An analysis of shape ensembles through modular diffeomorphisms

Mathematics of Shapes and Applications 2016

Barbara Gris

Advisors: Alain Trouvé (CMLA) and Stanley Durrleman (ICM) gris@cmla.ens-cachan.fr

July 20, 2016

Introduction

Deformation modules

Definition and first example Combination of deformation modules Modular large deformations

Studying shape variability

Sub-Riemannian structure on ${\mathcal O}$ Studying shape variability in practice

Example

A simple example Weak prior

Conclusion

- Introduction

Sommaire

Introduction

Deformation modules

Definition and first example Combination of deformation modules Modular large deformations

Studying shape variability

Sub-Riemannian structure on \mathcal{O} Studying shape variability in practice

Example

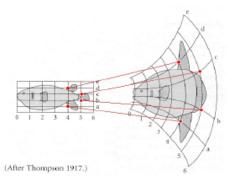
A simple example Weak prior

Conclusion

- Introduction

Framework: Large deformations

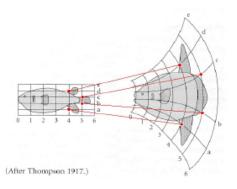
Studying a population of shapes through diffeomorphisms deforming them.



- Introduction

Framework : Large deformations

Studying a population of shapes through diffeomorphisms deforming them.

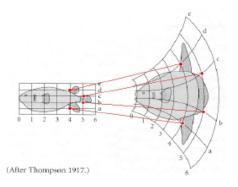


$$lacksquare$$
 $\phi_0 = \mathit{Id}$, $rac{\mathit{d}}{\mathit{dt}}\phi_t = \mathit{v}_t \circ \phi_t$ with $\mathit{v}_t \in \mathit{V}_{\phi_t}$.

Introduction

Framework : Large deformations

Studying a population of shapes through diffeomorphisms deforming them.



- $\phi_0 = Id$, $\frac{d}{dt}\phi_t = v_t \circ \phi_t$ with $v_t \in V_{\phi_t}$.
- → Which trajectories of vector fields ?

An analysis of shape ensembles through modular diffeomorphisms

Introduction

Previous works

Non parametric frameworks: Shape spaces [s. Arguillere. Géométrie sous-riemannienne en dimension infinie et applications à l'analyse mathématique des formes. PhD thesis, 2014.]

- LDDMM [M. I. Miller, L. Younes, and A. Trouvé. Diffeomorphometry and geodesic positioning systems for human anatomy, 2014]
- Higher-order momentum [S. Sommer M. Nielsen, F. Lauze, and X. Pennec. Higher-order momentum distributions and locally affine Iddmm registration. SIAM Journal on Imaging Sciences, 2013]
- Sparse LDDMM [s. Durrleman, M. Prastawa, G. Gerig, and S. Joshi. Optimal data-driven sparse parameterization of diffeomorphisms for population analysis. In Information Processing in Medical Imaging, pages 123-134. Springer, 2011]

Introduction

"Is it possible to mechanize human intuitive understanding of biological pictures that typically exhibit a lot of variability but also possess characteristic structure?"

Ulf Grenander

Hands: a Pattern Theoric Study of Biological Shapes, 1991

An analysis of shape ensembles through modular diffeomorphisms

Introduction

Previous works

Parametric models to model non linear patterns :

- ► GRID [U. Grenander , A. Srivastava , S. Saini. A pattern-theoric characerization of biological growth. IEEE, 2007]
- Poly-affine [c. Seiler , X. Pennec, and M. Reyes. Capturing the multiscale anatomical shape variability with polyaffine transformation trees. Medical image analysis, 2012]
- Diffeons [L. Younes. Constrained diffeomorphic shape evolution. Foundations of Computational Mathematics, 2012.]

An analysis of shape ensembles through modular diffeomorphisms $\mathrel{\bigsqcup}_{\mathsf{Introduction}}$

Aim

An analysis of shape ensembles through modular diffeomorphisms _Introduction

Aim

Generic generators

An analysis of shape ensembles through modular diffeomorphisms

_Introduction

Aim

- Generic generators
- Complex and chosen constraints

Aim

- Generic generators
- Complex and chosen constraints
- Metric on shape space taking into account constraints

Sommaire

Introduction

Deformation modules

Definition and first example Combination of deformation modules Modular large deformations

Studying shape variability

Sub-Riemannian structure on \mathcal{O} Studying shape variability in practice

Example

A simple example Weak prior

Conclusion

1	analysis of shape ensembles through modular diffeomorphisms Deformation modules Definition and first example

A deformation module can generate vector fields:

An analysis of shape ensembles through modular diffeomorphisms Deformation modules Definition and first example

A deformation module can generate vector fields:

Of a particular type

An analysis of shape ensembles through modular diffeomorphism	ıs
Deformation modules	

Definition and first example

A deformation module can generate vector fields:

- Of a particular type
- Parametrized in small dimension

An analysis of shape ensembles through modular diffeomorphisms

Deformation modules

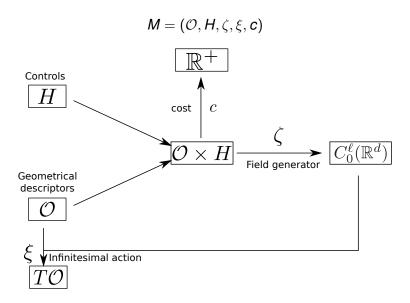
Definition and first example

$$\textit{M} = (\mathcal{O}, \textit{H}, \zeta, \xi, \textit{c})$$

An analysis of shape ensembles through modular diffeomorphisms

Deformation modules

Definition and first example

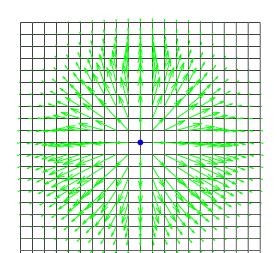


An analysis of shape ensembles through modular diffeomorphisms

Deformation modules

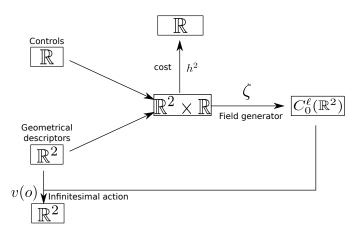
Lefinition and first example

Local scaling of scale σ Example of generated vector field



- Definition and first example

Local scaling of scale σ



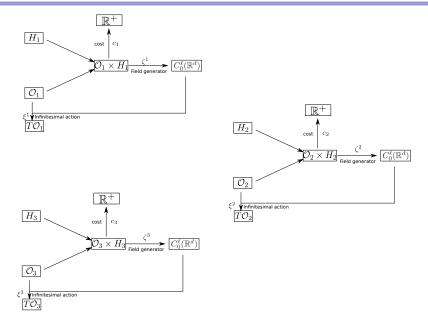
L _D	nalysis of shape ensembles through modular diffeomorphisms leformation modules – Definition and first example	

Constraints on the deformation model

- Constraints on the deformation model
- More complicated constraints ?

- Constraints on the deformation model
- More complicated constraints ?
 - $\longrightarrow \text{Combine deformation modules}$

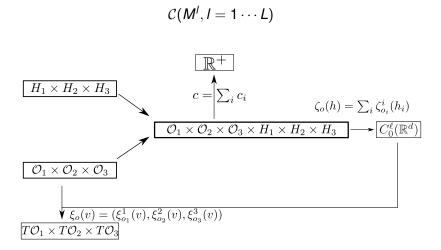
Combination of deformation modules



An analysis of shape ensembles through modular diffeomorphisms

L Deformation modules

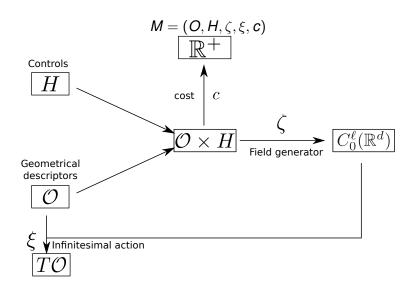
Combination of deformation modules



An analysis of shape ensembles through modular diffeomorphisms

Deformation modules

Modular large deformations



Uniform Embedding Condition

Definition

Let $M=(\mathcal{O},H,\zeta,\xi,c)$ be a C^k -deformation module of order ℓ . We say that M satisfies the **Uniform Embedding Condition** (**UEC**) if there exists a Hilbert space of vector fields V continuously embedded in $C_0^{\ell+k}(\mathbb{R}^d)$ and a constant C>0 such that for all $0\in\mathcal{O}$ and for all $h\in H$, $\zeta_0(h)\in V$ and

$$|\zeta_o(h)|_V^2 \leq Cc_o(h)$$

Deformation modules

[☐] Modular large deformations

Uniform Embedding Condition

Definition

Let $M=(\mathcal{O},H,\zeta,\xi,c)$ be a C^k -deformation module of order ℓ . We say that M satisfies the **Uniform Embedding Condition** (**UEC**) if there exists a Hilbert space of vector fields V continuously embedded in $C_0^{\ell+k}(\mathbb{R}^d)$ and a constant C>0 such that for all $0\in\mathcal{O}$ and for all $h\in H$, $\zeta_o(h)\in V$ and

$$|\zeta_o(h)|_V^2 \leq Cc_o(h)$$

Proposition

If M^I , $I=1\cdots L$, are C^k -deformation modules of order ℓ that satisfy UEC, then $\mathcal{C}(M^I,I=1\cdots L)$ satisfies UEC.

⁻ Deformation modules

[☐] Modular large deformations

An analysis of shape ensembles through modular diffeomorphisms	
Deformation modules	

└ Modular large deformations

Definition (Finite energy controlled paths on \mathcal{O})

Modular large deformations

Definition (Finite energy controlled paths on \mathcal{O})

• Energy
$$E(o,h) \doteq \int_0^1 c_{o_t}(h_t) dt < \infty$$

Modular large deformations

Definition (Finite energy controlled paths on \mathcal{O})

- Energy $E(o,h) \doteq \int_0^1 c_{o_t}(h_t) dt < \infty$
- $\dot{o}_t = \xi_{o_t}(v_t)$ where $v_t = \zeta_{o_t}(h_t) \in \zeta_{o_t}(H)$

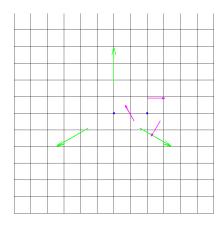
☐ Modular large deformations

Definition (Finite energy controlled paths on \mathcal{O})

- Energy $E(o,h) \doteq \int_0^1 c_{o_t}(h_t) dt < \infty$
- $ightharpoonup \dot{o}_t = \xi_{o_t}(v_t)$ where $v_t = \zeta_{o_t}(h_t) \in \zeta_{o_t}(H)$
- $\longrightarrow \varphi_{t=1}^{\zeta_o(h)}$ is a modular large deformation

☐ Modular large deformations

An example



Studying shape variability

Sommaire

Introduction

Deformation modules

Definition and first example Combination of deformation modules Modular large deformations

Studying shape variability

Sub-Riemannian structure on $\ensuremath{\mathcal{O}}$ Studying shape variability in practice

Example

A simple example Weak prior

Conclusion

An analysis of shape ensembles through modular diffeomorphisms

Studying shape variability

└Sub-Riemannian structure on O

Proposition

Wet set ρ : $(o, h) \in \mathcal{O} \times H \mapsto (o, \xi_o \circ \zeta_o(h)) \in T\mathcal{O}$.

An analysis of shape ensembles through modular diffeomorphisms

Studying shape variability

– Sub-Riemannian structure on $\mathcal O$

Proposition

Wet set $\rho : (o, h) \in \mathcal{O} \times H \mapsto (o, \xi_o \circ \zeta_o(h)) \in T\mathcal{O}$. Then $(\mathcal{O} \times H, c, \rho)$ defines a sub-Riemannian structure on \mathcal{O}

☐ Sub-Riemannian structure on O

Proposition

Wet set $\rho : (o, h) \in \mathcal{O} \times H \mapsto (o, \xi_o \circ \zeta_o(h)) \in T\mathcal{O}$. Then $(\mathcal{O} \times H, c, \rho)$ defines a sub-Riemannian structure on \mathcal{O} and

Dist
$$(a,b)^2 = \inf\{\int_0^1 c_o(h) \mid h \in L^2([0,1], H), \dot{o} = \rho_o(h), o_{t=0} = a, o_{t=1} = b\}$$

 \sqsubseteq Sub-Riemannian structure on $\mathcal O$

Proposition

Wet set $\rho: (o,h) \in \mathcal{O} \times H \mapsto (o,\xi_o \circ \zeta_o(h)) \in T\mathcal{O}$. Then $(\mathcal{O} \times H,c,\rho)$ defines a sub-Riemannian structure on \mathcal{O} and

Dist
$$(a,b)^2 = \inf\{\int_0^1 c_o(h) \mid h \in L^2([0,1], H), \dot{o} = \rho_o(h), c_{t=0} = a, c_{t=1} = b\}$$

Building an atlas of $T_1, \dots, T_N \in \mathcal{O}$:

 \square Sub-Riemannian structure on $\mathcal O$

Proposition

Wet set $\rho : (o, h) \in \mathcal{O} \times H \mapsto (o, \xi_o \circ \zeta_o(h)) \in T\mathcal{O}$. Then $(\mathcal{O} \times H, c, \rho)$ defines a sub-Riemannian structure on \mathcal{O} and

Dist
$$(a,b)^2 = \inf\{\int_0^1 c_o(h) \mid h \in L^2([0,1], H), \dot{o} = \rho_o(h), o_{t=0} = a, o_{t=1} = b\}$$

Building an atlas of $T_1, \dots, T_N \in \mathcal{O}$:

$$E\Big(o_{temp},(h^k)_k,(T_k)_k\Big) = \sum_k \int_0^1 c_{o^k}(h^k) + \mu(\varphi_{t=1}^{\zeta_{o^k}(h^k)} \cdot o_{temp},T_k)$$

 \sqsubseteq Sub-Riemannian structure on $\mathcal O$

Proposition

Wet set $\rho : (o, h) \in \mathcal{O} \times H \mapsto (o, \xi_o \circ \zeta_o(h)) \in T\mathcal{O}$. Then $(\mathcal{O} \times H, c, \rho)$ defines a sub-Riemannian structure on \mathcal{O} and

Dist
$$(a,b)^2 = \inf\{\int_0^1 c_o(h) \mid h \in L^2([0,1], H), \dot{o} = \rho_o(h), o_{t=0} = a, o_{t=1} = b\}$$

Building an atlas of $T_1, \dots, T_N \in \mathcal{O}$:

$$E\Big(o_{temp},(h^k)_k,(T_k)_k\Big) = \sum_k \int_0^1 c_{o^k}(h^k) + \mu(\varphi_{t=1}^{\zeta_{o^k}(h^k)} \cdot o_{temp},T_k)$$

where $o_{temp} = o_{t=0}^k$

☐ Sub-Riemannian structure on O

Proposition

Wet set $\rho : (o, h) \in \mathcal{O} \times H \mapsto (o, \xi_o \circ \zeta_o(h)) \in T\mathcal{O}$. Then $(\mathcal{O} \times H, c, \rho)$ defines a sub-Riemannian structure on \mathcal{O} and

Dist
$$(a,b)^2 = \inf\{\int_0^1 c_o(h) \mid h \in L^2([0,1], H), \dot{o} = \rho_o(h), o_{t=0} = a, o_{t=1} = b\}$$

Building an atlas of $T_1, \dots, T_N \in \mathcal{O}$:

$$E\Big(o_{temp},(h^k)_k,(T_k)_k\Big) = \sum_k \int_0^1 c_{o^k}(h^k) + \mu(\varphi_{t=1}^{\zeta_{o^k}(h^k)} \cdot o_{temp},T_k)$$

where $o_{temp} = o_{t=0}^k$, $\dot{o}_t^k = \xi_{o^k} \circ \zeta_{o^k}(h^k)$.

An analysis of shape ensembles through modular diffeomorphisms
Studying shape variability
Studying shape variability in practice

An analysis of shape ensembles through modular diffeomorphisms

Studying shape variability

Studying shape variability in practice

Goal:

 $\blacktriangleright \text{ Study } T_1, \cdots T_N \in \mathcal{F}$

An analysis of shape ensembles through modular diffeomorphisms

Studying shape variability

Studying shape variability in practice

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

An analysis of shape ensembles through modular diffeomorphisms

Studying shape variability
Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

We build:

► $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F}

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

We build:

► $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F} : $\zeta^2 = 0$

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

We build:

▶ $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F} : $\zeta^2 = 0$, $\xi^2 = \xi_{\mathcal{F}}$

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

We build:

► $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F} : $\zeta^2 = 0$, $\xi^2 = \xi_{\mathcal{F}}$, $c^2 = 0$.

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

- ► $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F} : $\zeta^2 = 0$, $\xi^2 = \xi_{\mathcal{F}}$, $c^2 = 0$.
- ► $M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c)$:

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

- ► $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F} : $\zeta^2 = 0$, $\xi^2 = \xi_{\mathcal{F}}$, $c^2 = 0$.
- $M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c)$:

$$\zeta_o(h) = \zeta_{h^1}^1(o^1) + \zeta_{h^2}^2(o^2)$$

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

- ► $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F} : $\zeta^2 = 0$, $\xi^2 = \xi_{\mathcal{F}}$, $c^2 = 0$.
- ► $M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c)$:

$$\zeta_o(h) = \zeta_{h^1}^1(o^1) + \zeta_{h^2}^2(o^2) = \zeta_{h^1}^1(o^1),$$

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

- ► $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F} : $\zeta^2 = 0$, $\xi^2 = \xi_{\mathcal{F}}$, $c^2 = 0$.
- ► $M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c)$:
 - $\zeta_o(h) = \zeta_{h^1}^1(o^1) + \zeta_{h^2}^2(o^2) = \zeta_{h^1}^1(o^1),$
 - $\xi_o(v) = (\xi_{o^1}^1(v), \xi_f^2(v)),$

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

- ► $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F} : $\zeta^2 = 0$, $\xi^2 = \xi_{\mathcal{F}}$, $c^2 = 0$.
- ► $M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c)$:
 - $\zeta_o(h) = \zeta_{h^1}^1(o^1) + \zeta_{h^2}^2(o^2) = \zeta_{h^1}^1(o^1),$
 - $\xi_o(v) = (\xi_{o^1}^1(v), \xi_f^2(v)),$
 - $c_o(h) = c_{h^1}^1(o^1) + c_{h^2}^2(o^2)$

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

- ► $M^2 = (\mathcal{F}, \{0\}, \zeta^2, \xi^2, c^2)$ = Silent deformation module induced by \mathcal{F} : $\zeta^2 = 0$, $\xi^2 = \xi_{\mathcal{F}}$, $c^2 = 0$.
- ► $M = C(M^1, M^2) = (\mathcal{O}^1 \times \mathcal{F}, H^1 \times \{0\}, \zeta, \xi, c)$:
 - $\zeta_o(h) = \zeta_{h^1}^1(o^1) + \zeta_{h^2}^2(o^2) = \zeta_{h^1}^1(o^1),$
 - $\xi_o(v) = (\xi_{o^1}^1(v), \xi_f^2(v)),$
 - $c_o(h) = c_{h^1}^1(o^1) + c_{h^2}^2(o^2) = c_{h^1}^1(o^1).$

An analysis of shape ensembles through modular diffeomorphisms

Studying shape variability

Studying shape variability in practice

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$

Studying shape variability in practice

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$
- \longrightarrow Building an atlas on $\mathcal{O}=\mathcal{O}^1\times\mathcal{F}$

Studying shape variability
Studying shape variability in practice

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$
- \longrightarrow Building an atlas on $\mathcal{O} = \mathcal{O}^1 \times \mathcal{F}$

$$E\left(o_{temp},(h^k)_k,(T_k)_k\right) = \sum_k \int_0^1 c_{o^k}(h^k) + \mu(\varphi_{t=1}^{\zeta_{o^k}(h^k)} \cdot \mathcal{S}, T_k)$$

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$
- \longrightarrow Building an atlas on $\mathcal{O} = \mathcal{O}^1 \times \mathcal{F}$

$$E\left(o_{temp},(h^k)_k,(T_k)_k\right) = \sum_k \int_0^1 c_{o^k}(h^k) + \mu(\varphi_{t=1}^{\zeta_{o^k}(h^k)} \cdot S, T_k)$$

where $o_{temp} = (o_{temp}^1, S)$

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$
- \longrightarrow Building an atlas on $\mathcal{O} = \mathcal{O}^1 \times \mathcal{F}$

$$E\left(o_{temp},(h^k)_k,(T_k)_k\right) = \sum_k \int_0^1 c_{o^k}(h^k) + \mu(\varphi_{t=1}^{\zeta_{o^k}(h^k)} \cdot S, T_k)$$

where $o_{temp} = (o_{temp}^1, S) = o_{t=0}^k$

Studying shape variability in practice

Goal:

- ▶ Study $T_1, \dots T_N \in \mathcal{F}$
- ► Thanks to a user-defined deformation module $M^1 = (\mathcal{O}^1, H^1, \zeta^1, \xi^1, c^1)$
- \longrightarrow Building an atlas on $\mathcal{O} = \mathcal{O}^1 \times \mathcal{F}$

$$E\left(o_{temp},(h^k)_k,(T_k)_k\right) = \sum_k \int_0^1 c_{o^k}(h^k) + \mu(\varphi_{t=1}^{\zeta_{o^k}(h^k)} \cdot \mathcal{S}, T_k)$$

where $o_{temp} = (o_{temp}^1, S) = o_{t=0}^k$, $o_t^k = \xi_{o^k} \circ \zeta_{o^k}(h^k)$.

Sommaire

Example

Introduction

Deformation modules

Definition and first example Combination of deformation modules Modular large deformations

Studying shape variability

Sub-Riemannian structure on \mathcal{O} Studying shape variability in practice

Example

A simple example Weak prior

Conclusion

An analysis of shape ensembles through modular diffeomorphisms

Example

A simple example

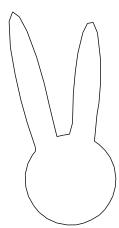
Targets

An analysis of shape ensembles through modular diffeomorphisms

Example

A simple example

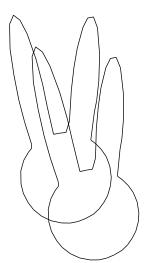
Targets



An analysis of shape ensembles through modular diffeomorphisms $\mathrel{\bigsqcup_{\mathsf{Example}}}$

Targets

A simple example

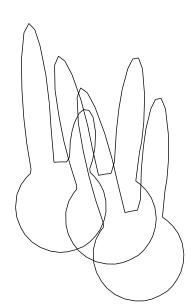


An analysis of shape ensembles through modular diffeomorphisms

LExample

Targets

A simple example

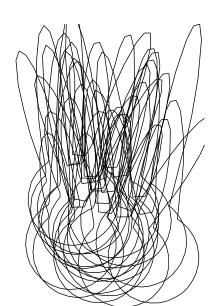


An analysis of shape ensembles through modular diffeomorphisms

Example

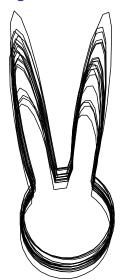
A simple example

Targets



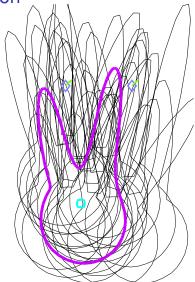
A simple example

With previous rigid registration



∟A simple example

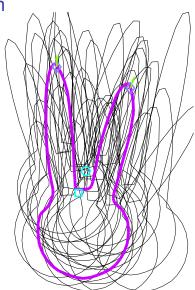
Before optimisation



An analysis of shape ensembles through modular diffeomorphisms $\mathrel{\bigsqcup}_{\mathsf{Example}}$

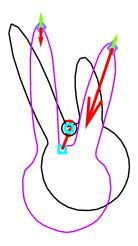
A simple example

After optimisation

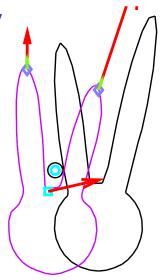


Example of trajectory

A simple example



LA simple example



An analysis of shape ensembles through modular diffeomorphisms

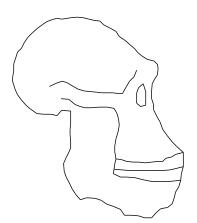
Example

Weak prior

An analysis of shape ensembles through modular diffeomorphisms
Lexample

Weak prior Targets

Weak prior

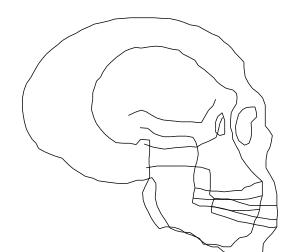


An analysis of shape ensembles through modular diffeomorphisms Lexample

Weak prior

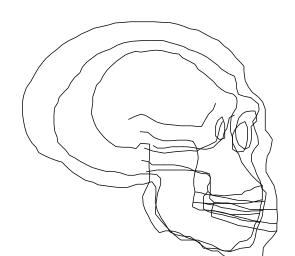
└─Weak prior

Targets



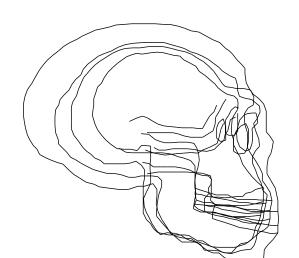
An analysis of shape ensembles through modular diffeomorphisms Lexample

Weak prior



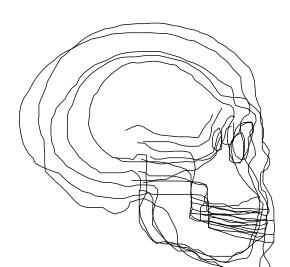
An analysis of shape ensembles through modular diffeomorphisms Lexample

Weak prior



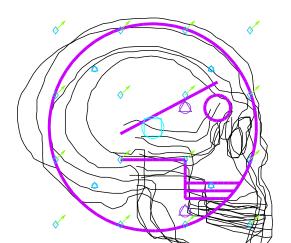
An analysis of shape ensembles through modular diffeomorphisms $$\bot$_{\rm Example}$$

Weak prior



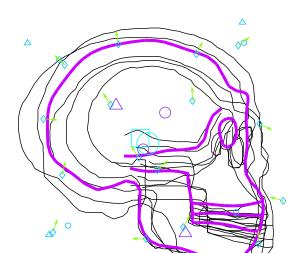
└─Weak prior

Weak prior Before optimisation



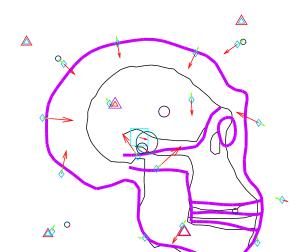
Weak prior

Weak prior After optimisation



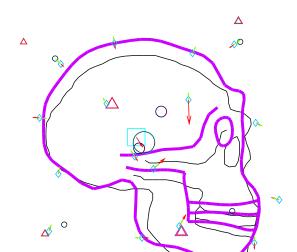
Weak prior

Weak prior



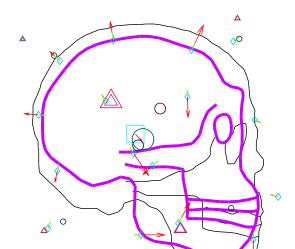
└─Weak prior

Weak prior



Weak prior

Weak prior



-Conclusion

Sommaire

Introduction

Deformation modules

Definition and first example Combination of deformation modules Modular large deformations

Studying shape variability

Sub-Riemannian structure on \mathcal{O} Studying shape variability in practice

Example

A simple example Weak prior

Conclusion

An analysis of shape ensembles through modular diffeomorphisms $\hfill \Box$ Conclusion

Generic deformation modules

An analysis of shape ensembles through modular diffeomorphisms

Conclusion

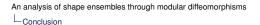
- Generic deformation modules
- Easily incorporate complex constraints in deformation model

- Generic deformation modules
- Easily incorporate complex constraints in deformation model
- Metric taking into account constraints

- Generic deformation modules
- Easily incorporate complex constraints in deformation model
- Metric taking into account constraints

- Generic deformation modules
- Easily incorporate complex constraints in deformation model
- Metric taking into account constraints

[B. G., S. Durrleman, A. Trouvé. A sub-Riemannian modular framework for diffeomorphism based analysis of shape ensembles, 2016]



Future work

Better understanding parametrization of geodesics

An analysis of shape ensembles through modular diffeomorphisms Conclusion

Future work

- Better understanding parametrization of geodesics
- Influence of cost

Future work

- Better understanding parametrization of geodesics
- Influence of cost
- Choice of model

Future work

- Better understanding parametrization of geodesics
- Influence of cost
- Choice of model
- Infinite dimension

An analysis of shape ensembles through modular diffeomorphism	ns
Conclusion	

Thank you for your attention!