\right)$

Large margin complexity implies low dimension complexity

If there exists a *C*-separating map with large margin then there exists a *C*-separating map with low dimension

- apply a random projection

Large margin complexity implies low dimension complexity

If there exists a *C*-separating map with large margin then there exists a *C*-separating map with low dimension

- apply a random projection

"Corollary": If *C* is efficiently learned by a kernel machine then its dimension complexity is low.

Sign rank and dimension complexity are equivalent

 $C \subseteq \{\pm 1\}^X$ – a concept class with dimension complexity d

M – a matrix whose rows are the concepts of C

$$d \leq \operatorname{signrank}(M) \leq d + 1$$

Recapitulation

- 1. Sign rank captures unbounded error communication complexity
- 2. Good performance of kernel machines on \mathcal{C} implies it has a low sign rank

Plan

Sign rank in communication complexity

Sign rank in machine learning

A "paradox"

Resolution 1

Resolution 2

An open problem

Summary

"In theory": most learnable classes have large sign rank

Theorem [BES '02, AMY '15] For any fixed $d \ge 2$, most concept classes $C \subseteq \{\pm 1\}^N$ of VC dimension d have sign rank $N^{\Omega(1)}$.

Thus, a random concept class with a constant sample complexity can not be learned by first embedding the data to a point set with

- (i) a constant dimension, or
- (ii) a constant margin.

"In practice": many learning tasks are performed by kernel machines

Many practical learning problems are efficiently learned by kernel machines.

listed among the top classifiers to try first [e.g. by stackexchange.com]

handwriting recognition, image classification, medical science, bioinformatics, and more...

Recapitulation

- 1. Sign rank captures unbounded error communication complexity
- 2. Good performance of kernel machines on ${\it C}$ implies it has a low sign rank
- 3. "A paradox":
 - ▶ In practice kernel machines perform many learning tasks
 - Most learnable classes have a large sign rank

Plan

Sign rank in communication complexity

Sign rank in machine learning

A "paradox" Resolution 1 Resolution 2

An open problem

Summary

Resolution 1: A sublinear upper bound on the sign rank of learnable classes

Theorem[Alon,M,Yehudayoff] For any fixed d, every class $C\subseteq\{\pm 1\}^N$ with VC dimension d has sign rank o(N).

- (almost) matches the lower bound

Resolution 1: A sublinear upper bound on the sign rank of learnable classes

Theorem[Alon,M,Yehudayoff] For any fixed d, every class $C\subseteq \{\pm 1\}^N$ with VC dimension d has sign rank o(N).

- (almost) matches the lower bound

How can this be used to bridge the gap?

Resolution 1: A sublinear upper bound on the sign rank of learnable classes

Theorem[Alon,M,Yehudayoff] For any fixed d, every class $C \subseteq \{\pm 1\}^N$ with VC dimension d has sign rank o(N).

Resolution 1: A sublinear upper bound on the sign rank of learnable classes

Theorem[Alon,M,Yehudayoff] For any fixed d, every class $C \subseteq \{\pm 1\}^N$ with VC dimension d has sign rank o(N).

Definition A class $C \subseteq \{\pm 1\}^X$ is weakly separable if for every $\{x_1, \ldots, x_m\} \subseteq X$, $C|_{\{x_1, \ldots, x_m\}}$ has sign rank at most k = o(m).

Resolution 1: A sublinear upper bound on the sign rank of learnable classes

Theorem[Alon, M, Yehudayoff]

For any fixed d, every class $C \subseteq \{\pm 1\}^N$ with VC dimension d has sign rank o(N).

Definition A class $C \subseteq \{\pm 1\}^X$ is weakly separable if for every $\{x_1, \ldots, x_m\} \subseteq X$, $C|_{\{x_1, \ldots, x_m\}}$ has sign rank at most k = o(m).

Corollary

Every learnable class is weakly separable

Weak separability is useful for learning

Definition. A class $C \subseteq \{\pm 1\}^X$ is weakly separable if for every $\{x_1, \ldots, x_m\} \subseteq X$, $C|_{\{x_1, \ldots, x_m\}}$ has sign rank at most k = o(m).

A recipe for learning weakly separable classes:

$$(x_1, y_1), \ldots, (x_m, y_m)$$
 - input sample

- 1. Embed $\{x_1, \ldots, x_m\}$ in \mathbb{R}^k .
- 2. Output $c \in C$ that agrees withimum margin separating hyperplane.

Weak separability is useful for learning

Definition. A class $C \subseteq \{\pm 1\}^X$ is weakly separable if for every $\{x_1, \ldots, x_m\} \subseteq X$, $C|_{\{x_1, \ldots, x_m\}}$ has sign rank at most k = o(m).

A recipe for learning weakly separable classes:

$$(x_1, y_1), \ldots, (x_m, y_m)$$
 - input sample

- 1. Embed $\{x_1, \ldots, x_m\}$ in \mathbb{R}^k .
- 2. Output $c \in C$ that agrees withimum margin separating hyperplane.

A generalization bound. As m grows, The error decays like $\epsilon \log \frac{1}{\epsilon}$, where $\epsilon = k/m = o(1)$.

Recapitulation

- 1. Sign rank captures unbounded error communication complexity
- 2. Good performance of kernel machines on ${\it C}$ implies it has a low sign rank
- 3. "A paradox":
 - ▶ In practice kernel machines perform many learning tasks
 - Most learnable classes have a large sign rank
- 4. "Resolution" 1: Every learnable class has a sublinear sign rank

Plan

Sign rank in communication complexity

Sign rank in machine learning

A "paradox"

Resolution 1

Resolution 2

An open problem

Summary

Resolution 2: practical learning problems have structure

"A paradox":

- ▶ In practice, kernel machines perform many learning tasks
- ▶ Most learnable classes have a large sign rank

Perhaps concept classes that appear in practical applications typically have a low sign rank.

Resolution 2: practical learning problems have structure

"A paradox":

- ▶ In practice, kernel machines perform many learning tasks
- Most learnable classes have a large sign rank

Perhaps concept classes that appear in practical applications typically have a low sign rank.

Goal. Study the structure of concept classes/matrices with low sign rank.

Plan

Sign rank in communication complexity

Sign rank in machine learning

A "paradox" Resolution 1 Resolution 2

An open problem

Summary

How do standard operations affect the sign rank?

A basic type of "structural" questions concerns variability under standard operations.

How do standard operations affect the sign rank?

A basic type of "structural" questions concerns variability under standard operations.

 C_1 , C_2 – two concept classes of sign rank at most r.

Consider a class obtained by some natural operation on C_1 , C_2 :

- 1. $\{\neg c_1 : c_1 \in C_1\}$
- 2. $\{c_1 \oplus c_2 : c_1 \in C_1, c_2 \in C_2\}$
- 3. $\{c_1 \land c_2 : c_1 \in C_1, c_2 \in C_2\}$

Is the sign rank of these classes bounded in terms of r?

How do standard operations affect the sign rank?

A basic type of "structural" questions concerns variability under standard operations.

 C_1 , C_2 – two concept classes of sign rank at most r.

Consider a class obtained by some natural operation on C_1 , C_2 :

- 1. $\{\neg c_1 : c_1 \in C_1\}$
- 2. $\{c_1 \oplus c_2 : c_1 \in C_1, c_2 \in C_2\}$
- 3. $\{c_1 \land c_2 : c_1 \in C_1, c_2 \in C_2\}$

Is the sign rank of these classes bounded in terms of r?

- 1. the sign rank is at most r
- 2. the sign rank is at most r^2 [Derzinsky and Warmuth]
- 3. ???

A question

 C_1 , C_2 – two concept classes of sign rank at most r.

Question.

Is the sign rank of $\{c_1 \land c_2 : c_1 \in C_1, c_2 \in C_2\}$ bounded in terms of r?

Interpretation in machine learning

 C_1 , C_2 – two concept classes of sign rank at most r.

Question.

Is the sign rank of $\{c_1 \land c_2 : c_1 \in C_1, c_2 \in C_2\}$ bounded in terms of r?

Given efficient kernel machines for C_1 and C_2 , can we construct an efficient kernel machine for $\{c_1 \land c_2 : c_1 \in C_1, c_2 \in C_2\}$?

Interpretation in communication complexity

 f_1, f_2 – two function with unbounded complexity at most c.

define $f_1 \wedge f_2$ as follows: Alice's input is x_1, x_2 Bob's input is y_1, y_2 Their goal is to compute $f_1(x_1, y_1) \wedge f_2(x_2, y_2)$

Question.

Is the unbounded complexity of $f_1 \wedge f_2$ bounded in terms of r?

Interpretation in communication complexity

 f_1, f_2 – two function with unbounded complexity at most c.

define $f_1 \wedge f_2$ as follows: Alice's input is x_1, x_2 Bob's input is y_1, y_2 Their goal is to compute $f_1(x_1, y_1) \wedge f_2(x_2, y_2)$

Question.

Is the unbounded complexity of $f_1 \wedge f_2$ bounded in terms of r?

Are repetitions necessary for computing two decision problems in a randomized fashion?

Plan

Sign rank in communication complexity

Sign rank in machine learning

A "paradox"
Resolution 1
Resolution 2

An open problem

Summary

Recapitulation

- 1. Sign rank captures unbounded error communication complexity
- 2. Good performance of kernel machines on ${\it C}$ implies it has a low sign rank
- 3. "A paradox":
 - ▶ In practice kernel machines perform many learning tasks
 - Most learnable classes have a large sign rank
- 4. "Resolution" 1: Every learnable class has a sublinear sign rank
- 5. "Resolution" 2: Practical classes have low sign rank
- 6. Goal: Study the structure of classes/matrices with low sign rank
 - How do the sign-rank changes under standard operations?
 - Interpretation in machine learning
 - ► Interpretation in communication complexity