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Finite dimensional setting for LDDMM

We come back to the LDDMM theory (following talk 1)

In a discrete setting, shapes are often parametrized by a finite
number of points (e.g. for curves or surface meshes : the
vertices). So we consider data attachment terms which
depend only on the final positions ϕv

1(xi) :
A(ϕv

1) = Ã((ϕv
1(xi))1≤i≤n)

Denote qi(t) = ϕv
t (xi) the trajectories of points xi through the

flow. The optimal vector fields must correspond at each time
t to the optimal interpolation of vector q̇i(t) at positions qi(t).
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Finite dimensional setting for LDDMM

⇒ at each time step t, the optimal vector fields depends on a
finite number of vectors pi(t) :

vt(x) =

n∑
i=1

KV (x, qi(t))pi(t), with KV (q(t), q(t))p(t) = q̇(t)

We call the pi(t) momentum vectors.
Moreover, using the reproducing formula, we get

‖vt‖2V =

n∑
i=1

n∑
j=1

〈pj(t) , KV (qj(t), qi(t))pi(t)〉

or with matrix notations : ‖vt‖2V = p(t)TKV (q(t), q(t))p(t).
Now since q̇(t) = KV (q(t), q(t))p(t) (flow equation), we get
also

‖vt‖2V = q̇(t)TKV (q(t), q(t))
−1q̇(t).

⇒
∫ 1
0 ‖vt‖

2
V dt corresponds to the energy E(q) of the path q(t)

for the Riemannian metric given by matrix KV (q(t), q(t))
−1.
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The landmark manifold

Define

Ln(Rd) = {q = (q1, . . . , qn) ∈ (Rd)n, qi 6= qj , ∀i 6= j}.

Ln(Rd) is a manifold as open set of (Rd)n.

Consider on Ln(Rd) the Riemannian metric whose matrix in
the canonical coordinates is KV (q, q)

−1.

Optimal solution for matching problems correspond to
geodesics in landmark space.

We can derive the geodesic equations and use them in
algorithms for optimizing matching problems.
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The landmark manifold

Geodesic equations can be written in Hamiltonian form :{
ṗ = −1

2∇q 〈KV (q, q)p , p〉
q̇ = KV (q, q)p.

Here is an example of solution : initial conditions are
q1(0) = (0, 0), q2(0) = (1, 1), p1(0) = (1, 0), p2(0) = (−1, 0),
kernel is KV (x, y) = exp(−‖x− y‖2/σ2)id with σ = 1.

t = 0 t = 1/3 t = 2/3 t = 1
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Back to the matching functional

For a matching functional the optimal trajectories must follow
geodesics. So the optimal vector fields vt depend only on the
initial momentum vectors p(0). So we rewrite the functional
as

J(p(0)) = γ 〈KV (q(0), q(0))p(0) , p(0)〉+A(q(1))

where p(t) and q(t) are constrained to follow the geodesic
equations.

The gradient of this functional writes

∇J(p(0)) = 2γKV (q(0), q(0))p(0) +

(
∂q(1)

∂p(0)

)T

∇A(q(1))

The only difficult part is of course to compute
(
∂q(1)
∂p(0)

)T
. This

requires to differentiate the geodesic equations.
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The adjoint equations

We have that (
∂q(1)

∂p(0)

)T

∇A(q(1)) = βp(0)

where β(t) = (βp(t), βq(t)) ∈ Rdn × Rdn is solution to the
following adjoint equations :{

β̇p = ∂q(KV (q, q)p)βp −KV (q, q)βq
β̇q =

1
2∂

2
q 〈KV (q, q)p , p〉βp − (∂q(KV (q, q)p)

Tβq.

with initial condition β(1) = (0,∇A(q(1))).

Geodesic equations and shooting algorithms


