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Manifold-Valued Data and Manifold-Valued Functions

Manifold-valued data and manifold-valued functions play an
important role in a variety of applications:

Mechanics

Reduced-order modeling

Numerical relativity

Source: http://www.ode.org/
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Gauge Field Theories

A gauge symmetry is a continuous local transformation
on the field variables that leaves the system physically
indistinguishable.
A consequence of this is that the Euler–Lagrange
equations are underdetermined, i.e., the evolution
equations are insufficient to propagate all the fields.
The kinematic fields have no physical significance, but
the dynamic fields and their conjugate momenta have
physical significance.
The Euler–Lagrange equations are overdetermined, and
the initial data on a Cauchy surface satisfies a constraint
(usually elliptic).
These degenerate systems are naturally described using
multi-Dirac mechanics and geometry.
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Electromagnetism

Let E and B be the electric and magnetic vector fields
respectively.
We can write Maxwell’s equations in terms of the scalar
and vector potentials φ and A by,

E = −∇φ− ∂A
∂t
, ∇2φ+

∂

∂t
(∇ · A) = 0,

B = ∇× A, �A +∇
(
∇ · A +

∂φ

∂t

)
= 0.

The following transformation leaves the equations
invariant,

φ→ φ− ∂f
∂t
, A→ A +∇f .

The associated Cauchy initial data constraints are,

∇ · B(0) = 0, ∇ · E(0) = 0.
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Gauge conditions

One often addresses the indeterminacy due to gauge
freedom in a field theory through the choice of a gauge
condition.
The Lorenz gauge is ∇ · A = −∂φ

∂t , which yields,

�φ = 0, �A = 0.

The Coulomb gauge is ∇ · A = 0, which yields,

∇2φ = 0, �A +∇∂φ
∂t

= 0.

Given different initial and boundary conditions, some
problems may be easier to solve in certain gauges than
others. There is no systematic way of deciding which
gauge to use for a given problem.
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Noether’s Theorem

Noether’s Theorem
For every continuous symmetry of an action, there exists a
quantity that is conserved in time.

The simplest illustration of the principle comes from
classical mechanics: a time-invariant action implies a
conservation of the Hamiltonian, which is usually identified
with energy.
More precisely, if S =

∫ tb
ta L(q, q̇)dt is invariant under the

transformation t → t + ε, then

d
dt

(
q̇
∂L
∂q̇
− L
)

=
dH
dt

= 0
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Noether’s Theorem for Gauge Field Theories

Noether’s Theorem for Gauge Field Theories

For every differentiable, local symmetry of an action, there
exists a Noether current obeying a continuity equation.
Integrating this current over a spacelike surface yields a
conserved quantity called a Noether charge.

The action principle for electromagnetism is
S = 1

2

∫
(B2 − E2)d4x . Applying Noether’s theorem to the

gauge symmetry yields the following currents:

j0 = E · ∇f j = −E
∂f
∂t

+ (B×∇)f
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Motivation for the approach we take

Our long-term goal is to develop geometric
structure-preserving numerical discretizations that
systematically addresses the issue of gauge symmetries.
Eventually, we wish to study discretizations of general
relativity that address the issue of general covariance.
Towards this end, we will consider multi-Dirac mechanics
based on a Hamilton–Pontryagin variational principle
for field theories that is well adapted to degenerate field
theories.
The issue of general covariance also leads us to avoid
using a tensor product discretization that presupposes a
slicing of spacetime, rather we will consider 4-simplicial
complexes in spacetime.
More generally, we will need to study discretizations that
are invariant to some discrete analogue of the gauge
symmetry group.
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Pontryagin bundle and Hamilton–Pontryagin principle

Consider the Pontryagin bundle TQ ⊕ T ∗Q, which has
local coordinates (q, v ,p).
The Hamilton–Pontryagin principle is given by

δ

∫
[L(q, v)− p(v − q̇)] = 0,

where we impose the second-order curve condition, v = q̇
using Lagrange multipliers p.
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Implicit Lagrangian systems

Taking variations in q, v , and p yield

δ

∫
[L(q, v)− p(v − q̇)]dt

=

∫ [
∂L
∂q
δq +

(
∂L
∂v
− p

)
δv − (v − q̇)δp + pδq̇

]
dt

=

∫ [(
∂L
∂q
− ṗ

)
δq +

(
∂L
∂v
− p

)
δv − (v − q̇)δp

]
dt ,

where we used integration by parts, and the fact that the
variation δq vanishes at the endpoints.
This recovers the implicit Euler–Lagrange equations,

ṗ =
∂L
∂q
, p =

∂L
∂v
, v = q̇.
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Multisymplectic Geometry

Base space X . (n + 1)-spacetime.
Configuration bundle. Given by
π : Y → X , with the fields as the
fiber.
Configuration q : X → Y . Gives
the field variables over each
spacetime point.
First jet J1Y . The first partials of the
fields with respect to spacetime.

Lagrangian density L : J1Y → Ωn+1(X ).
Action integral given by, S(q) =

∫
X L(j1q).

Hamilton’s principle states, δS = 0.
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Hamilton–Pontryagin for Fields

In coordinates, the Hamilton–Pontryagin principle for fields
is

S(yA, yA
µ ,p

µ
A) =

∫
U

[
pµA

(
∂yA

∂xµ
− vA

µ

)
+ L(xµ, yA, vA

µ )

]
dn+1x .

By taking variations with respect to yA, vA
µ and pµA (where

δyA vanishes on ∂U) we obtain the implicit Euler–Lagrange
equations,

∂pµA
∂xµ

=
∂L
∂yA , pµA =

∂L
∂vA

µ

, and
∂yA

∂xµ
= vA

µ .

The covariant Legendre transform involves both the
energy and momentum,

pµA =
∂L
∂vA

µ

, p = L− ∂L
∂vA

µ

vA
µ .
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Discrete Lagrangian Variational Principle

q a(  )

q b(  )

dq t( )

Q

q t( ) varied curve

q0

qN

dqi

Q

qi varied point

Discrete Lagrangian

Ld (q0,q1) ≈ Lexact
d (q0,q1) ≡

∫ h

0
L
(
q0,1(t), q̇0,1(t)

)
dt ,

where q0,1(t) satisfies the Euler–Lagrange equations for L
and the boundary conditions q0,1(0) = q0, q0,1(h) = q1.
This is related to Jacobi’s solution of the
Hamilton–Jacobi equation.
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Discrete Lagrangian Variational Principle

Discrete Hamilton’s principle

δSd = δ
∑

Ld (qk ,qk+1) = 0,

where q0, qN are fixed.
Discrete Euler-Lagrange equation

D2Ld (qk−1,qk ) + D1Ld (qk ,qk+1) = 0.

The associated discrete flow (qk−1,qk ) 7→ (qk ,qk+1) is
automatically symplectic, since it is equivalent to,

pk = −D1Ld (qk ,qk+1), pk+1 = D2Ld (qk ,qk+1),

which is the characterization of a symplectic map in terms
of a Type I generating function (discrete Lagrangian).
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Main Advantages of Variational Integrators

Discrete Noether’s Theorem
If the discrete Lagrangian Ld is (infinitesimally) G-invariant
under the diagonal group action on Q ×Q,

Ld (gq0,gq1) = Ld (q0,q1)

then the discrete momentum map Jd : Q ×Q → g∗,

〈Jd (qk ,qk+1) , ξ〉 ≡ 〈D1Ld (qk ,qk+1) , ξQ (qk )〉

is preserved by the discrete flow.
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Main Advantages of Variational Integrators

Variational Error Analysis
Since the exact discrete Lagrangian generates the exact
solution of the Euler–Lagrange equation, the exact discrete
flow map is formally expressible in the setting of variational
integrators.
This is analogous to the situation for B-series methods,
where the exact flow can be expressed formally as a
B-series.
If a computable discrete Lagrangian Ld is of order r , i.e.,

Ld (q0,q1) = Lexact
d (q0,q1) +O(hr+1)

then the discrete Euler–Lagrange equations yield an order
r accurate symplectic integrator.
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Ritz Variational Integrators

Consider an alternative expression for the exact discrete
Lagrangian,

Lexact
d (q0,q1) ≡ ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt ,

which is more amenable to discretization.
Replace the infinite-dimensional function space
C2([0,h],Q) with a finite-dimensional function space.
Replace the integral with a numerical quadrature
formula.
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Ritz Variational Integrators

A desirable property of a Ritz numerical method based on
a finite-dimensional space Fd ⊂ F , is that it should exhibit
optimal rates of convergence, which is to say that the
numerical solution qd ∈ Fd and the exact solution q ∈ F
satisfies,

‖q − qd‖ ≤ c inf
q̃∈Fd

‖q − q̃‖.

This means that the rate of convergence depends on the
best approximation error of the finite-dimensional function
space.
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Ritz Variational Integrators

Given a sequence of finite-dimensional function spaces
C1 ⊂ C2 ⊂ . . . ⊂ C2([0,h],Q) ≡ C∞.
For a correspondingly accurate sequence of quadrature
formulas,

Li
d (q0,q1) ≡ ext

q∈Ci
h
∑si

j=1
bi

j L(q(c i
j h), q̇(c i

j h)),

where L∞d (q0,q1) = Lexact
d (q0,q1).

Proving Li
d (q0,q1)→ L∞d (q0,q1), corresponds to

Γ-convergence.
For optimality, we require the bound,

Li
d (q0,q1) = L∞d (q0,q1) + c inf

q̃∈Ci

‖q − q̃‖,

where we need to relate the rate of Γ-convergence with the
best approximation properties of the family of
approximation spaces.
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Ritz Variational Integrators

Theorem (Optimality of Ritz Variational Integrators)
Under suitable technical hypotheses:

Regularity of L in a closed and bounded neighboorhood;
The quadrature rule is sufficiently accurate;
The discrete and continuous trajectories minimize their
actions;

the Ritz discrete Lagrangian has the same approximation error
as the best approximation error of the approximation space.

The critical assumption is action minimization. For
Lagrangians L = q̇T Mq̇ − V (q), and sufficiently small h,
this assumption holds.
Shows that Ritz variational integrators are order optimal;
spectral variational integrators are geometrically
convergent.
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Order Optimal Convergence of Ritz variational
integrators
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Order optimal convergence of the Kepler 2-body problem
with eccentricity 0.6 over 100 steps of h = 2.0.
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Geometric Convergence of Spectral variational
integrators
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Geometric convergence of the Kepler 2-body problem with
eccentricity 0.6 over 100 steps of h = 2.0.
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Numerical Experiments: Solar System Simulation

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Comparison of inner solar system orbital diagrams from a
spectral variational integrator and the JPL Solar System
Dynamics Group.
h = 100 days, T = 27 years, 25 Chebyshev points per
step.
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Numerical Experiments: Solar System Simulation
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Comparison of outer solar system orbital diagrams from a
spectral variational integrator and the JPL Solar System
Dynamics Group. Inner solar system was aggregated, and
h = 1825 days.
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Multisymplectic Exact Discrete Lagrangian

Recall the implicit characterization of a symplectic map in
terms of generating functions:{

pk = −D1Ld (qk ,qk+1)

pk+1 = D2Ld (qk ,qk+1)

{
pk = D1H+

d (qk ,pk+1)

qk+1 = D2H+
d (qk ,pk+1)

Symplecticity follows as a trivial consequence of these
equations, together with d2 = 0, as the following
calculation shows:

d2Ld (qk ,qk+1) = d(D1Ld (qk ,qk+1)dqk + D2Ld (qk ,qk+1)dqk+1)

= d(−pkdqk + pk+1dqk+1)

= −dpk ∧ dqk + dpk+1 ∧ dqk+1

Melvin Leok (UCSD) Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories
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Analogy with the ODE case

We consider a multisymplectic analogue of Jacobi’s
solution:

Lexact
d (q0,q1) ≡

∫ h

0
L
(
q0,1(t), q̇0,1(t)

)
dt ,

where q0,1(t) satisfies the Euler–Lagrange boundary-value
problem.
This is given by,

Lexact
d (ϕ|∂Ω) ≡

∫
Ω

L(j1ϕ̃)

where ϕ̃ satisfies the boundary conditions ϕ̃|∂Ω = ϕ|∂Ω,
and ϕ̃ satisfies the Euler–Lagrange equation in the interior
of Ω.
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Multisymplectic Relation

If one takes variations of the multisymplectic exact
discrete Lagrangian with respect to the boundary
conditions, we obtain,

∂ϕ(x ,t)Lexact
d (ϕ|∂Ω) = p⊥(x , t),

where (x , t) ∈ ∂Ω, and p⊥ is a codimension-1 differential
form, that by Hodge duality can be viewed as the normal
component (to the boundary ∂Ω) of the multimomentum at
the point (x , t).
These equations, taken at every point on ∂Ω constitute a
multisymplectic relation, which is the PDE analogue of,{

pk = −D1Ld (qk ,qk+1)

pk+1 = D2Ld (qk ,qk+1)

where the sign comes from the orientation of the boundary.

Melvin Leok (UCSD) Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories



Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces

Gauge Symmetries and Variational Discretizations

Theorem (Noether’s Theorem)
For every continuous symmetry of an action, there exists a
quantity that is conserved in time.

Theorem (Noether’s Theorem for Gauge Field Theories)

For every differentiable, local symmetry of an action, there
exists a Noether current obeying a continuity equation.
Integrating this current over a spacelike surface yields a
conserved quantity called a Noether charge.

Since gauge symmetries are associated with conserved
quantities, we need finite-elements that are
(approximately) group-equivariant.
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Motivating Example: Lorentzian Metrics

Let L denote the space of Lorentzian metric tensors:

L = {L ∈ R4×4 | L = LT , det L 6= 0, signature(L) = (3,1)}.

Problem

Given L(i) ∈ L at the vertices x (i) of a
simplex Ω, find a continuous function
IL : Ω→ L such that:

x (2)

x (4)

x (1)

x (3) •

•

•
•

1 IL(x (i)) = L(i) for each i .
2 IL(x) ∈ L for every x ∈ Ω.
3 (Frame invariance): If Q ∈ O(1,3) and

L(i) ← QL(i)QT for each i , then IL(x)← QIL(x)QT .

Here, O(1,3) denotes the indefinite orthogonal group:

O(1,3) = {Q ∈ R4×4 | QJQT = J},
where J = diag(−1,1,1,1).

Melvin Leok (UCSD) Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories



Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces

Motivating Example: Lorentzian Metrics

Options:
1 Componentwise interpolation: Not signature-preserving, in

general. For instance,

1
2


0 4 0 0
4 0 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸
∈L since λ=−4,1,1,4

+
1
2


2 −4 0 0
−4 2 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸
∈L since λ=−2,1,1,6

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸
/∈L since λ=1,1,1,1
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Motivating Example: Lorentzian Metrics

1 Geodesic interpolation [Grohs, Sander]:

IL(x) = arg min
L∈L

m∑
i=1

φi(x) dist(L(i),L)2,

where {φi}mi=1 are scalar-valued shape functions satisfying
φi(x (j)) = δij . Also known as the weighted Riemannian
mean.

L(2)

L(4) L(1)

L(3)

L
•

• •

•

•

L
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Motivating Example: Lorentzian Metrics

Our approach:
Idea: If L were a Lie group, one could use the exponential
map and perform all calculations on its Lie algebra, a linear
space.

•

L

exp

In reality, L is not a Lie group (it is a symmetric space).
Nonetheless, a similar construction is available.
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Motivating Example: Lorentzian Metrics

1 Notice that L is diffeomorphic to GL4(R)/O(1,3): The map

ϕ̄ : GL4(R)/O(1,3)→ L
[A] 7→ AJAT ,

is a diffeomorphism, where J = diag(−1,1,1,1).
2 Every coset [A] has a canonical representative Y by virtue

of the generalized polar decomposition:

A = YQ, Y ∈ SymJ(4), Q ∈ O(1,3),

where

SymJ(4) = {Y ∈ GL4(R) | YJ = JY T}.
3 log(Y ) lives in a linear space called a Lie triple system:

log(Y ) ∈ symJ(4) = {P ∈ R4×4 | PJ = JPT}.

Melvin Leok (UCSD) Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories
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Motivating Example: Lorentzian Metrics

GL4(R)

GL4(R)/O(1,3)SymJ(4) LsymJ(4)

π
ϕι

ψ ϕ̄exp
log(Y ) Y [Y ] YJY T7−→ 7−→ 7−→

To summarize:
1 L is locally diffeomorphic to the Lie triple system

symJ(4) = {P ∈ R4×4 | PJ = JPT},

which is a linear space.
2 Interpolation on a linear space is easy.
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Motivating Example: Lorentzian Metrics

x (2)

x (4)

x (1)

x (3) •

•

•
•

The resulting interpolation formula reads

IL(x) = J exp

(
m∑

i=1

φi(x) log(JL(i))

)
,

where J = diag(−1,1,1,1), and {φi}mi=1 are scalar-valued
shape functions satisfying φi(x (j)) = δij .
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Motivating Example: Lorentzian Metrics

The interpolant so defined enjoys the following properties:

Signature preservation
The interpolant IL is signature-preserving; that is,

IL(x) ∈ L

for every x ∈ Ω.

Frame invariance

Let Q ∈ O(1,3). If L̃(i) = QL(i)QT , i = 1,2, . . . ,m, and if Q is
sufficiently close to the identity matrix, then

IL̃(x) = Q IL(x) QT

for every x ∈ Ω.
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Motivating Example: Lorentzian Metrics

Symmetry under inversion

If L̃(i) = (L(i))−1, i = 1,2, . . . ,m, then

IL̃(x) = (IL(x))−1

for every x ∈ Ω.

Determinant averaging

If
∑m

i=1 φi(x) = 1 for every x ∈ Ω, then

det IL(x) =
m∏

i=1

(
det L(i)

)φi (x)

for every x ∈ Ω.
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Motivating Example: Lorentzian Metrics

Numerical example: Interpolating the Schwarzschild metric

−
(

1− 1
r

)
dt2 +

(
1− 1

r

)−1

dr2 + r2
(

dθ2 + sin2 θ dϕ2
)
.

Linear shape functions {φi}i
N L2-error Order H1-error Order

2 3.3 · 10−3 2.8 · 10−2

4 8.4 · 10−4 1.975 1.4 · 10−2 0.998
8 2.1 · 10−4 1.994 7.1 · 10−3 0.999

16 5.3 · 10−5 1.998 3.6 · 10−3 1.000

Error incurred when interpolating the Schwarzschild metric over the
region U = {0} × [2,3]× [2,3]× [2,3] on a uniform N ×N ×N grid of
cubes, with shape functions {φi}i on each cube given by tensor
products of Lagrange polynomials of degree 1.
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Motivating Example: Lorentzian Metrics

Numerical example: Interpolating the Schwarzschild metric

−
(

1− 1
r

)
dt2 +

(
1− 1

r

)−1

dr2 + r2
(

dθ2 + sin2 θ dϕ2
)
.

Quadratic shape functions {φi}i
N L2-error Order H1-error Order

2 1.7 · 10−4 2.5 · 10−3

4 2.2 · 10−5 3.001 6.2 · 10−4 1.993
8 2.7 · 10−6 3.000 1.6 · 10−4 1.998

16 3.4 · 10−7 3.000 3.9 · 10−5 1.999

Error incurred when interpolating the Schwarzschild metric over the
region U = {0} × [2,3]× [2,3]× [2,3] on a uniform N ×N ×N grid of
cubes, with shape functions {φi}i on each cube given by tensor
products of Lagrange polynomials of degree 2.
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Motivating Example: Lorentzian Metrics

IL(x) = J exp

(
m∑

i=1

φi(x) log(JL(i))

)
Remarks:

1 An alternative interpolant is obtained by defining IL(x)
implicitly via

IL(x) = IL(x) exp

(
m∑

i=1

φi(x) log
(
IL(x)−1L(i)

))
.

This interpolant is equivalent to the geodesic interpolant.
2 Replacing J = diag(−1,1,1,1) with the identity matrix, one

recovers the weighted Log-Euclidean mean of symmetric
positive-definite matrices [Arsigny et al.]:

IL(x) = exp

(
m∑

i=1

φi(x) log(L(i))

)
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Abstraction to Symmetric Spaces

This construction works if L is replaced by any symmetric
space – a smooth manifold with an inversion symmetry (an
involutive isometry) about every point. Examples include:

Symmetric n × n matrices with signature (p,n − p).
Grassmannian Gr(p,n) – space of p-dimensional linear
subspaces of Rn.

A key role in the construction is played by the generalized
polar decomposition.
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Generalized Polar Decomposition

Generalized Polar Decomposition [Helgason]

Let G be a Lie group, and let σ : G→ G be an involutive
automorphism, i.e. σ 6= id., σ2 = id., and σ(gh) = σ(g)σ(h) for
every g,h ∈ G. Then every g ∈ G can be written as a product

g = pk , p ∈ Gσ, k ∈ Gσ,

where
Gσ = {g ∈ G | σ(g) = g},
Gσ = {g ∈ G | σ(g) = g−1}.

Moreover, this decomposition is locally unique.

Examples:

•G = GLn(R), σ(A) = A−T =⇒ Gσ = O(n),Gσ = Sym(n).

•G = GL4(R), σ(A) = JA−T J =⇒ Gσ = O(1,3),Gσ = SymJ(4).
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Abstraction to Symmetric Spaces

Abstract setting:
S – smooth manifold L (Lorentzian metrics)
η – distinguished element of S J = diag(−1,1,1,1)

G – Lie group that acts transitively on S GL4(R)

σ : G→ G – involutive automorphism σ(A) = JA−T J
Gσ = {g ∈ G | σ(g) = g} O(1,3)

Gσ = {g ∈ G | σ(g) = g−1} SymJ(4)

Key assumption: Isotropy subgroup of η coincides with the fixed
set Gσ, i.e.

g · η = η ⇐⇒ σ(g) = g.

AJAT = J ⇐⇒ JA−T J = A

Then S is diffeomorphic to G/Gσ (a symmetric space), and
every [g] ∈ G/Gσ has a canonical representative p ∈ Gσ by the
generalized polar decomposition g = pk , p ∈ Gσ, k ∈ Gσ.
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Abstraction to Symmetric Spaces

Abstract setting, continued:
1 g – Lie algebra of G R4×4

2 exp : g→ G – exponential map exp : R4×4 → GL4(R)

3 The preimage of Gσ under exp is the linear space

p = {P ∈ g | dσ(P) = −P} ⊂ g

= {P ∈ R4×4 | −JPT J = −P}

This space is a Lie triple system – it is closed under the
double commutator [·, [·, ·]], but not under [·, ·].
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Abstraction to Symmetric Spaces

G

G/GσGσ Sp

π
ϕι

ψ ϕ̄exp

GL4(R)

GL4(R)/O(1,3)SymJ(4) LsymJ(4)

π
ϕι

ψ ϕ̄exp
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Abstraction to Symmetric Spaces

To summarize:
1 S is locally diffeomorphic to the Lie triple system p, which

is a linear space.
2 Interpolation on a linear space is easy.
3 The resulting formula for interpolating {u(i)}mi=1 ⊂ S reads

Iu(x) = F

(
m∑

i=1

φi(x)F−1(u(i))

)
,

where φi : Ω→ R, i = 1,2, . . . ,m, are scalar-valued shape
functions satisfying φi(x (j)) = δij , and

F : p→ S
P 7→ exp(P) · η.
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Abstraction to Symmetric Spaces

Gσ-equivariance

Let g ∈ Gσ. If ũ(i) = g · u(i), i = 1,2, . . . ,m, and if g is
sufficiently close to the identity, then

Iũ(x) = g · Iu(x)

for every x ∈ Ω.

Symmetry under geodesic reflection

If ũ(i) = sη(u(i)), i = 1,2, . . . ,m, then

Iũ(x) = sη(Iu(x))

for every x ∈ Ω, where sη : S → S denotes the geodesic
reflection about η.
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Connection with Geodesic Interpolation

Interpolation formula:

Iu(x) = F

(
m∑

i=1

φi(x)F−1(u(i))

)
,

where F (P) = exp(P) · η. Interpolation formula (generalized):

Iḡu(x) = Fḡ

(
m∑

i=1

φi(x)F−1
ḡ (u(i))

)
,

where Fḡ(P) = ḡ exp(P) · η.
1 By allowing ḡ to vary with x , we may define ḡ(x) implicitly

via
Iḡ(x)u(x) = ḡ(x) · η.

2 The resulting interpolant coincides with the geodesic
interpolant [Grohs, Sander].

3 The geodesic interpolant has the advantage of being
G-equivariant rather than being merely Gσ-equivariant.
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Summary

Gauge field theories exhibit gauge symmetries that impose
Cauchy initial value constraints, and are also
underdetermined.
These result in degenerate field theories that can be
described using multi-Dirac mechanics and multi-Dirac
structures.
Described a systematic framework for constructing and
analyzing Ritz variational integrators, and the extension to
Hamiltonian PDEs.
Presented a local isomorphism between a Lie triple system
and the associated symmetric space, which can be used to
construct group-equivariant finite-element spaces that take
values in a symmetric space.
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Thank you!
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