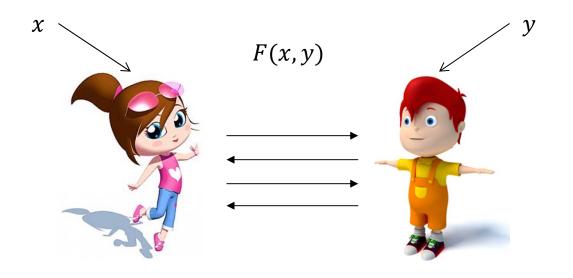
Logrank Conjecture for composed functions

Shengyu Zhang

The Chinese University of Hong Kong

Communication complexity



• Two parties, Alice and Bob, jointly compute a function *f* on input (*x*, *y*).

-x known only to Alice and y only to Bob.

 Communication complexity^{*1}: how many bits are needed to be exchanged?

^{*1.} A. Yao. STOC, 1979.

Computation modes

- Deterministic: Players run determ. protocol. ---D(F)
- Randomized: Players have access to random bits; small error probability allowed.
- Quantum: Players send quantum messages. --- Q(F)
- Superscript: shared resource.
 - *: entanglement.
 - pub: public coins
- Subscript: error allowed.
- $Q_{\epsilon}^{*}(F)$: ϵ -bounded error, share entanglement.
- $Q_E(F)$: fixed length, zero-error, no shared entanglement.

Log-rank conjecture: quantum version

- Rank lower bound Log-Rank Conjecture *1 $\log_2 rank(M_F) \le D(F) \le \log^{O(1)} rank(M_F)$
- Quantum: rank lower bounds *2
 - $-\frac{1}{2}\log_2 rank(M_F) \le Q^*(F) \le \log^{O(1)} rank(M_F)$
 - $\Omega(\log_2 rank_{\epsilon}(M_F)) \le Q_{\epsilon}(F) \le \log^{O(1)} rank_{\epsilon}(M_F)$
 - $rank_{\epsilon}(M) = \min_{M':|M(x,y)-M'(x,y)| \le \epsilon} rank(M')$

Quantum Log-Rank Conjecture

*1. Lovász, Saks. *FOCS*, 1988.*2. Buhrman, de Wolf. *CCC*, 2001.

Log-rank conjecture for XOR functions

- Log-rank conjecture appears too hard in its full generality.
- let's try some special class of functions.
- Composed functions: $f(g_1, ..., g_n)$
- When all g_i 's are one-bit functions.
- XOR functions: $f(x \oplus y)$. $---F = f \circ \oplus$
 - Examples: Equality, (Gapped) Hamming Distance.
- AND functions: $f(x \land y)$. $---F = f \circ \land$
 - Examples: Disjointness, Inner Product, Nisan-Wigderson-Kushilevitz functions *1.

*1. Nisan and Wigderson. Combinatorica, 1995.

Outline

- XOR functions: connection to Fourier, solved cases.
 - Deterministic protocols.
 - Quantum protocol.
- AND functions: connection to real polynomial.
 - Deterministic protocol.

XOR functions and Fourier

• Connections to Fourier analysis of functions on $\{0,1\}^n$. 1. $rank(M_{f\circ\bigoplus}) = \|\hat{f}\|_0$. 2. $rank_{\epsilon}(M_{f\circ\bigoplus}) \ge \|\hat{f}\|_{1,\epsilon}^{*1}$ $- rank_{\epsilon}(M) = \min_{\substack{M':|M(x,y)-M'(x,y)| \le \epsilon}} rank(M')$ $- \|\hat{f}\|_{1,\epsilon} = \min_{\substack{g:\|f-g\|_{\infty} \le \epsilon}} \|\hat{g}\|_1$

*1. Lee and Shraibman. Foundations and Trends in Theoretical Computer Science, 2009.

Recall: Fourier analysis

- $\forall f: \{0,1\}^n \to \mathbb{R}$ can be written as $f = \sum_{\alpha \in \{0,1\}^n} \hat{f}(\alpha) \chi_{\alpha}$ $-\chi_{\alpha}(x) = (-1)^{\alpha \cdot x}$, and characters are orthogonal $-\{\hat{f}(\alpha): \alpha \in \{0,1\}^n\}$: Fourier coefficients of f- Parseval: If $Range(f) = \{\pm 1\}$, then $\sum_{\alpha} \hat{f}(\alpha)^2 = 1$.
- Two specific norms:
 - $\|\hat{f}\|_{1} = \sum_{\alpha} |\hat{f}(\alpha)| \quad \text{--- Spectral norm.}$ $\|\hat{f}\|_{0} = |\{\alpha: \hat{f}(\alpha) \neq 0\}| \quad \text{--- Fourier sparsity.}$

Log-rank Conj. For XOR functions

- Since $rank(M_{f \circ \bigoplus}) = \|\hat{f}\|_{0}$, Log-rank Conj. for XOR functions becomes $D(f \circ \bigoplus) \le \log_{2}^{O(1)} \|\hat{f}\|_{0}$.
- One approach^{*1}: $D(f \circ \bigoplus) \leq 2DT_{\bigoplus}(f)$.
 - $-DT_{\bigoplus}(f)$: Parity decision tree complexity.
 - Decision tree with queries like " $x_1 \oplus x_3 \oplus x_4 =$?"
 - $-DT_{\oplus}(f) \leq DT(f)$
 - simulating 1 \oplus -query by 2 bits of communication.

*1. Zhang and Shi. Theoretical Computer Science, 2009.

XOR functions: 1

• Logrank Conj. holds for the following $f \circ \bigoplus$.

$$-f: \text{Symmetric}^{*1} \qquad \log \|\hat{f}\|_{0} = \Omega(n)$$

$$-f: \text{LTF}^{*2} \qquad -f: \text{monotone}^{*2} \qquad \deg(f) = \tilde{O}\left(\log \|\hat{f}\|_{0}\right)$$

- *1. Zhang and Shi. Quantum Information & Computation, 2009.
- *2. Montanaro and Osborne. *arXiv*:0909.3392v2, 2010.
- *3. Kulkarni and Santha. CIAC, 2013.

One easy case

• $\operatorname{deg}(f) = \max\{|\alpha|: \hat{f}(\alpha) \neq 0\}$

– The degree of f viewed as a polynomial over \mathbb{R} .

- If $\deg(f) = \log^{O(1)} \|\hat{f}\|_{0}$, then even the standard decision tree complexity is small *1,2. $-DT(f) = O(\deg^{3}(f)) = \log^{O(1)} \|\hat{f}\|_{0}$.
- *1. Nisan and Smolensky. Unpublished.

*2. Midrijanis. *arXiv/quant-ph/0403168*, 2004.

Degree suffices?

- Question: Are all nonzero Fourier coefficients always located in low levels?
- Answer^{*1}: Not even after change of basis.

 $- \exists f \text{ with } D_{\bigoplus}(f) \leq \log n \text{ but } \min_{f} DT(Lf) \geq n/4.$

- $\deg_2(f)$: degree of f as a polynomial over \mathbb{F}_2 .
- Fact. $\deg_2(f) \le \deg(f)$.
- Low \mathbb{F}_2 -degree already admits big family of functions with elusive structures *².
- Fact*³. deg₂(f) $\leq \log \|\hat{f}\|_0$.
- *1. Zhang and Shi. *Theoretical Computer Science*, 2009.
- *2. Haramaty and Shpilka. *STOC*, 2010.
- *3. Bernasconi and Codenotti. IEEE Transactions on Computers, 1999.

XOR functions: 2

- Logrank Conj. holds for the following $f \circ \bigoplus$.
 - f: Symmetric
 - -f: LTF
 - *f* : monotone
 - $-f:AC^0$
 - -f: low \mathbb{F}_2 -degree *1
 - -f: small spectral norm *1

*1. Tsang, Wong, Xie, Zhang. FOCS, 2013.

One good \Rightarrow all good

- Upper bound for $DT_{\bigoplus}(f)$: longest path from root to leaf is short.
- Suffices to show the shortest path is short.
- $C_{\bigoplus,min}(f)$: the minimum co-dim of an affine subspace on which f is constant.
- Roughly: $DT_{\oplus}(f) \le C_{\oplus,min}(f) \cdot \deg_2(f)$

Low degree result

• Theorem. $DT_{\oplus}(f) \le 2^{d^2/2} \log^{d-2} \|\hat{f}\|_1$

• Thus Log-rank Conj. holds for f with $\deg_2(f) = O(1)$.

• For such f, Fourier sparse $\Leftrightarrow short \bigoplus -DT$ $\log \|\hat{f}\|_{0} \leq DT_{\bigoplus}(f) \leq \log^{O(1)} \|\hat{f}\|_{0}$

Small spectral norm

• Theorem. For any Boolean f, $-C_{\bigoplus,min}(f) = O\left(\|\hat{f}\|_{1}\right).$

$$-D_{\bigoplus}(f) = O\left(\left\|\hat{f}\right\|_{1} \cdot \deg_{2}(f)\right).$$

• Independent work*1:

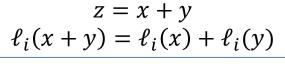
$$-C_{\bigoplus,\min}(f) = O\left(\left\|\hat{f}\right\|_{1}^{2}\right),$$
$$-D_{\bigoplus}(f) = O\left(\left\|\hat{f}\right\|_{1}^{2} \cdot \log\left\|\hat{f}\right\|_{0}^{2}\right)$$

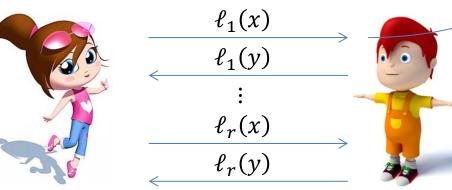
*1. Shpilka and Volk. ECCC, 2013.

Linear rank and the main protocol

- Linear rank (lin-rank): min r s.t. $f(z) = \ell_1(z)f_1(z) + \dots + \ell_r(z)f_r(z) + f_0(z)$ where $\forall \ell_i$ is linear and $\forall f_i$ has $\deg_2(f_i) \le d - 1$.
- Main protocol: $d = \deg_2(f)$ rounds; each round reduces \mathbb{F}_2 -degree by at least 1 z = x + y

– regardless of values of $\ell_i(x)$ and $\ell_i(y)$





Linear rank conjecture

- Communication cost depends on r = lin-rank(f).
- Linear Rank Conjecture. \forall Boolean f, $lin-rank(f) = \log^{O(1)} \|\hat{f}\|_{0}$
- Linear Rank Conj. \Rightarrow Log-rank Conj. for all XOR fn's.
- Fact. $lin-rank(f) \le C_{\bigoplus,min}(f)$,
 - "Decreasing $\deg_2(f)$ by 1" is easier than "decreasing $\deg_2(f)$ to 0".
- Most our results are obtained by bounding $C_{\bigoplus,min}(f)$.

Low degree result

- How to bound $C_{\bigoplus,min}(f)$?
- Degree reduction again.
- Induction on $d \stackrel{\text{\tiny def}}{=} \deg_2(f)$. Apply IH on (discrete) derivative.
- Derivative: $\Delta_t f(x) = f(x+t) + f(x)$.
 - All plus: over \mathbb{F}_2
 - $-\operatorname{Fact.} \deg_2(\varDelta_t f) \le \deg_2(f) 1.$
 - Fact. $\|\widehat{\Delta_t f}\|_1 \le \|\widehat{f}\|_1^2$, $\|\widehat{\Delta_t f}\|_0 \le \|\widehat{f}\|_0^2$.

Two interesting functions: $g_{0/1}$

- $F = (-1)^f$
- By IH, \exists affine H_b with small co-dimension and $(\Delta_t f)|_{H_b} = b$.
- Define two new functions.

$$g_0(x) = \frac{F(x) + \mathbb{R}F(x+t)}{2}, \quad g_1(x) = \frac{F(x) - \mathbb{R}F(x+t)}{2}.$$

- g_0 and g_1 are non-Boolean. Range: $\{-1,0,+1\}$.
- $g_b|_{H_b} = F|_{H_b}, g_b|_{H_{\overline{b}}} = 0.$ - On $H_0, F(x) = F(x+t)$, so $g_0 = F$ and $g_1 = 0.$ - On $H_1, F(x) = -F(x+t)$, so $g_0 = 0$ and $g_1 = F$.

$g_{0/1}$ in Fourier domain

- $\widehat{g_0}(\alpha) = \begin{cases} \widehat{F}(\alpha) & \alpha \in t^{\perp} \\ 0 & \alpha \in \overline{t^{\perp}} \end{cases}, \quad \widehat{g_1}(\alpha) = \begin{cases} 0 & \alpha \in t^{\perp} \\ \widehat{F}(\alpha) & \alpha \in \overline{t^{\perp}} \end{cases}.$ - $\widehat{g_b}(\alpha) = \frac{1}{2} \Big(\widehat{F}(\alpha) + (-1)^b \widehat{F}(\alpha) \chi_t(\alpha) \Big)$
- Recall: $g_b|_{H_b} = F|_{H_b}, g_b|_{H_{\overline{b}}} = 0.$
- On H_0 , $F = g_0$, which keeps all $\hat{F}(\alpha)$ for α in half-space t^{\perp} , and kills all $\hat{F}(\alpha)$ in the other half-space.
 - Similarly for H_1 .
- So on H_b , half-space of the Fourier coefficients disappear.
 - During the linear restrictions, those $\hat{F}(\alpha)$ collide a lot and finally all annihilate.

Killing the Fourier coefficients

- Formally: $\|\widehat{F}\|_1 = \|\widehat{g_0}\|_1 + \|\widehat{g_1}\|_1$.
- Thus either $\|\widehat{g_0}\|_1$ or $\|\widehat{g_1}\|_1$ is $\leq \frac{1}{2} \|\widehat{F}\|_1$.
- Say it's g_b .
- $\left\|\widehat{F}\right\|_{H_b} \right\|_1 = \left\|\widehat{g_b}\right\|_{H_b} \right\|_1$ $\leq \left\|\widehat{g_b}\right\|_1$ $\leq \frac{1}{2} \left\|\widehat{F}\right\|_1$
- $(g_b|_{H_b} = F|_{H_b})$

(subfn: smaller norm)

(picked *b* for this)

Finishing induction

- Repeating this $\log \|\hat{F}\|_1$ times reduces $\|\hat{F}\|_1$ to ≤ 1 , reaching a linear function. One more restriction makes it constant.
- So $C_{\bigoplus,\min}(f) \le C_{\bigoplus,\min}(\Delta_t f) \log \|\widehat{F}\|_1$.
- Use the following to finish the induction.

 $\deg_2(\Delta_t f) \le \deg_2(f) - 1$ and $\left\|\widehat{\Delta_t f}\right\|_1 \le \left\|\widehat{f}\right\|_1^2$

• And get $DT_{\oplus}(f) \le 2^{d^2/2} \log^{d-2} \|\hat{f}\|_1$.

Sketch for
$$C_{\bigoplus,min}(f) = O\left(\left\|\hat{f}\right\|_{1}\right)$$

- $D_{\bigoplus}(f) = O(L_1 \cdot \deg_2(f))$ follows. - $L_1 = \|\hat{f}\|_1$
- Greedy folding: boost $\|\hat{f}\|_{\infty}$ as quickly as possible.
- keep folding over the line $\beta = \alpha_1 + \alpha_2$, $-|\hat{f}(\alpha_1)| \ge |\hat{f}(\alpha_2)| \ge \cdots \ge |\hat{f}(\alpha_s)| > 0.$
- Two stages.
 - Before $|\hat{f}(\alpha_1)| < 1/2$: $\|\hat{f}\|_{\infty}$ increases by $\geq \frac{3}{4L_1}$.
 - Afterwards: L_1 drops by ≥ 1 .
 - Don't always analyze $\|\hat{f}\|_{\infty}$ though the alg aims to boost it.

Before
$$|\hat{f}(\alpha_1)| < 1/2$$

•
$$\|\hat{f}\|_{\infty}$$
 increases by a_2 .
 $-a_i = |\hat{f}(\alpha_i)|$.
• Parseval: $a_1^2 + a_2^2 + \dots + a_s^2 = 1$.
• $1 - a_1^2 \le a_2(a_2 + \dots + a_s) = a_2(L_1 - a_1)$.
• $a_2 \ge \frac{1 - a_1^2}{L_1 - a_1} \ge \frac{3}{4} \cdot \frac{1}{L_1}$

• So $\|\hat{f}\|_{\infty}$ increases by at least $\frac{3}{4L_1}$

After $|\hat{f}(\alpha_1)| \ge 1/2$

- $|\hat{f}(\alpha_1)|$ still increases, so it's always $\geq 1/2$.
- Fact. $\sum_{i,j:\alpha_i+\alpha_j=\beta} \hat{f}(\alpha_i)\hat{f}(\alpha_j) = 0.$ $-\beta = \alpha_1 + \alpha_2 \neq 0.$
- e.g. $a_1a_2 + a_5a_7 = a_3a_4 + a_6a_8 + a_9a_{10}$ - Recall: $a_i = |\hat{f}(\alpha_i)|$.
- Fact. L_1 drops by $2(a_4 + a_8 + a_{10})$.
- $a_1a_2 \le a_3a_4 + a_6a_8 + a_9a_{10} \le a_3(a_4 + a_8 + a_{10})$
- $L_1 \operatorname{drops} \ge \frac{2a_1a_2}{a_3} \ge 2a_1 \ge 1.$

XOR functions: 3

- Logrank Conj. holds for the following $f \circ \bigoplus$.
 - f: Symmetric
 - -f: LTF
 - -f: monotone
 - $-f:AC^{0}$
 - -f: low \mathbb{F}_2 -degree
 - -f: small spectral norm
- Quantum Logrank Conj. holds for the following $f \circ \bigoplus$.
 - -f: low \mathbb{F}_2 -degree *1

*1. Zhang. SODA, 2014.

XOR functions: Quantum

- Theorem^{*1}. $Q_E^*(f \circ \bigoplus) \ge \Omega\left(\log \|\hat{f}\|_0\right)$.
- Theorem^{*2}. $Q_E(f \circ \oplus) = O\left(2^d \log \|\hat{f}\|_0\right)$.
 - where $d = \deg_2(f)$.
 - Confirms quantum Log-rank Conj. (Q_E) for $f \circ \bigoplus$ with $\deg_2(f) = O\left(\log \log \|\hat{f}\|_0\right)$.
 - Comparison: $D(f \circ \bigoplus) \le 2^{d^2/2} \log^{d-2} \|\hat{f}\|_1$
- *1. Buhrman and de Wolf. CCC, 2001.
- *2. Zhang, SODA, 2014.

XOR functions: Quantum

- Theorem. $Q_{\epsilon}(f \circ \bigoplus) \ge \Omega(\log rank_{\epsilon}(M_{f \circ \bigoplus})) \ge \Omega(\log \|\hat{f}\|_{1,\epsilon})^{*1}$
- Theorem. $Q_{\epsilon}(f \circ \bigoplus) \leq \tilde{O}\left(2^{d} \log \|\hat{f}\|_{1,\epsilon}\right)$,

- Confirms quantum Log-rank Conj. (Q_{ϵ}) for $f \circ \bigoplus$ with $\deg_2(f) = O\left(\log \log \|\hat{f}\|_{1,\epsilon}\right)$.

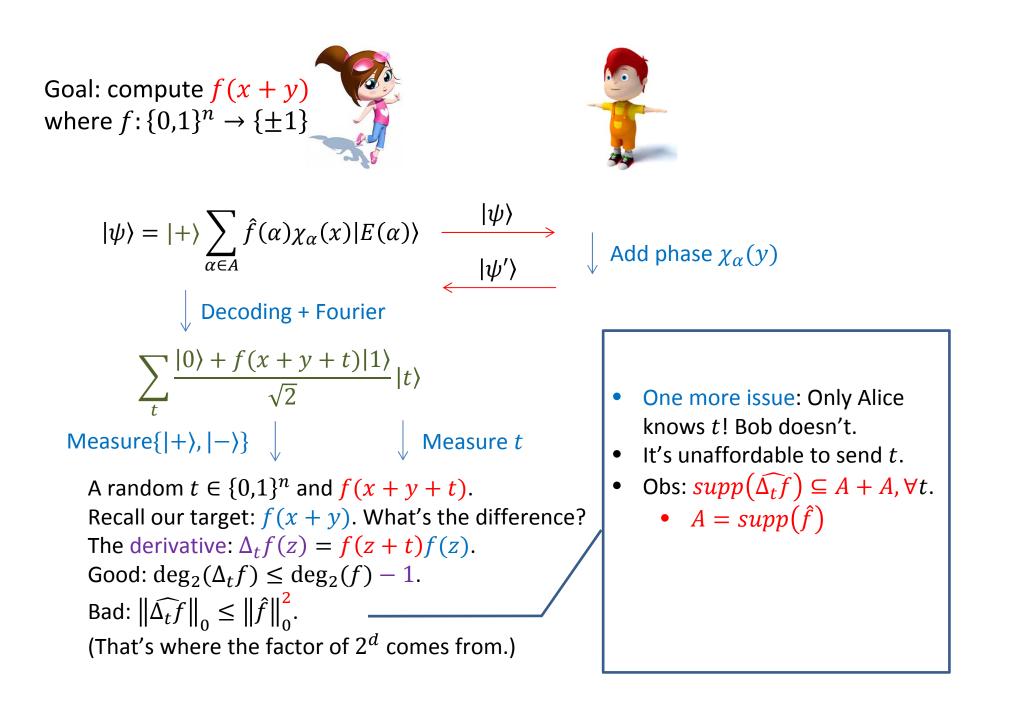
*1. Lee and Shraibman. Foundations and Trends in Theoretical Computer Science, 2009.*2. Zhang, SODA, 2014.

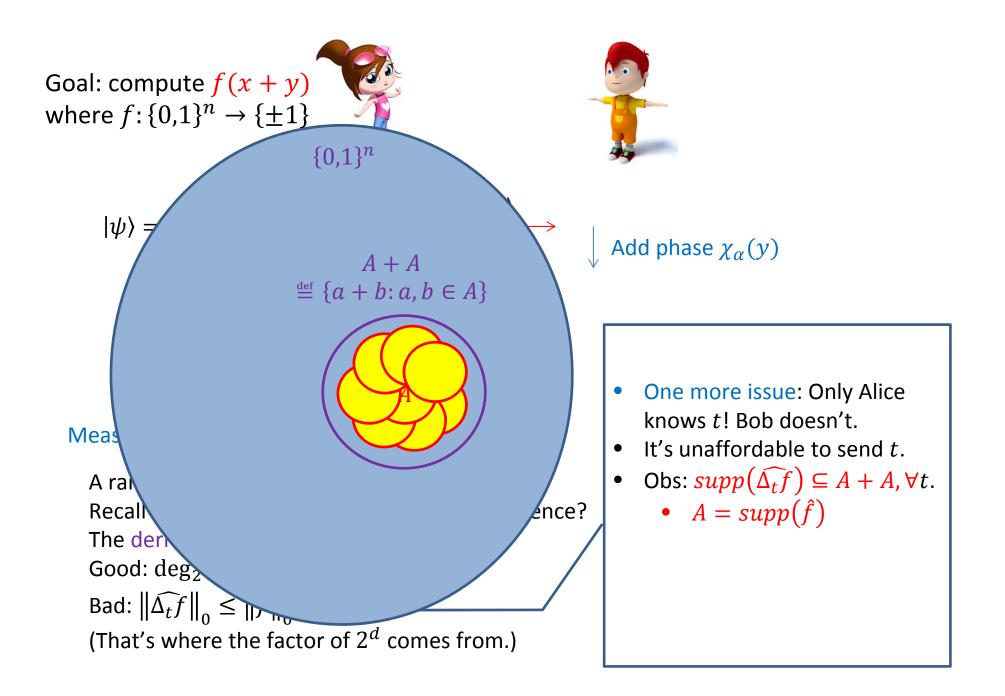
About quantum protocol

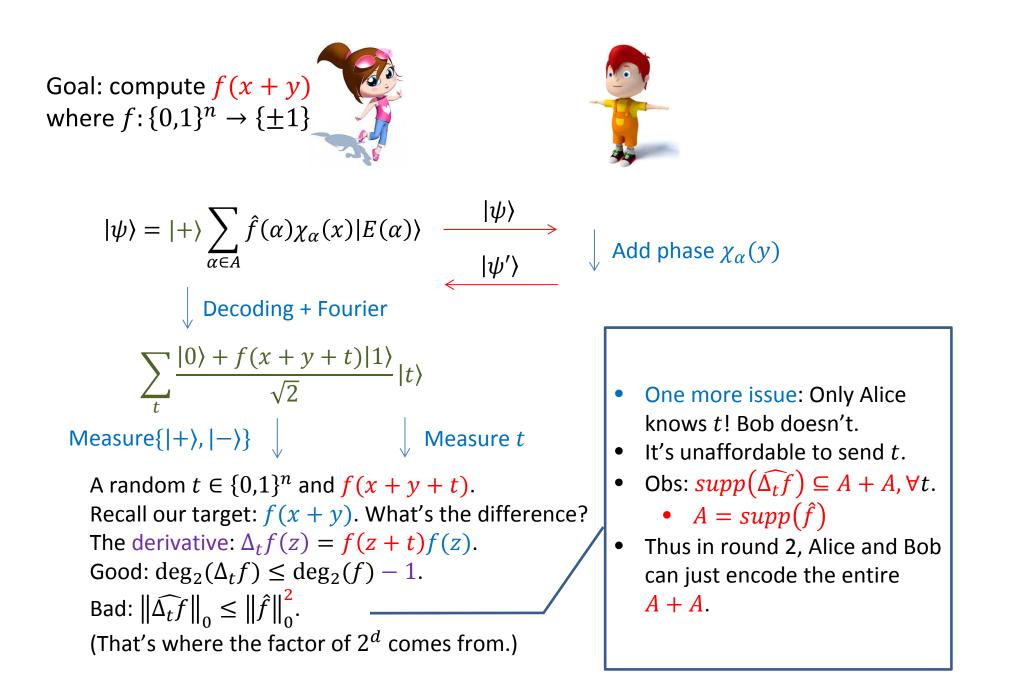
- Much simpler.
- $\log \|\hat{f}\|_{0}$ comes very naturally.
- Inherently quantum.
 - Not from quantizing any classical protocol.
- Computational cost is also very low.

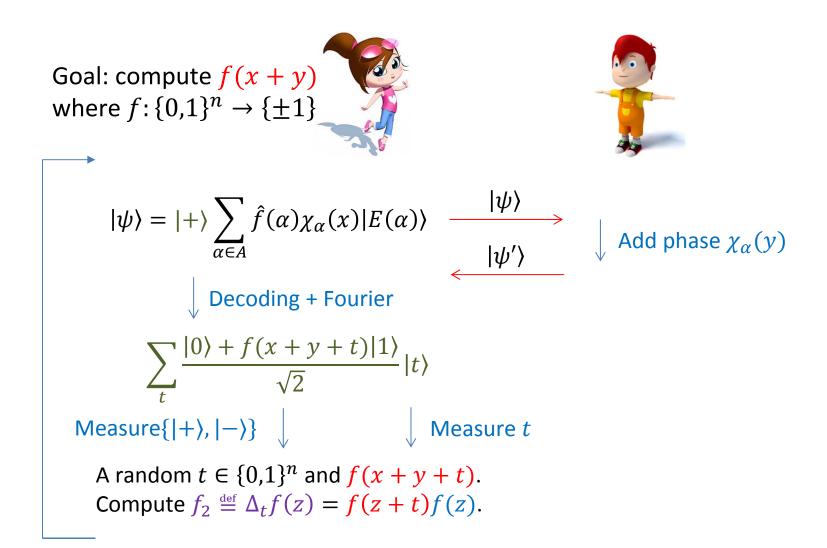
Goal: compute
$$f(x + y)$$

where $f: \{0,1\}^n \to \{\pm 1\}$
 $(0) + |1\rangle = \sum_{\alpha \in A} \hat{f}(\alpha)\chi_{\alpha}(x)|E(\alpha)$
 $|\psi\rangle$
 $|\psi\rangle$
 $|\psi\rangle$
 $|\psi\rangle = \sum_{\alpha \in A} \hat{f}(\alpha)\chi_{\alpha}(x)\chi_{\alpha}(y)|E(\alpha)$
 $|\psi'\rangle = \sum_{\alpha \in A} \hat{f}(\alpha)\chi_{\alpha}(x)\chi_{\alpha}(y)|E(\alpha)$
 $|\psi'\rangle = \sum_{\alpha \in A} \hat{f}(\alpha)\chi_{\alpha}(x + y)|\alpha\rangle$
 $\int_{\alpha \in A} \hat{f}(\alpha)\chi_{\alpha}(x + y)|\alpha\rangle$
 $\int_{\alpha \in A} \hat{f}(\alpha)\chi_{\alpha}(x + y)\chi_{\alpha}(t)|t\rangle$
 $\sum_{t} \sum_{\alpha \in A} \hat{f}(\alpha)\chi_{\alpha}(x + y)\chi_{\alpha}(t)|t\rangle$
 $= \sum_{t} f(x + y + t)|t\rangle$
 $\sum_{t} \frac{|0) + f(x + y + t)|1\rangle}{\sqrt{2}}|t\rangle$









At last, $\deg_2(f_d) = 0$, a constant function. Cost: $\log|A| + \log|2A| + \log|4A| + \dots + \log|2^{d-1}A| \le 2^d \log|A|$. Used trivial bound: $|kA| \le |A|^k$

AND functions

- Contains Disjointness (f = OR), Inner Product (f = Parity) and the Nisan-Wigderson-Kushilevitz functions.
- Each $f: \{0,1\}^n \to \{0,1\}$ can be uniquely written as a real-polynomial

$$\underline{p}(x) = \sum_{i} c(S_i) x_{S_i}$$

- where $x_S \stackrel{\text{\tiny def}}{=} \prod_{i \in S} x_i$.

- Fact^{*1,2}. $rank(M_{f \circ \wedge}) = ||c||_0$, the sparsity of c.
- Log-rank Conj. for AND functions: $D(f \circ \Lambda) = \log^{O(1)} \|c\|_{0}$
- *1. Nisan and Wigderson. Combinatorica, 1995.
- *2. Buhrman and de Wolf. CCC, 2001.

AND functions: solved cases

- Logrank Conj. holds for the following $f \circ \bigoplus$.
 - f: Symmetric, LTF
 - -f: monotone, AC^0
 - -f: low \mathbb{F}_2 -degree, small spectral norm
- Quantum Logrank Conj. Holds for the following $f \circ \bigoplus$.
 - -f: low \mathbb{F}_2 -degree
- Logrank Conj. holds for the following $f \circ \Lambda$.
 - -f: symmetric *1
 - -f: monotone *1
 - -f: close to monotone
- *1. Buhrman and de Wolf. CCC, 2001.

monotone

- Recall Theorem *1. If f is monotone, then $D(f \circ \bigoplus) = O(\log^2 rank(M_{f \circ \bigoplus}))$
- Theorem *². If f is monotone, then $D(f \circ \Lambda) = O(\log^2 rank(M_{f \circ \Lambda}))$
- Goal: extend to non-monotone functions.
- Need to be careful on distance measure.
 - Hamming distance: changing f at one point can change the log rank to close to n, making Logrank Conj. trivially hold for the new function.
- *1. Montanaro and Osborne. *arXiv*:0909.3392v2, 2010.
- *2. Buhrman and de Wolf. *CCC*, 2001.

Good measure

- Alternating number: --- alt(f)
 - Walk along any monotone path from 0^n to 1^n on $\{0,1\}^n$.
 - Count the number of alternations of f value.
 - Take the maximum over all monotone paths.
- Inversion complexity: --inv(f)
 - The minimum number of negation gates needed in any Boolean circuit computing f.
- Theorem *1. $inv(f) \approx \log_2 alt(f)$.

*1. Markov, Doklady Akademii Nauk SSSR, 1957. (English translation: JACM, 1958.)

- Recall: If f is monotone, then $D(f \circ \bigoplus) = O(\log^2 rank(M_{f \circ \bigoplus}))$
- Theorem *1. $D(f \circ \bigoplus) = O(alt(f) \cdot \log^2 rank(M_{f \circ \bigoplus}))$
- Recall: If f is monotone, then $D(f \circ \Lambda) = O(\log^2 rank(M_{f \circ \Lambda}))$
- Theorem *1. $D(f \circ \Lambda) = \tilde{O}(\log^{(alt(f)+3)/2} rank(M_{f \circ \Lambda}))$
- *1. Zhang, work in progress.

Summary

• XOR and AND functions are important yet challenging special cases.

- Good targets.

- Log-rank Conjecture is confirmed on some special classes of XOR/AND functions.
- Most protocols are *ad hoc*, using the specific structures of those classes.

• One exception: the (classical) \mathbb{F}_2 -degree reduction protocol.

– We believe its cost is already $\log^{O(1)} \|\hat{f}\|_0$. We "just" need to tighten our analysis.

• Call for efforts: Prove linear rank conjecture $lin-rank(f) = \log^{O(1)} \|\hat{f}\|_{0},$

which then solves all XOR functions.

• More open questions next.

• *Question 1*. Log-rank for XOR and AND functions

 \Rightarrow Log-rank for all functions?

- Question 2. Log-rank for $f \circ \bigoplus$ $\Rightarrow C_{\bigoplus,min} = \log^{O(1)} \|\hat{f}\|_{0}$? • Theorem *1: $DT_{\bigoplus}(f) = poly(D^{(4)}(f \circ \bigoplus))$, where $D^{(4)}$ is the 4-partite CC.
 - *1. Lovett, unpublished. Yao, arXiv:1506.02936.

• Theorem^{*1}. $R^{pub}(F) = \log^{c} rank(M_{F})$ $\Rightarrow D(F) = \log^{c+2} rank(M_{F})$

- Question 3. $Q^*(F) = \log^{O(1)} rank(M_F)$ $\Rightarrow D(F) = \log^{O(1)} rank(M_F)$?
- *Question 3.1*: For XOR functions? AND functions?

*1. Gavinsky and Lovett, ICALP, 2013.

- If D(F) = c, then the protocol partition M_F into 2^c monochromatic rectangles R. Thus the largest one has size $|R| \ge |M_F|/2^c$.
- Theorem^{*1}. $\forall F$, max mono. rectangle R of M_F is large $(\log \frac{|R|}{|M_F|} = \log^{O(1)} rank(M_F)) \Rightarrow$ Logrank Conjecture holds.
- Question 4. $\forall f$, max mono. rectangle of $M_{f \circ \bigoplus}$ is large \Rightarrow Logrank Conj. holds for $\forall f \circ \bigoplus$? AND functions?

*1. Nisan and Wigderson, *Combinatorica*, 1995.

• Question 5. Let $A = supp(\hat{f})$. What can we say about its additive properties? Could it be true that $|tA| \ll |A|^t$?

• Question 5.1.
$$\|\Delta_{t_1...t_k} f\|_1 \ll \|\hat{f}\|_1^{2^k}$$
?

Thanks