Reproducing kernels in the vectorial case

July 21, 2016

Reproducing kernels in the vectorial case

Some reminders on Hilbert spaces

- *H* real Hilbert space : real vector space (possibly infinite dimensional) with an inner product ⟨·, ·⟩_H, which is a complete metric space for the corresponding norm || · ||_H.
- A linear form on H is a linear map $\mu: H \to \mathbb{R}$.
- A linear form μ on H is continuous if it satifies

$$\exists C > 0, \quad \forall u \in H, \quad |\mu(u)| \le C \|u\|_H.$$

• The space of continuous linear forms on *H* is denoted *H*^{*}, the **dual space** of *H*. It is a Hilbert space with the norm

$$\|\mu\|_{H^*} := \sup\{|\mu(u)|, \|u\|_H \le 1\}.$$

• Riesz representation theorem : every continuous linear form μ can be written as a scalar product :

 $\forall \mu \in H^*, \quad \exists! \; \tilde{\mu} \in H, \quad \forall u \in H, \; \mu(u) = \langle \tilde{\mu}, u \rangle_H.$

- Conversely for every $v \in H$, the map $u \mapsto \langle u, v \rangle_H$ is a continuous linear form on H.
- The mapping $\mathcal{K}_H : \mu \mapsto \tilde{\mu}$ is an isometry between H^* and $H : \|\mu\|_{H^*} = \|\tilde{\mu}\|_H$.

Reproducing kernels, the scalar case

- Let H be a Hilbert space whose elements are functions $f: X \to \mathbb{R}$. X can be any set.
- For $x \in X$, denote δ_x the linear form $f \mapsto f(x)$.

Definition

- *H* is a **Reproducing Kernel Hilbert Space (RKHS)** if all δ_x are continuous, i.e. $\forall x \in X, \quad \delta_x \in H^*$.
- The reproducing kernel of H is the map $K_H : X \times X \to \mathbb{R}$ defined by

$$\forall x \in X, \quad K_H(\cdot, x) := \mathcal{K}_H \delta_x.$$

More concretely it satisfies :

$$\forall x \in X, \forall f \in H, \quad \langle K_H(\cdot, x), f \rangle_H = f(x).$$

Properties of reproducing kernels :

• Reproducing property :

 $\forall x, y \in X, \quad \langle K_H(\cdot, x), K_H(\cdot, y) \rangle_H = K_H(x, y).$

- Symetry : $K_H(x, y) = K_H(y, x)$.
- K_H is a **positive definite kernel** on X: for every $n \in \mathbb{N}$, points x_1, \ldots, x_n in X, and real numbers a_1, \ldots, a_n ,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j K_H(x_i, x_j) \ge 0.$$

In other words, for every $n \in \mathbb{N}$, $x_1, \ldots, x_n \in X$, the matrix $(K_H(x_i, x_j))_{1 \le i,j \le n}$ is a symetric positive matrix.

Reproducing kernels, the vectorial case

- Let H be a Hilbert space whose elements are functions $f: X \to E$, where E is an euclidean space.
- For $x \in X$, $\alpha \in E$, denote δ_x^{α} the linear form $f \mapsto \langle f(x), \alpha \rangle_E$.

Definition

- *H* is a **Reproducing Kernel Hilbert Space (RKHS)** if all δ_x^{α} are continuous, i.e. $\forall x \in X, \ \forall \alpha \in E, \quad \delta_x^{\alpha} \in H^*$.
- The reproducing kernel of H is the map $K_H: X \times X \to \text{End}(E)$ defined by

$$\forall x \in X, \ \forall \alpha \in E, \quad K_H(\cdot, x)\alpha := \mathcal{K}_H \delta_x^{\alpha}.$$

It satisfies :

 $\forall x \in X, \ \forall \alpha \in E \ \forall f \in H, \quad \langle K_H(\cdot, x)\alpha, f \rangle_H = \langle f(x), \alpha \rangle_E.$

Properties of reproducing kernels :

• Reproducing property : $\forall x, y \in X, \ \forall \alpha, \beta \in E$,

$$\langle K_H(\cdot, x)\alpha, K_H(\cdot, y)\beta \rangle_H = \langle \alpha, K_H(x, y)\beta \rangle_E.$$

- Symetry : $K_H(y, x) = K_H(x, y)^*$.
- *K_H* is a positive definite kernel on *X*: for every *n* ∈ N, points *x*₁,..., *x_n* in *X*, and vectors *α*₁,..., *α_n* in *E*,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \langle \alpha_i, K_H(x_i, x_j) \alpha_j \rangle_E \ge 0.$$

remark : more precisely, a positive definite kernel on X is a function $X\times X\to {\rm End}(E)$ which satisfies the two last properties.

If we are given an orthonormal basis of E (e.g. the canonical basis for $E = \mathbb{R}^m$), then $K_H(x, y)$ can be considered as a $m \times m$ matrix (where $m = \dim E$). Then the two last properties can be rephrased as

•
$$K_H(y,x) = K_H(x,y)^T$$
,

• for every $n \in \mathbb{N}$ and points x_1, \ldots, x_n in X, the $nm \times nm$ matrix with $m \times m$ blocks $K_H(x_i, x_j)$ is a symetric positive matrix.

Equivalence between reproducing kernels and positive definite kernels

Theorem

Let X be any set and E an euclidean space. Every positive definite kernel $K : X \times X \rightarrow End(E)$ is associated to a unique RKHS H of functions $f : X \rightarrow E$ such that $K_H = K$.

For the LDDMM framework, this shows that one can start by choosing a kernel function and build all the theory from it. Examples of commonly used kernels :

- gaussian $K_V(x, y) = \exp(-\|x y\|^2/\sigma^2)$ Id ($\sigma > 0$ is scale parameter)
- Cauchy $K_V(x,y) = 1/(1 + \|x-y\|^2/\sigma^2)$ Id
- Sobolev kernels, corresponding to the Sobolev spaces. They are defined using Bessel functions.

Optimal interpolation in RKHS

Let H be a RKHS of functions $f: X \to E$ with strictly positive definite repriducing kernel, $x_i \in X$ distinct points and $\gamma_i \in E$, $1 \le i \le n$. Consider the problem

(P) Find $f \in H$ such that $f(x_i) = \gamma_i \ \forall i$ and $\|f\|_H$ is minmal.

Proposition

If there exists $f \in H$ such that $f(x_i) = \gamma_i \ \forall i$, then the problem (P) has a unique solution of the form

$$f^*(x) = \sum_{i=1}^n K_H(x, x_i)\alpha_i$$

for some vectors $\alpha_i \in E$ which are the solutions to

$$\sum_{i=1}^{n} K_H(x_j, x_i) \alpha_i = \gamma_j, \ 1 \le j \le n.$$