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Communication complexity

F(x,y)

e Two parties, Alice and Bob, jointly compute a
function f on input (x, y).
— x known only to Alice and y only to Bob.

* Communication complexity*!: how many bits are
needed to be exchanged?

*1. A. Yao. STOC, 1979.



Computation modes

Deterministic: Players run determ. protocol. ---D(F)
Randomized: Players have access to random bits; small
error probability allowed. --- R(F)
Quantum: Players send quantum messages. --- Q(F)

Superscript: shared resource.
— *: entanglement.
— pub: public coins
Subscript: error allowed.
Q:(F): e-bounded error, share entanglement.
Qr(F): fixed length, zero-error, no shared entanglement.



Log-rank conjecture: quantum version

e Rank lower bound Log-Rank Conjecture *1
log, rank(Mgp) < D(F) < log?M rank(Mg)

e Quantum: rank lower bounds *2
— %logz rank(Mp) < Q*(F) < log°® rank(My)

— Q(log, rank,.(Mz)) < Q.(F) < 10g°M rank, (M)

. k.(M) = ' k(M'
ran E( ) M’:|M(x,yr§l—ll\r}l’(x,y)|56ran ( )

Quantum Log-Rank Conjecture

*1. Lovasz, Saks. FOCS, 1988.
*2. Buhrman, de Wolf. CCC, 2001.



Log-rank conjecture for XOR functions

* Log-rank conjecture appears too hard in its full
generality.

e |et’s try some special class of functions.
e Composed functions: f(gq, ... gn)
* When all g;’s are one-bit functions.

 XOR functions: f(x @ y). -—-F = f o®
— Examples: Equality, (Gapped) Hamming Distance.
e AND functions: f(x A y). —-F = f oA

— Examples: Disjointness, Inner Product, Nisan-
Wigderson-Kushilevitz functions *1.

*1. Nisan and Wigderson. Combinatorica, 1995.



Outline

e XOR functions: connection to Fourier, solved
cases.

— Deterministic protocols.
— Quantum protocol.

 AND functions: connection to real polynomial.
— Deterministic protocol.



XOR functions and Fourier

e Connections to Fourier analysis of functions on {0,1}".
1. rank(Mfo@) = ”f

‘0'

2. rank.(My.g) = ||f], .**
—rank.(M) = M,:lM(x’yr)n_iIr\},(x)y)lserank(M’)
Al = min gl

g:llf—gllo=e

*1. Lee and Shraibman. Foundations and Trends in Theoretical Computer Science, 2009.



Recall: Fourier analysis

e Vf:{0,1}"* - R can be written as
f — Zae{0,1}n f(a))(a

— xo(x) = (—1)%%*, and characters are orthogonal

—{f(@): a € {0,1}"}: Fourier coefficients of f

— Parseval: If Range(f) = {+1}, then Y, f(a)? = 1.
 Two specific norms:

)

 =Xalf(@)| --Spectral norm.

)

, = |{a: f(a) # 0}| - Fourier sparsity.



Log-rank Conj. For XOR functions

e Since rank(Mfo@) = Hf
XOR functions becomes
D(f o®) < logs ||f]]. .

* One approach*%: D(f o@) < 2DTg(f).
— DT (f): Parity decision tree complexity.

o’ Log-rank Conj. for

 Decision tree with queries like “x; @ x; & x, =7"

—~ DTg(f) < DT(f)
— simulating 1 @-query by 2 bits of communication.

*1. Zhang and Shi. Theoretical Computer Science, 2009.



XOR functions: 1

e Logrank Conj. holds for the following f o@.

— f: Symmetric *!
— f: LTF *2
— f: monotone *?
— f1ACO *3

-~ 1og|7ll, = 2

- deg() = 6 (10g]| 71,

*1. Zhang and Shi. Quantum Information & Computation, 2009.
*2. Montanaro and Osborne. arXiv:0909.3392v2, 2010.
*3. Kulkarni and Santha. CIAC, 2013.

10



One easy case

» deg(f) = max{|al: f(a) # 0}

— The degree of f viewed as a polynomial over R.

» If deg(f) = log®D||f|
standard decision tree complexity is small *12.

- DT(f) = 0(deg®(f)) = log®D||f]|-

o then even the

*1. Nisan and Smolensky. Unpublished.
*2. Midrijanis. arXiv/quant-ph/0403168, 2004.
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Degree suffices?

Question: Are all nonzero Fourier coefficients
always located in low levels?

Answer*!: Not even after change of basis.
— 3f with Dg(f) < logn but mLin DT(Lf) = n/4.

deg,(f): degree of f as a polynomial over IF,.

Fact. deg,(f) < deg(f).

Low [F,-degree already admits big family of
functions with elusive structures *2.

Fact*3. deg,(f) < longHO.

*1. Zhang and Shi. Theoretical Computer Science, 2009.
*2. Haramaty and Shpilka. STOC, 2010.
*3. Bernasconi and Codenotti. /EEE Transactions on Computers, 1999.
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XOR functions: 2

e Logrank Conj. holds for the following f o@.

— f:low [F,-degree *!

— f: small spectral norm *1

*1. Tsang, Wong, Xie, Zhang. FOCS, 2013.



One good = all good

Upper bound for DTg (f): longest path from
root to leaf is short.

Suffices to show the shortest path is short.

Cq min(f): the minimum co-dim of an affine
subspace on which f is constant.

Roughly: DTy (f) = Cpmin(f) - dega (f)



Low degree result

A

* Theorem. DT (f) < 24%/2 og?-2 £

1

e Thus Log-rank Conj. holds for f with
deg,(f) = 0(1).

. poly
e For such f, Fourler sparse < short @-DT

log||f||, < DTe(F) < 1og®@||f|
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Small spectral norm

 Theorem. For any Boolean f,
— C@,min(f) =0 (”f‘ll)
~Dg(f) = 0 ([Ifll, - deg2())

* Independent work*?!

- CGB,min(f) =0 (Hf‘

-De () =0 ([IF]; -1

*1. Shpilka and Volk. ECCC, 2013.

2
1)’

og|fl,)
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Linear rank and the main protocol
e Linear rank (lin-rank): min r s.t.

f(z) =41(2)f1(2) + -+ 4:(2)f(2) + fo(2)
where v¢; is linear and Vf; has deg,(f;) < d — 1. v
d

e Main protocol: d = deg,(f) rounds; each roun

reduces IF,-degree by at least 1 Z=x+y
tilx+y) =4;(x) +4;(y)

— regardless of values of £;(x) and £;(y)

Wi £,

4 £, (y)

| 2. () h/
@g ’Bl (y) o_o j
< . i{
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Linear rank conjecture

Communication cost depends on r = [in-rank(f).
Linear Rank Conjecture. V Boolean f,

lin-rank(f) = logO(l)HfHO
Linear Rank Conj. = Log-rank Conj. for all XOR fn’s.

Fact. lin-rank(f) < Caymin(f),
— “Decreasing deg, (f) by 1” is easier than “decreasing
deg,(f) to 0”.

Most our results are obtained by bounding Cqy 1nin (f)-

18



Low degree result

* How to bound Cqy min(f)?
 Degree reduction again.

* Inductionon d = deg,(f). Apply IH on
(discrete) derivative.

e Derivative: 4;f(x) = f(x +t) + f(x).
— All plus: over IF,
— Fact. deg, (4;f) < deg,(f) — 1.

- ract. |, =< 717 14e71l, <11

2
0"

2
1)




Two interesting functions: g /4

F=(-1)/

By IH, 3 affine Hy, with small co-dimension and
(Atf)le = b.

Define two new functions.

F(x)+RpF(x+t F(x)—-pF(x+t)
go(x) = "D g, (x) = TEETED

Jo and g, are non-Boolean. Range: {—1,0, +1}.
gble — FleI gblHE = 0.

—OnHy, F(x) =F(x+1t),sogy=Fandg; =0.
—OnH{,F(x)=—-F(x+t),sogy,=0andg; =F.




Jo/1 in Fourier domain

F(a) aett 0 acett

‘%(“):{ Y T@=lp acr

- Go(@) = 5 (F(@) + (1P F()xe(a))

Recall: gplu, = Flu,, gblHE = 0.

On Hy, F = g,, which keeps all F(a) for a in half-space
t+, and kills all F () in the other half-space.

— Similarly for H;.

So on Hy, half-space of the Fourier coefficients disappear.

— During the linear restrictions, those £ («) collide a lot and finally
all annihilate.



Killing the Fourier coefficients

Formally: [|F||, = I1goll; + 17 ls.

Thus either ||goll;1 or ||g71l]1 is < %Hﬁ'ul

Say it’s gp.
HFle Hl —

——

'gb HbH1

Ipll1

;

(gble =F Hb)

(subfn: smaller norm)

(picked b for this)




Finishing induction

Repeating this logHFH1 times reduces Hﬁul to
< 1, reaching a linear function. One more

restriction makes it constant.

S0 C@,min(f) < C@,min(Atf) lOgHﬁul.
Use the following to finish the induction.

deg,(4:f) < degy(f) —1 and ||4.f]

And get DT (f) < 2d%/2 logd—2

f

A2
flly

<
1

‘1'



Sketch for Cqg min(f) = O (Hf”l)

Dg(f) = O(Lq - deg,(f)) follows.
—L; = f 1
Greedy folding: boost HfHOO as quickly as possible.

keep folding over the line f = a; + a5,

—|fla)| = |f(a)| =+ = |f(as)| > 0.

Two stages.
— Before ‘f(al)‘ < 1/2: HfHoo increases by > %.

1
— Afterwards: L, drops by = 1.
e Don’t always analyze ||f||Oo though the alg aims to boost it.




Before ‘f(a1)| <1/2

A

f
- a; = |f(a)|.

Parseval: a¢ + a5 + .-+ a? = 1.
1—af <ay(ay, +-+ag) =a,(L; —ay).

__ increases by a,.

a, =

Li—a4
3

So Hf”oo increases by at least L



After ‘f(a1)| 1/2

f(al)‘ still increases, so it’s always > 1/2.

Fact. Zi,j:aimj:ﬁ fla)f(a;)=0.

— b =a; +a, #0.

e.g.a1a, + agay; = aza, + Agadg + Agaq

— Recall: q; = |f(al-)|.

Fact. L; drops by 2(a, + ag + aqg).

a,a, < asza, + agag + aqay < asz(a, + ag + ay)

L, drops = > 2a1 = 1.

2a1a;

as



XOR functions: 3

e Logrank Conj. holds for the following f o@.

e Quantum Logrank Conj. holds for the following
f .
— f:low [F,-degree *!

*1. Zhang. SODA, 2014.



XOR functions: Quantum

* Theorem*!. Q. (f o) = Q) (longHO).

 Theorem*?. Qz(f c@) =0 (Zd longHO).
—where d = deg,(f).
— Confirms quantum Log-rank Conj. (Qg) for f o@D

with deg, (f) = 0 (10g10ngH0).
— Comparison: D(f o) < 24°/2 |ogd~2

A

f]

1

*1. Buhrman and de Wolf. CCC, 2001.
*2. Zhang, SODA, 2014.



XOR functions: Quantum

e Theorem.
Qc(f oD) = Q(logrankE(Mfo@)) >

 (log||fl, )

e Theorem. Q.(f @) < 0 (Zd lOngHLG),
— Confirms quantum Log-rank Conj. (Q.) for f o

with deg,(f) = 0 (loglog”f”l’e).

*1. Lee and Shraibman. Foundations and Trends in Theoretical Computer Science, 2009.
*2. Zhang, SODA, 2014.



About quantum protocol

Much simpler.
longHO comes very naturally.

Inherently quantum.
— Not from quantizing any classical protocol.

Computational cost is also very low.



Goal: compute f(x + y)

where f:{0,1}"* - {£+1} bi; if
3 "E;‘- "

10) + |1) X, ¥)
5 K |Y) = ;f(a))(a(xNE(“)) l Add phase ()
) =) F@rrMIE@)
|¢,> a€EA
E(a)) > la) |

> F@xalx +yla)
aEA lFourier: la) = X xa (D))

z Z F@)xa(x + M xa(®)lt)

t a€A

=X f(x+y+0)lt)

Z|O>+f(x+y+t)|1>
V2

|t)

t



Goal: compute f(x + y)
where f:{0,1}"* - {£+1}

A Wy
) =1+ ) F@xa(IE@)
a€EA ') l Add phase y,(y)
l Decoding + Fourier
0)+ f(x +y + D)
). 2 | |
- V2 e One more issue: Only Alice
knows t! Bob doesn’t.
Measure(|+), )} | | Measurer | ordable o send £
Arandomt € {0,1}" and f(x + v + t). * Obs: Supp(A/t\f) C A+ AVt
Recall our target: f (x + y). What’s the difference? « A= supp(f)
The derivative: A f(z) = f(z + t)f(2).
Good: deg,(A:f) < deg,(f) — 1.
_ A1l2
Bad: ||A.f |, = [I£1l,-
(That’s where the factor of 2¢ comes from.)




Goal: compute f(x + y)
where f:{0,1}" - {1

Mea

Ara
Recal
The der
Good: de

Bad: [| 57|,

(That’s where the factor of 2¢ comes from.)

l Add phase y,(y)

°* One more issue: Only Alice
knows t! Bob doesn’t.

e |t's unaffordable to send t.

e Obs: Supp(ATf) C A+ AVt

e A= Supp(f)




Goal: compute f(x + y)
where f:{0,1}"* - {£+1}

J
-
£:': ﬁ
. f =
5

=1 F@r@E@
= ¥)

l Decoding + Fourier

l Add phase y,(y)

0)+ f(x+y+DI1)
). 2 | |
- V2 e One more issue: Only Alice
knows t! Bob doesn’t.

Measure|+), | =)} l l Measure ¢ e |t's unaffordable to send t.

Arandomt € {0,1}" and f(x + v + t). * Obs: Supp(A/t\f) C A+ AVt

Recall our target: f (x + y). What's the difference? e A= Supp(f)

The derivative: A f(z) = f(z + t)f(2). e Thus in round 2, Alice and Bob

Good: deg, (A:f) < deg,(f) — 1. can just encode the entire

Bad: || &[], < ||| : A+ A

(That’s where the factor of 2¢ comes from.)




Goal: compute f(x + y) )
where f:{0,1}" - {+1} bf
0

i
L4

—

=15 F@raCE@) —
a€EA |¢’>

l Decoding + Fourier

Z|0)+f(x+y-|-t)|1>
- V2

Measure{|+), |—)} l l Measure t

l Add phase y,(y)

|t)

Arandomt € {0,1}" and f(x + v + t).
Compute f, € A f(z) = f(z+ t)f(2).

At last, deg,(f;) = 0, a constant function.
Cost: log|A| + log|2A]| + log|4A| + -+ + log|2d_1A| < 2%log|A].
Used trivial bound: |kA| < |A[*



AND functions

e Contains Disjointness (f = OR), Inner Product
(f = Parity) and the Nisan-Wigderson-
Kushilevitz functions.

e Each f:{0,1}"* — {0,1} can be uniquely written as
a real-polynomial

p(x) = 5, c(Spxs,
— where x5 £ [];e5 x;.
e Fact*1?, rank(Mfo,\) = ||c||,, the sparsity of c.
e Log-rank Conj. for AND functions:
D(f oA) = log®W|[c]|,

*1. Nisan and Wigderson. Combinatorica, 1995.
*2. Buhrman and de Wolf. CCC, 2001.



AND functions: solved cases

e Logrank Conj. holds for the following f oA.
— f: symmetric *!
— f: monotone *!
— f: close to monotone

*1. Buhrman and de Wolf. CCC, 2001.



monotone

e Recall Theorem *1. If f is monotone, then
D(f o®) = 0(log? rank(Ms.q))
 Theorem *2_If f is monotone, then
D(f oA) = O(log? rank(Ms.,))
e Goal: extend to non-monotone functions.

e Need to be careful on distance measure.

— Hamming distance: changing f at one point can
change the log rank to close to n, making Logrank
Con;j. trivially hold for the new function.

*1. Montanaro and Osborne. arXiv:0909.3392v2, 2010.
*2. Buhrman and de Wolf. CCC, 2001.



Good measure

e Alternating number: —-alt(f)
— Walk along any monotone path from 0™ to 1" on
{0,1}".

— Count the number of alternations of f value.
— Take the maximum over all monotone paths.

* |nversion complexity: - nv(f)

— The minimum number of negation gates needed
in any Boolean circuit computing f.

* Theorem *L. inv(f) = log, alt(f).

*1. Markov, Doklady Akademii Nauk SSSR, 1957. (English translation: JACM, 1958.)



e Recall: If f is monotone, then
D(f «@®) = 0(log? rank(Ms.q))
e Theorem *1.
D(f o®) = 0(alt(f) - log? rank(Mfo@))
e Recall: If f is monotone, then
D(f oA) = 0(log? rank(Ms.,))
e Theorem *1.
D(f oA) = 0(log @t *3)/2 rank(Ms,,))

*1. Zhang, work in progress.



Summary

 XOR and AND functions are important yet
challenging special cases.

— Good targets.

* Log-rank Conjecture is confirmed on some
special classes of XOR/AND functions.

 Most protocols are ad hoc, using the specific
structures of those classes.



* One exception: the (classical) F,-degree
reduction protocol.

— We believe its cost is already log?(V) HfHO We
“just” need to tighten our analysis.

e Call for efforts: Prove linear rank conjecture
lin—rank(f) = log® fHO,
which then solves all XOR functions.

e More open questions next.



Open questions

Question 1. Log-rank for XOR and AND
functions

= Log-rank for all functions?
Question 2. Log-rank for f o

> Comin = o],

Theorem *1: DTg (f) = poly (D@ (f D)),
where D@ is the 4-partite CC.

*1. Lovett, unpublished. Yao, arXiv:1506.02936.



Open questions

» Theorem*L. RP*P(F) = log€ rank(Mz)
= D(F) = log®*? rank (M)

e Question 3. Q" (F) = logo(l) rank(Mg)
= D(F) = log°® rank(Mz)?
e Question 3.1: For XOR functions? AND
functions?

*1. Gavinsky and Lovett, ICALP, 2013.



Open questions

e If D(F) = c, then the protocol partition M into
2¢ monochromatic rectangles R. Thus the largest
one has size |R| = |Mg|/2€.

e Theorem*!. VF, max mono. rectangle R of My is

large (logllMLll| = log?® rank(Mr)) = Logrank

Conjecture holds.

* Question 4. Vf, max mono. rectangle of M¢,g; is
large = Logrank Conj. holds for Vf o&? AND
functions?

*1. Nisan and Wigderson, Combinatorica , 1995.



Open questions

e Question 5. Let A = Supp(f). What can we

say about its additive properties? Could it be
true that [tA]| K |A]|t?

.ok
+ Question 5.1. [|4¢, o f [l < [If]I: ?

Thenks




