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Abstract

The joint numerical range Wn of n = 2 or n = 3 hermitian
3-by-3 matrices F1, . . . ,Fn is a convex and compact subset of
Rn equal to the projection of the set of positive semi-definite
3-by-3 matrices of trace one onto the span of the Fi .

The classification of W2 follows from the discussion of a planar
algebraic curve whose convex hull is W2. We provide a convex
geometric classification of W3 and remark on some problems
with its counterpart of algebraic surfaces.
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Convexity of the joint numercial range
n = 2 or n = 3 hermitian matrices F1, . . . ,Fn ∈ H3

(M3 = complex 3-by-3 matrices, H3 ⊂ M3 hermitian matrices)

joint numerical range
Wn := {〈x ,Fi(x)〉ni=1 | x ∈ C3, 〈x , x〉 = 1} ⊂ Rn

if A = F1 + i F2 then W2 is the numerical range of A which is

{〈x ,A(x)〉 | x ∈ C3, 〈x , x〉 = 1} ⊂ C ∼= R2

Wn is convex (Hausdorff 1919 and Au-Yeung, Poon 1979) and
{〈xx∗,Fi〉i | 〈x , x〉 = 1} ⊂ {〈ρ,Fi〉i | ρ ∈ M3, ρ � 0, tr(ρ) = 1} so

Wn = {〈ρ,Fi〉i | ρ ∈ M3, ρ � 0, tr(ρ) = 1}, not for n > 3!



Some recent research

Mn = {ρ ∈ Mn | ρ � 0, tr(ρ) = 1} is the state space of a
quantum mechanical system admitting n energy levels

generalizations of the numerical range spread in quantum
many-party physics, e.g. marginal problems (Coleman,
Erdahl, Ruskai, Klyachko, etc.) or quantum error correction
(Choi, Kribs and Życzkowski ’06 or Li, Poon and Sze ’09, etc.).
Still, the simplest example W3 is not understood geometrically!

W3 is studied in operator theory where the numerical
range (of operators) is a central object for almost a century

e.g. Krupnik and Spitkovsky ’06, or Chien and Nakazato ’10
Joint numerical range and its generating hypersurface



Classification of W2 — Kippenhahn’s theorem
homogeneous polynomial
p(u0,u1, . . . ,un) := det(u01+ u1F1 + · · ·+ unFn)

determinantal variety
Sn := {(u0 : u1 : · · · : un) ∈ PCn+1 | p(u0 : u1 : · · · : un) = 0}

dual variety S∧n ⊂ PCn+1 (closure of the set of tangent spaces
to non-singular points of Sn)

α : PCn+1 \ {x0 = 0} → Cn, (x0 : x1 : · · · : xn) 7→ (x1
x0

: · · · : xn
x0
)

boundary generating curve (n = 2) / surface (n = 3)
S∧n (R) := Rn ∩ α(S∧n )

Theorem 1. (Kippenhahn 1951) W2 = conv(S∧2 (R))



Classification of W2 — boundary generating curves

the boundary generating curve S∧2 (R) ⊂ R2 of W2 (blue)
belongs to one of four classes (Kippenhahn 1951)

three points, e.g. F1 =
( 0 0 0

0 1 0
0 0 0

)
, F2 =

( 0 0 0
0 0 0
0 0 1

)

ellipse and point, e.g. F1 =
( 0 1 0

1 0 0
0 0 .5

)
, F2 =

( 0 − i 0
i 0 0
0 0 .5

)

degree-4 curve, e.g. F1 =
( 0 1 0

1 0 1
0 1 0

)
, F2 =

( 1 0 0
0 1 0
0 0 −1

)

degree-6 curve, e.g. F1 =
( 0 0 .5

0 0 1
.5 1 0

)
, F2 =

( 1 0 0
0 0 0
0 0 −1

)
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Classification of W2 — boundaries

boundary of W2 (red), observe: one-dimensional faces of
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Classification of W2 — further results

the classification of W2 is worked out in terms of matrix
entries and invariants (trace, determinant, eigenvalues)

see Keeler, Rodman and Spitkovsky 1997, Rodman and
Spitkovsky ’05, Rault, Sendova and Spitkovsky ’13

closures of subsets of M3 with the same shape of W2 have
been computed (sort of perturbation of numerical ranges)

see Spitkovsky and W ’15 (arXiv:1509.05676 [math.FA])

classification of W2 by convex duality to spectrahedra

see Henrion ’10, Helton, Spitkovsky ’12



Algebraic classification of W3 — what can go wrong

an example with S∧3 (R) 6⊂W3 was found by Chien and
Nakazato ’10 so Wn = conv(S∧n (R)) holds for n = 2 but not
for n = 3!

the discrepancy S∧3 (R) \W3 6= ∅ lies in a Zariski-closed subset
of S∧3 (R) of dimension one while S∧3 (R) has dimension two

Examples: a) F1 = 1
2

( 1 0 0
0 0 1
0 1 0

)
, F2 = 1

2

( 0 0 1
0 0 0
1 0 0

)
, F3 =

( 0 0 0
0 0 0
0 0 1

)

a) b)

S∧3 (R) ∩ (boundary of
W3) is depicted — the
x1- and x2-axes lie in
S∧3 (R)!

equation of S∧3 (R)
−4x2

1 x2
3 − 4x2

2 x2
3 + 4x3

3 −
4x4

3 + 4x1x2
2 x3 − x4

2 = 0



Algebraic classification of W3 — what can go wrong

an example with S∧3 (R) 6⊂W3 was found by Chien and
Nakazato ’10 so Wn = conv(S∧n (R)) holds for n = 2 but not
for n = 3!
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Examples: b) F1 = 1
2
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, F2 = 1
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( 0 1 0
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)
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S∧3 (R) ∩ (boundary of
W3) is depicted — the
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Classification of W3 — normal cones

the set of maximizers of a linear functional on a convex set
is called exposed face, ∅ is an exposed face by definition

exposed faces of W3 are: ∅, singletons (exposed points),
segments, ellipses, and W3 (lifts are 3D-balls ∼=M2)

the set of vectors which do not make an acute angle with
the translation vector from a point x of W3 to any point of
W3 is called normal cone N(x) at x

lattice isomorphism N : {exposed faces of W3} → {normal
cones}, F 7→ N(x), x ∈ relintF (for all convex sets 6= singleton)

Theorem 2. (W ’12) every non-empty face of every
normal cone of W3 is a normal cone of W3



Classification of W3 — corner points

a point of a convex subset of R3 which has a 3D normal
cone is called corner point

studies by Binding and Li 1991 (conical point) show that if W3

has a corner point p then W3 is the convex hull of p and the
joint numerical range of three hermitian 2-by-2 matrices

Lemma 1. if W3 has a corner point p and dim(W3) = 3
then either

I W3 is the convex hull of p and an ellipse whose affine hull
does not contain p

I W3 is the convex hull of p and an ellipsoid not containing p



Classification of W3 — definition

using Theorem 2 and the isomorphism N we notice that the
normal cone lattice of W3 is atomistic and the exposed face
lattice coatomistic: if dim(W3) = 3 then the coatoms are
smooth exposed points or large faces (segments and ellipses)

Idea. for the classification of W3 we use the sublattice L of
the exposed faces generated by the large faces (up to
isomorphisms of the set of segments and set of ellipses)

I it turns out that the numbers of segments s and ellipses e
specify L

I the bound e ≤ 4 was proved by Chien and Nakazato ’10
studying singularities of det(u01+ u1F1 + u2F2 + u3F3) = 0



Classification of W3 — lemmata
we assume in the following dim(W3) = 3, the case dim(W3) ≤ 2
reduces to the known classification of W2

I each two large faces intersect in a singleton (proof: project
W3 onto the plane spanned by the normal vectors of two
large faces and use the known classification of W2)

I if three large faces intersect then W3 has a corner point
(proof: use the isomorphism N, and notice that a
two-dimensional cone cannot have three extreme rays)

I if L contains two segments then W3 has a corner point
(proof: show that F1,F2,F3 have block diagonal form)

Theorem 3. (SWZ ’16) if W3 has no corner point then a
complete graph is embedded into the union of large faces
having one vertex on each large face



Classification of W3 — the classes
I since the boundary of W3 is homeomorphic to the sphere

S2, the complete graph has at most four vertices (Ringel,
Youngs 1968)

I if L contains a segment then the vertex degree is at most
two, so the graph has at most three vertices

in dimension dim(W3) = 3 we obtain the following list of lattices
L; depicted are { coatoms of L} = { large faces of W3 }



Classification of W3 — examples

all classes of lattices L are indeed non-empty

Ex. a) F1 =
( 1 0 0

0 1 0
0 0 −1

)
, F2 = 1√

2

( 0 1 0
1 0 1
0 1 0

)
, F3 = 1√

2

(
0 − i 0
i 0 − i
0 i 0

)

a) b)

equation of S∧3 (R) −4x3
1 − 4x4

1 + 27x2
2 + 18x1x2

2 − 13x2
1 x2

2 −
32x4

2 + 27x2
3 + 18x1x2

3 − 13x2
1 x2

3 − 64x2
2 x2

3 − 32x4
3 = 0



Classification of W3 — examples

all classes of determined by the graph embedding are indeed
non-empty

Ex. b) F1 = 1
2

( 0 1 0
1 0 0
0 0 0

)
, F2 = 1

2

( 0 0 1
0 0 0
1 0 0

)
, F3 = 1

2

( 0 0 0
0 0 1
0 1 0

)

a) b)

equation of S∧3 (R) x1x2x3 − x2
1 x2

2 − x2
1 x2

3 − x2
2 x2

3 = 0



Classification of W3 — remaining examples

e = 0, s = 0: F1 =
( 0 1 0

1 0 0
0 0 0

)
, F2 =

( 0 − i 0
i 0 0
0 0 0

)
, F3 =

( 1 0 0
0 −1 0
0 0 0

)
e = 0, s = 1: F1 =

( 0 1 0
1 0 0
0 0 0

)
, F2 =

( 1 0 0
0 −1 0
0 0 1

)
, F3 = 1√

2

( 0 0 i
0 0 1
− i 1 0

)
e = 2, s = 0: F1 =

( 1 0 0
0 −1 0
0 0 0

)
, F2 =

( 0 0 1
0 0 0
1 0 0

)
, F3 =

( 0 1 0
1 0 0
0 0 0

)
e = 3, s = 0: F1 =

( 1 0 0
0 0 1
0 1 0

)
, F2 =

( 0 1 0
1 0 0
0 0 1

)
, F3 =

( 0 0 i
0 1 0
− i 0 0

)
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