Geodesic equations and shooting algorithms for matching and template estimation

July 21, 2016

Geodesic equations and shooting algorithms

Finite dimensional setting for LDDMM

We come back to the LDDMM theory (following talk 1)

• In a discrete setting, shapes are often parametrized by a finite number of points (e.g. for curves or surface meshes : the vertices). So we consider data attachment terms which depend only on the final positions $\varphi_1^v(x_i)$: $A(\varphi_1^v) = \tilde{A}((\varphi_1^v(x_i))_{1 \le i \le n})$

• Denote $q_i(t) = \varphi_t^v(x_i)$ the trajectories of points x_i through the flow. The optimal vector fields must correspond at each time t to the optimal interpolation of vector $\dot{q}_i(t)$ at positions $q_i(t)$.

Finite dimensional setting for LDDMM

• \Rightarrow at each time step t, the optimal vector fields depends on a finite number of vectors $p_i(t)$:

$$v_t(x) = \sum_{i=1}^n K_V(x, q_i(t)) p_i(t), \text{ with } K_V(q(t), q(t)) p(t) = \dot{q}(t)$$

We call the $p_i(t)$ momentum vectors.

• Moreover, using the reproducing formula, we get

$$\|v_t\|_V^2 = \sum_{i=1}^n \sum_{j=1}^n \langle p_j(t), K_V(q_j(t), q_i(t)) p_i(t) \rangle$$

or with matrix notations : $||v_t||_V^2 = p(t)^T K_V(q(t), q(t))p(t)$.

• Now since $\dot{q}(t) = K_V(q(t),q(t))p(t)$ (flow equation), we get also

$$||v_t||_V^2 = \dot{q}(t)^T K_V(q(t), q(t))^{-1} \dot{q}(t).$$

• $\Rightarrow \int_0^1 \|v_t\|_V^2 dt$ corresponds to the energy E(q) of the path q(t) for the Riemannian metric given by matrix $K_V(q(t), q(t))^{-1}$.

Define

$$\mathcal{L}_n(\mathbb{R}^d) = \{ q = (q_1, \dots, q_n) \in (\mathbb{R}^d)^n, \ q_i \neq q_j, \ \forall i \neq j \}.$$

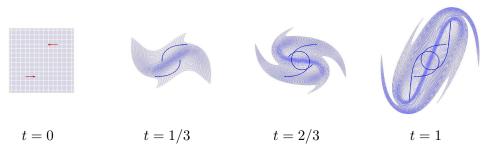
- $\mathcal{L}_n(\mathbb{R}^d)$ is a manifold as open set of $(\mathbb{R}^d)^n$.
- Consider on $\mathcal{L}_n(\mathbb{R}^d)$ the Riemannian metric whose matrix in the canonical coordinates is $K_V(q,q)^{-1}$.
- Optimal solution for matching problems correspond to geodesics in landmark space.
- We can derive the geodesic equations and use them in algorithms for optimizing matching problems.

The landmark manifold

• Geodesic equations can be written in Hamiltonian form :

$$\begin{cases} \dot{p} = -\frac{1}{2} \nabla_q \left\langle K_V(q, q) p, p \right\rangle \\ \dot{q} = K_V(q, q) p. \end{cases}$$

• Here is an example of solution : initial conditions are $q_1(0) = (0,0), q_2(0) = (1,1), p_1(0) = (1,0), p_2(0) = (-1,0),$ kernel is $K_V(x,y) = exp(-||x-y||^2/\sigma^2)$ id with $\sigma = 1$.



Back to the matching functional

• For a matching functional the optimal trajectories must follow geodesics. So the optimal vector fields v_t depend only on the initial momentum vectors p(0). So we rewrite the functional as

$$J(p(0)) = \gamma \langle K_V(q(0), q(0))p(0), p(0) \rangle + A(q(1))$$

where $p(t) \mbox{ and } q(t)$ are constrained to follow the geodesic equations.

• The gradient of this functional writes

$$\nabla J(p(0)) = 2\gamma K_V(q(0), q(0))p(0) + \left(\frac{\partial q(1)}{\partial p(0)}\right)^T \nabla A(q(1))$$

The only difficult part is of course to compute $\left(\frac{\partial q(1)}{\partial p(0)}\right)^T$. This requires to differentiate the geodesic equations.

We have that

$$\left(\frac{\partial q(1)}{\partial p(0)}\right)^T \nabla A(q(1)) = \beta_p(0)$$

where $\beta(t) = (\beta_p(t), \beta_q(t)) \in \mathbb{R}^{dn} \times \mathbb{R}^{dn}$ is solution to the following adjoint equations :

$$\begin{cases} \dot{\beta}_p = \partial_q (K_V(q,q)p)\beta_p - K_V(q,q)\beta_q \\ \dot{\beta}_q = \frac{1}{2}\partial_q^2 \langle K_V(q,q)p, p \rangle \beta_p - (\partial_q (K_V(q,q)p)^T\beta_q) \end{cases}$$

with initial condition $\beta(1) = (0, \nabla A(q(1))).$