Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories

Melvin Leok

Joint work with Evan Gawlik

Department of Mathematics University of California, San Diego

IMS Workshop on State-of-the-Art Shape Research, Singapore, July 18, 2016.

Supported by NSF DMS-0726263, DMS-100152, DMS-1010687 (CAREER), CMMI-1029445, DMS-1065972, CMMI-1334759, DMS-1411792, DMS-1345013.

Manifold-Valued Data and Manifold-Valued Functions

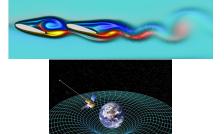
Manifold-valued data and manifold-valued functions play an important role in a variety of applications:

Mechanics

Source: http://www.ode.org/

• Reduced-order modeling

Numerical relativity



Melvin Leok (UCSD) Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories

Gauge Field Theories

- A *gauge symmetry* is a continuous local transformation on the field variables that leaves the system physically indistinguishable.
- A consequence of this is that the Euler–Lagrange equations are *underdetermined*, i.e., the evolution equations are insufficient to propagate all the fields.
- The *kinematic fields* have no physical significance, but the *dynamic fields* and their conjugate momenta have physical significance.
- The Euler–Lagrange equations are *overdetermined*, and the initial data on a Cauchy surface satisfies a constraint (usually elliptic).
- These degenerate systems are naturally described using multi-Dirac mechanics and geometry.

Electromagnetism

- Let **E** and **B** be the electric and magnetic vector fields respectively.
- We can write Maxwell's equations in terms of the scalar and vector potentials φ and A by,

$$\begin{split} \mathbf{E} &= -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}, \qquad \nabla^2 \phi + \frac{\partial}{\partial t} (\nabla \cdot \mathbf{A}) = \mathbf{0}, \\ \mathbf{B} &= \nabla \times \mathbf{A}, \qquad \Box \mathbf{A} + \nabla \left(\nabla \cdot \mathbf{A} + \frac{\partial \phi}{\partial t} \right) = \mathbf{0}. \end{split}$$

The following transformation leaves the equations invariant,

$$\phi \to \phi - \frac{\partial f}{\partial t}, \qquad \mathbf{A} \to \mathbf{A} + \nabla f.$$

• The associated Cauchy initial data constraints are,

$$abla \cdot \mathbf{B}^{(0)} = \mathbf{0}, \qquad \qquad
abla \cdot \mathbf{E}^{(0)} = \mathbf{0}.$$

Gauge conditions

- One often addresses the indeterminacy due to gauge freedom in a field theory through the choice of a *gauge condition*.
- The *Lorenz gauge* is $\nabla \cdot \mathbf{A} = -\frac{\partial \phi}{\partial t}$, which yields,

$$\Box \phi = \mathbf{0}, \qquad \Box \mathbf{A} = \mathbf{0}.$$

• The *Coulomb gauge* is $\nabla \cdot \mathbf{A} = 0$, which yields,

$$abla^2 \phi = \mathbf{0}, \qquad \qquad \Box \mathbf{A} + \nabla \frac{\partial \phi}{\partial t} = \mathbf{0}.$$

 Given different initial and boundary conditions, some problems may be easier to solve in certain gauges than others. There is no systematic way of deciding which gauge to use for a given problem.

Noether's Theorem

Noether's Theorem

For every continuous symmetry of an action, there exists a quantity that is conserved in time.

- The simplest illustration of the principle comes from classical mechanics: a time-invariant action implies a conservation of the Hamiltonian, which is usually identified with energy.
- More precisely, if $S = \int_{t_a}^{t_b} L(q, \dot{q}) dt$ is invariant under the transformation $t \to t + \epsilon$, then

$$\frac{d}{dt}\left(\dot{q}\frac{\partial L}{\partial \dot{q}}-L\right)=\frac{dH}{dt}=0$$

Noether's Theorem for Gauge Field Theories

Noether's Theorem for Gauge Field Theories

For every differentiable, local symmetry of an action, there exists a *Noether current* obeying a continuity equation. Integrating this current over a spacelike surface yields a conserved quantity called a *Noether charge*.

• The action principle for electromagnetism is $S = \frac{1}{2} \int (\mathbf{B}^2 - \mathbf{E}^2) d^4 x$. Applying Noether's theorem to the gauge symmetry yields the following currents:

$$j_0 = \mathbf{E} \cdot \nabla f$$
 $\mathbf{j} = -\mathbf{E} \frac{\partial f}{\partial t} + (\mathbf{B} \times \nabla) f$

Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces Motivation for the approach we take

- Our long-term goal is to develop geometric structure-preserving numerical discretizations that systematically addresses the issue of gauge symmetries. Eventually, we wish to study discretizations of general relativity that address the issue of general covariance.
- Towards this end, we will consider *multi-Dirac mechanics* based on a *Hamilton–Pontryagin variational principle for field theories* that is well adapted to degenerate field theories.
- The issue of general covariance also leads us to avoid using a tensor product discretization that presupposes a slicing of spacetime, rather we will consider 4-simplicial complexes in spacetime.
- More generally, we will need to study discretizations that are invariant to some discrete analogue of the gauge symmetry group.

Pontryagin bundle and Hamilton–Pontryagin principle

- Consider the *Pontryagin bundle* TQ ⊕ T*Q, which has local coordinates (q, v, p).
- The Hamilton-Pontryagin principle is given by

$$\delta \int [L(q, v) - p(v - \dot{q})] = 0,$$

where we impose the second-order curve condition, $v = \dot{q}$ using Lagrange multipliers *p*.

Implicit Lagrangian systems

• Taking variations in q, v, and p yield

$$\delta \int [L(q, v) - p(v - \dot{q})] dt$$

= $\int \left[\frac{\partial L}{\partial q} \delta q + \left(\frac{\partial L}{\partial v} - p \right) \delta v - (v - \dot{q}) \delta p + p \delta \dot{q} \right] dt$
= $\int \left[\left(\frac{\partial L}{\partial q} - \dot{p} \right) \delta q + \left(\frac{\partial L}{\partial v} - p \right) \delta v - (v - \dot{q}) \delta p \right] dt,$

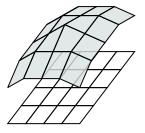
where we used integration by parts, and the fact that the variation δq vanishes at the endpoints.

• This recovers the implicit Euler-Lagrange equations,

$$\dot{\boldsymbol{p}} = \frac{\partial \boldsymbol{L}}{\partial \boldsymbol{q}}, \qquad \boldsymbol{p} = \frac{\partial \boldsymbol{L}}{\partial \boldsymbol{v}}, \qquad \boldsymbol{v} = \dot{\boldsymbol{q}}.$$

Multisymplectic Geometry

- **Base space** \mathcal{X} . (n + 1)-spacetime.
- *Configuration bundle*. Given by $\pi: Y \to \mathcal{X}$, with the fields as the fiber.
- Configuration q : X → Y. Gives the field variables over each spacetime point.
- *First jet J*¹ *Y*. The first partials of the fields with respect to spacetime.
- Lagrangian density $L: J^1 Y \to \Omega^{n+1}(\mathcal{X})$.
- Action integral given by, $S(q) = \int_{\mathcal{X}} L(j^1q)$.
- *Hamilton's principle* states, $\delta S = 0$.



Hamilton–Pontryagin for Fields

In coordinates, the Hamilton–Pontryagin principle for fields is

$$S(y^{A}, y^{A}_{\mu}, p^{\mu}_{A}) = \int_{U} \left[p^{\mu}_{A} \left(\frac{\partial y^{A}}{\partial x^{\mu}} - v^{A}_{\mu} \right) + L(x^{\mu}, y^{A}, v^{A}_{\mu}) \right] d^{n+1}x.$$

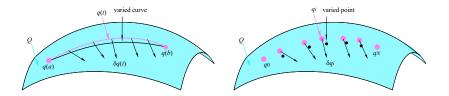
• By taking variations with respect to y^A , v^A_μ and p^μ_A (where δy^A vanishes on ∂U) we obtain the implicit Euler–Lagrange equations,

$$\frac{\partial \boldsymbol{p}^{\mu}_{A}}{\partial x^{\mu}} = \frac{\partial L}{\partial y^{A}}, \quad \boldsymbol{p}^{\mu}_{A} = \frac{\partial L}{\partial \boldsymbol{v}^{A}_{\mu}}, \quad \text{and} \quad \frac{\partial y^{A}}{\partial x^{\mu}} = \boldsymbol{v}^{A}_{\mu}.$$

 The covariant Legendre transform involves both the energy and momentum,

$$p_{A}^{\mu} = \frac{\partial L}{\partial v_{\mu}^{A}}, \qquad p = L - \frac{\partial L}{\partial v_{\mu}^{A}} v_{\mu}^{A}.$$

Discrete Lagrangian Variational Principle



Discrete Lagrangian

$$L_d(q_0, q_1) \approx L_d^{\text{exact}}(q_0, q_1) \equiv \int_0^h L(q_{0,1}(t), \dot{q}_{0,1}(t)) dt,$$

where $q_{0,1}(t)$ satisfies the Euler–Lagrange equations for *L* and the boundary conditions $q_{0,1}(0) = q_0$, $q_{0,1}(h) = q_1$.

 This is related to Jacobi's solution of the Hamilton–Jacobi equation.

Melvin Leok (UCSD) Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories

Discrete Lagrangian Variational Principle

• Discrete Hamilton's principle

$$\delta \mathbb{S}_d = \delta \sum L_d(q_k, q_{k+1}) = \mathbf{0},$$

where q_0 , q_N are fixed.

• Discrete Euler-Lagrange equation

$$D_2L_d(q_{k-1},q_k) + D_1L_d(q_k,q_{k+1}) = 0.$$

 The associated discrete flow (q_{k-1}, q_k) → (q_k, q_{k+1}) is automatically symplectic, since it is equivalent to,

$$p_k = -D_1 L_d(q_k, q_{k+1}), \quad p_{k+1} = D_2 L_d(q_k, q_{k+1}),$$

which is the characterization of a symplectic map in terms of a *Type I generating function* (discrete Lagrangian).

Main Advantages of Variational Integrators

• Discrete Noether's Theorem

If the discrete Lagrangian L_d is (infinitesimally) *G*-invariant under the diagonal group action on $Q \times Q$,

$$L_d(gq_0,gq_1)=L_d(q_0,q_1)$$

then the *discrete momentum map* $J_d : Q \times Q \rightarrow \mathfrak{g}^*$,

$$\langle J_d(q_k,q_{k+1}),\xi\rangle \equiv \langle D_1L_d(q_k,q_{k+1}),\xi_Q(q_k)\rangle$$

is preserved by the discrete flow.

Main Advantages of Variational Integrators

• Variational Error Analysis

Since the exact discrete Lagrangian generates the exact solution of the Euler–Lagrange equation, the exact discrete flow map is *formally* expressible in the setting of variational integrators.

- This is analogous to the situation for B-series methods, where the exact flow can be expressed formally as a B-series.
- If a computable discrete Lagrangian L_d is of order r, i.e.,

$$L_d(q_0, q_1) = L_d^{\text{exact}}(q_0, q_1) + \mathcal{O}(h^{r+1})$$

then the discrete Euler–Lagrange equations yield an order *r* accurate symplectic integrator.

Ritz Variational Integrators

• Consider an alternative expression for the exact discrete Lagrangian,

$$L_{d}^{\text{exact}}(q_{0}, q_{1}) \equiv \exp_{\substack{q \in C^{2}([0,h],Q) \\ q(0)=q_{0}, q(h)=q_{1}}} \int_{0}^{h} L(q(t), \dot{q}(t)) dt,$$

which is more amenable to discretization.

- Replace the infinite-dimensional function space
 C²([0, h], Q) with a *finite-dimensional function space*.
- Replace the integral with a *numerical quadrature formula*.

Ritz Variational Integrators

 A desirable property of a Ritz numerical method based on a finite-dimensional space F_d ⊂ F, is that it should exhibit optimal rates of convergence, which is to say that the numerical solution q_d ∈ F_d and the exact solution q ∈ F satisfies,

$$\|\boldsymbol{q}-\boldsymbol{q}_{d}\|\leq c\inf_{\tilde{\boldsymbol{q}}\in \mathcal{F}_{d}}\|\boldsymbol{q}-\tilde{\boldsymbol{q}}\|.$$

• This means that the rate of convergence depends on the best approximation error of the finite-dimensional function space.

Ritz Variational Integrators

- Given a sequence of finite-dimensional function spaces
 C₁ ⊂ C₂ ⊂ ... ⊂ C²([0, h], Q) ≡ C_∞.
- For a correspondingly accurate sequence of quadrature formulas,

$$L^i_d(q_0,q_1) \equiv \mathop{\mathrm{ext}}_{q\in\mathcal{C}_i} h \sum_{j=1}^{s_i} b^i_j L(q(c^i_jh),\dot{q}(c^i_jh)),$$

where $L_{d}^{\infty}(q_{0}, q_{1}) = L_{d}^{\text{exact}}(q_{0}, q_{1}).$

- Proving $L_d^i(q_0, q_1) \rightarrow L_d^{\infty}(q_0, q_1)$, corresponds to Γ -convergence.
- For optimality, we require the bound,

$$L^{i}_{d}(q_{0},q_{1})=L^{\infty}_{d}(q_{0},q_{1})+c\inf_{\tilde{q}\in\mathcal{C}_{i}}\|q-\tilde{q}\|,$$

where we need to relate the rate of Γ -convergence with the best approximation properties of the family of approximation spaces.

Ritz Variational Integrators

Theorem (Optimality of Ritz Variational Integrators)

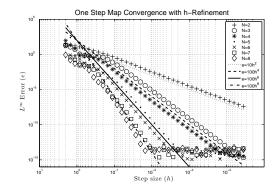
Under suitable technical hypotheses:

- Regularity of *L* in a closed and bounded neighboorhood;
- The quadrature rule is sufficiently accurate;
- The discrete and continuous trajectories *minimize* their actions;

the Ritz discrete Lagrangian has the same approximation error as the best approximation error of the approximation space.

- The critical assumption is action minimization. For Lagrangians $L = \dot{q}^T M \dot{q} V(q)$, and sufficiently small *h*, this assumption holds.
- Shows that Ritz variational integrators are order optimal; spectral variational integrators are geometrically convergent.

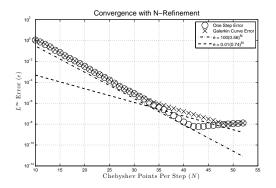
Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces Order Optimal Convergence of Ritz variational integrators



 Order optimal convergence of the Kepler 2-body problem with eccentricity 0.6 over 100 steps of *h* = 2.0.

Melvin Leok (UCSD) Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories

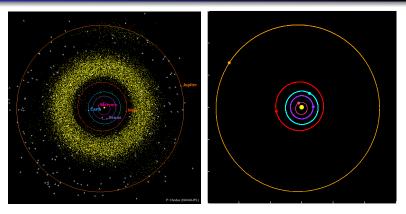
Geometric Convergence of Spectral variational integrators



 Geometric convergence of the Kepler 2-body problem with eccentricity 0.6 over 100 steps of *h* = 2.0.

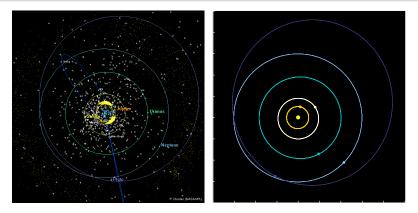
Melvin Leok (UCSD) Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories

Numerical Experiments: Solar System Simulation



- Comparison of inner solar system orbital diagrams from a spectral variational integrator and the JPL Solar System Dynamics Group.
- *h* = 100 days, *T* = 27 years, 25 Chebyshev points per step.

Numerical Experiments: Solar System Simulation



 Comparison of outer solar system orbital diagrams from a spectral variational integrator and the JPL Solar System Dynamics Group. Inner solar system was aggregated, and h = 1825 days.

Melvin Leok (UCSD) Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories

Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces Multisymplectic Exact Discrete Lagrangian

 Recall the implicit characterization of a symplectic map in terms of generating functions:

$$\begin{cases} p_k = -D_1 L_d(q_k, q_{k+1}) & \\ p_{k+1} = D_2 L_d(q_k, q_{k+1}) & \\ q_{k+1} = D_2 H_d^+(q_k, p_{k+1}) \end{cases}$$

 Symplecticity follows as a trivial consequence of these equations, together with d² = 0, as the following calculation shows:

$$\begin{aligned} \mathbf{d}^{2}L_{d}(q_{k},q_{k+1}) &= \mathbf{d}(D_{1}L_{d}(q_{k},q_{k+1})dq_{k} + D_{2}L_{d}(q_{k},q_{k+1})dq_{k+1}) \\ &= \mathbf{d}(-p_{k}dq_{k} + p_{k+1}dq_{k+1}) \\ &= -dp_{k} \wedge dq_{k} + dp_{k+1} \wedge dq_{k+1} \end{aligned}$$

Analogy with the ODE case

• We consider a multisymplectic analogue of Jacobi's solution:

$$L_d^{\text{exact}}(q_0, q_1) \equiv \int_0^h L(q_{0,1}(t), \dot{q}_{0,1}(t)) dt,$$

where $q_{0,1}(t)$ satisfies the Euler–Lagrange boundary-value problem.

This is given by,

$$L_d^{\mathrm{exact}}(\varphi|_{\partial\Omega}) \equiv \int_{\Omega} L(j^1 \tilde{\varphi})$$

where $\tilde{\varphi}$ satisfies the boundary conditions $\tilde{\varphi}|_{\partial\Omega} = \varphi|_{\partial\Omega}$, and $\tilde{\varphi}$ satisfies the Euler–Lagrange equation in the interior of Ω .

Multisymplectic Relation

 If one takes variations of the *multisymplectic exact* discrete Lagrangian with respect to the boundary conditions, we obtain,

$$\partial_{\varphi(x,t)} L_d^{\text{exact}}(\varphi|_{\partial\Omega}) = p_{\perp}(x,t),$$

where $(x, t) \in \partial\Omega$, and p_{\perp} is a codimension-1 differential form, that by Hodge duality can be viewed as the normal component (to the boundary $\partial\Omega$) of the multimomentum at the point (x, t).

 These equations, taken at every point on ∂Ω constitute a multisymplectic relation, which is the PDE analogue of,

$$\begin{cases} p_k = -D_1 L_d(q_k, q_{k+1}) \\ p_{k+1} = D_2 L_d(q_k, q_{k+1}) \end{cases}$$

where the sign comes from the orientation of the boundary.

Gauge Symmetries and Variational Discretizations

Theorem (Noether's Theorem)

For every continuous symmetry of an action, there exists a quantity that is conserved in time.

Theorem (Noether's Theorem for Gauge Field Theories)

For every differentiable, local symmetry of an action, there exists a *Noether current* obeying a continuity equation. Integrating this current over a spacelike surface yields a conserved quantity called a *Noether charge*.

 Since gauge symmetries are associated with conserved quantities, we need finite-elements that are (approximately) group-equivariant.

Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces Motivating Example: Lorentzian Metrics

Let \mathcal{L} denote the space of *Lorentzian metric tensors*:

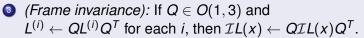
 $\mathcal{L} = \{ L \in \mathbb{R}^{4 \times 4} \mid L = L^T, \text{ det } L \neq 0, \text{ signature}(L) = (3, 1) \}.$

Problem

Given $\mathcal{L}^{(i)} \in \mathcal{L}$ at the vertices $x^{(i)}$ of a simplex Ω , find a continuous function $\mathcal{I}\mathcal{L}: \Omega \to \mathcal{L}$ such that:

•
$$\mathcal{I}L(x^{(i)}) = L^{(i)}$$
 for each *i*.

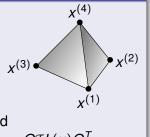
2)
$$\mathcal{I}L(x) \in \mathcal{L}$$
 for every $x \in \Omega$.



Here, O(1,3) denotes the *indefinite orthogonal group*:

$$O(1,3) = \{ Q \in \mathbb{R}^{4 \times 4} \mid QJQ^T = J \},$$

where J = diag(-1, 1, 1, 1).



Motivating Example: Lorentzian Metrics

Options:

Componentwise interpolation: Not signature-preserving, in general. For instance,

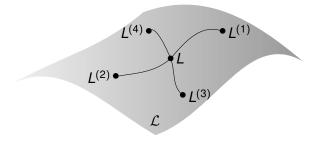
$$\frac{1}{2} \underbrace{\begin{pmatrix} 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\in \mathcal{L} \text{ since } \lambda = -4, 1, 1, 4} + \frac{1}{2} \underbrace{\begin{pmatrix} 2 & -4 & 0 & 0 \\ -4 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\in \mathcal{L} \text{ since } \lambda = -2, 1, 1, 6} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\notin \mathcal{L} \text{ since } \lambda = 1, 1, 1, 1}$$

Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces Motivating Example: Lorentzian Metrics

Geodesic interpolation [Grohs, Sander]:

$$\mathcal{I}L(\mathbf{x}) = \operatorname*{arg\,min}_{L\in\mathcal{L}} \sum_{i=1}^{m} \phi_i(\mathbf{x}) \operatorname{dist}(L^{(i)}, L)^2,$$

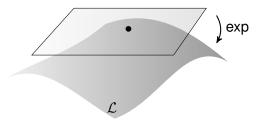
where $\{\phi_i\}_{i=1}^m$ are scalar-valued shape functions satisfying $\phi_i(x^{(j)}) = \delta_{ij}$. Also known as the weighted *Riemannian mean*.



Motivating Example: Lorentzian Metrics

Our approach:

 Idea: If L were a Lie group, one could use the exponential map and perform all calculations on its Lie algebra, a linear space.



In reality, L is not a Lie group (it is a symmetric space).
 Nonetheless, a similar construction is available.

Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces Motivating Example: Lorentzian Metrics

• Notice that \mathcal{L} is diffeomorphic to $GL_4(\mathbb{R})/O(1,3)$: The map

$$ar{arphi}: \mathit{GL}_4(\mathbb{R})/\mathit{O}(1,3)
ightarrow \mathcal{L} \ [A] \mapsto \mathit{AJA}^{\mathcal{T}}$$

is a diffeomorphism, where J = diag(-1, 1, 1, 1).

Every coset [A] has a canonical representative Y by virtue of the *generalized polar decomposition*:

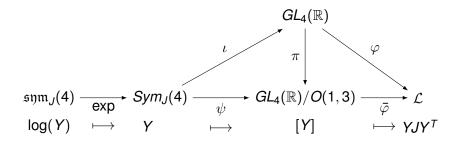
$$A = YQ$$
, $Y \in Sym_J(4)$, $Q \in O(1,3)$,

where

$$Sym_J(4) = \{ Y \in GL_4(\mathbb{R}) \mid YJ = JY^T \}.$$

Iog(Y) lives in a linear space called a *Lie triple system*: $\log(Y) \in \mathfrak{sym}_J(4) = \{P \in \mathbb{R}^{4 \times 4} \mid PJ = JP^T\}.$

Motivating Example: Lorentzian Metrics



To summarize:

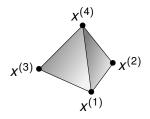
£ is locally diffeomorphic to the Lie triple system

$$\mathfrak{sym}_J(4) = \{ P \in \mathbb{R}^{4 \times 4} \mid PJ = JP^T \},\$$

which is a linear space.

Interpolation on a linear space is easy.

Motivating Example: Lorentzian Metrics



The resulting interpolation formula reads

$$\mathcal{I}L(\mathbf{x}) = J \exp\left(\sum_{i=1}^{m} \phi_i(\mathbf{x}) \log(JL^{(i)})\right),$$

where J = diag(-1, 1, 1, 1), and $\{\phi_i\}_{i=1}^m$ are scalar-valued shape functions satisfying $\phi_i(x^{(j)}) = \delta_{ij}$.

Motivating Example: Lorentzian Metrics

The interpolant so defined enjoys the following properties:

Signature preservation

The interpolant $\mathcal{I}L$ is signature-preserving; that is,

 $\mathcal{I}L(x) \in \mathcal{L}$

for every $x \in \Omega$.

Frame invariance

Let $Q \in O(1,3)$. If $\tilde{L}^{(i)} = QL^{(i)}Q^T$, i = 1, 2, ..., m, and if Q is sufficiently close to the identity matrix, then

$$\mathcal{I}\tilde{L}(x) = \mathcal{Q}\mathcal{I}L(x)\mathcal{Q}^{T}$$

for every $x \in \Omega$.

Melvin Leok (UCSD) Interpolation on Symmetric Spaces and Variational Discretization of Gauge Field Theories

Motivating Example: Lorentzian Metrics

Symmetry under inversion

If
$$\tilde{L}^{(i)} = (L^{(i)})^{-1}$$
, $i = 1, 2, ..., m$, then

$$\mathcal{I}\tilde{L}(x) = (\mathcal{I}L(x))^{-1}$$

for every $x \in \Omega$.

Determinant averaging

If
$$\sum_{i=1}^{m} \phi_i(x) = 1$$
 for every $x \in \Omega$, then

$$\det \mathcal{I}L(x) = \prod_{i=1}^m \left(\det L^{(i)}\right)^{\phi_i(x)}$$

for every $x \in \Omega$.

Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces Motivating Example: Lorentzian Metrics

Numerical example: Interpolating the Schwarzschild metric

$$-\left(1-\frac{1}{r}\right)dt^{2}+\left(1-\frac{1}{r}\right)^{-1}dr^{2}+r^{2}\left(d\theta^{2}+\sin^{2}\theta\,d\varphi^{2}\right)$$

	Linear shape functions $\{\phi_i\}_i$					
Ν	L ² -error	Order	H ¹ -error	Order		
	$3.3 \cdot 10^{-3}$		2.8 · 10 ⁻²			
	$8.4 \cdot 10^{-4}$	1.975	1.4 · 10 ^{−2}	0.998		
	$2.1 \cdot 10^{-4}$	1.994	7.1 · 10 ⁻³	0.999		
16	5.3 · 10 ⁻⁵	1.998	$3.6 \cdot 10^{-3}$	1.000		

Error incurred when interpolating the Schwarzschild metric over the region $U = \{0\} \times [2,3] \times [2,3] \times [2,3]$ on a uniform $N \times N \times N$ grid of cubes, with shape functions $\{\phi_i\}_i$ on each cube given by tensor products of Lagrange polynomials of degree 1.

Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces Motivating Example: Lorentzian Metrics

Numerical example: Interpolating the Schwarzschild metric

$$-\left(1-\frac{1}{r}\right)dt^{2}+\left(1-\frac{1}{r}\right)^{-1}dr^{2}+r^{2}\left(d\theta^{2}+\sin^{2}\theta\,d\varphi^{2}\right)$$

	Quadratic snape functions $\{\phi_i\}_i$					
Ν	L ² -error	Order	H ¹ -error	Order		
2	$1.7 \cdot 10^{-4}$		$2.5 \cdot 10^{-3}$			
4	2.2 · 10 ⁻⁵	3.001	$6.2 \cdot 10^{-4}$	1.993		
-	$2.7 \cdot 10^{-6}$	3.000	$1.6 \cdot 10^{-4}$	1.998		
16	$3.4 \cdot 10^{-7}$	3.000	$3.9 \cdot 10^{-5}$	1.999		

duction of a second formation of

Error incurred when interpolating the Schwarzschild metric over the region $U = \{0\} \times [2,3] \times [2,3] \times [2,3]$ on a uniform $N \times N \times N$ grid of cubes, with shape functions $\{\phi_i\}_i$ on each cube given by tensor products of Lagrange polynomials of degree 2.

Motivating Example: Lorentzian Metrics

$$\mathcal{I}L(x) = J \exp\left(\sum_{i=1}^{m} \phi_i(x) \log(JL^{(i)})\right)$$

Remarks:

An alternative interpolant is obtained by defining *IL(x)* implicitly via

$$\mathcal{I}L(x) = \mathcal{I}L(x) \exp\left(\sum_{i=1}^{m} \phi_i(x) \log\left(\mathcal{I}L(x)^{-1}L^{(i)}\right)\right).$$

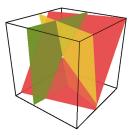
This interpolant is equivalent to the *geodesic interpolant*.
 Replacing J = diag(-1, 1, 1, 1) with the identity matrix, one recovers the weighted *Log-Euclidean mean* of symmetric positive-definite matrices [Arsigny et al.]:

$$\mathcal{I}L(x) = \exp\left(\sum_{i=1}^{m} \phi_i(x) \log(L^{(i)})\right)$$

Introduction Gauge Field Theories Dirac Mechanics Lorentzian Metrics Symmetric Spaces Abstraction to Symmetric Spaces

This construction works if \mathcal{L} is replaced by any *symmetric space* – a smooth manifold with an inversion symmetry (an involutive isometry) about every point. Examples include:

- Symmetric $n \times n$ matrices with signature (p, n p).
- Grassmannian Gr(p, n) space of p-dimensional linear subspaces of ℝⁿ.



A key role in the construction is played by the *generalized polar decomposition*.

Generalized Polar Decomposition

Generalized Polar Decomposition [Helgason]

Let *G* be a Lie group, and let $\sigma : G \to G$ be an involutive automorphism, i.e. $\sigma \neq id.$, $\sigma^2 = id.$, and $\sigma(gh) = \sigma(g)\sigma(h)$ for every $g, h \in G$. Then every $g \in G$ can be written as a product

$${m g}={m p}{m k}, \quad {m p}\in {m G}_{\!\sigma}, \, {m k}\in {m G}^{\!\sigma},$$

where

$$egin{aligned} G^\sigma &= \{ oldsymbol{g} \in oldsymbol{G} \mid \sigma(oldsymbol{g}) = oldsymbol{g} \}, \ oldsymbol{G}_\sigma &= \{ oldsymbol{g} \in oldsymbol{G} \mid \sigma(oldsymbol{g}) = oldsymbol{g}^{-1} \}. \end{aligned}$$

Moreover, this decomposition is locally unique.

Examples:

•
$$G = GL_n(\mathbb{R}), \sigma(A) = A^{-T} \implies G^{\sigma} = O(n), G_{\sigma} = Sym(n).$$

•
$$G = GL_4(\mathbb{R}), \sigma(A) = JA^{-T}J \implies G^{\sigma} = O(1,3), G_{\sigma} = Sym_J(4).$$

Abstraction to Symmetric Spaces

Abstract setting:

• S - smooth manifold \mathcal{L} (Lorentzian metrics) • η - distinguished element of S J = diag(-1, 1, 1, 1)• G - Lie group that acts transitively on S $GL_4(\mathbb{R})$ • $\sigma: G \to G$ - involutive automorphism $\sigma(A) = JA^{-T}J$ • $G^{\sigma} = \{g \in G \mid \sigma(g) = g\}$ O(1,3)• $G_{\sigma} = \{g \in G \mid \sigma(g) = g^{-1}\}$ $Sym_J(4)$ Key assumption: Isotropy subgroup of η coincides with the fixed

set G^{σ} , i.e.

$$g \cdot \eta = \eta \iff \sigma(g) = g.$$

 $AJA^T = J \iff JA^{-T}J = A$

Then S is diffeomorphic to G/G^{σ} (a **symmetric space**), and every $[g] \in G/G^{\sigma}$ has a canonical representative $p \in G_{\sigma}$ by the **generalized polar decomposition** g = pk, $p \in G_{\sigma}$, $k \in G^{\sigma}$.

Abstraction to Symmetric Spaces

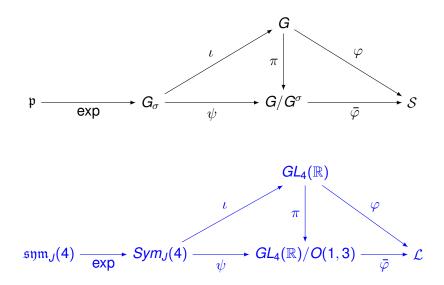
Abstract setting, continued:

- 2 exp : $\mathfrak{g} \to G$ exponential map exp : $\mathbb{R}^{4 \times 4} \to GL_4(\mathbb{R})$
- Interpretimage of G_{σ} under exp is the linear space

$$\mathfrak{p} = \{ \boldsymbol{P} \in \mathfrak{g} \mid \boldsymbol{d\sigma}(\boldsymbol{P}) = -\boldsymbol{P} \} \subset \mathfrak{g} \\ = \{ \boldsymbol{P} \in \mathbb{R}^{4 \times 4} \mid -\boldsymbol{J}\boldsymbol{P}^{\mathsf{T}}\boldsymbol{J} = -\boldsymbol{P} \}$$

This space is a *Lie triple system* – it is closed under the double commutator $[\cdot, [\cdot, \cdot]]$, but not under $[\cdot, \cdot]$.

Abstraction to Symmetric Spaces



Abstraction to Symmetric Spaces

To summarize:

- S is locally diffeomorphic to the Lie triple system p, which is a *linear space*.
- Interpolation on a linear space is easy.
- The resulting formula for interpolating $\{u^{(i)}\}_{i=1}^m \subset S$ reads

$$\mathcal{I}u(x) = F\left(\sum_{i=1}^m \phi_i(x)F^{-1}(u^{(i)})\right),$$

where $\phi_i : \Omega \to \mathbb{R}$, i = 1, 2, ..., m, are scalar-valued shape functions satisfying $\phi_i(x^{(j)}) = \delta_{ij}$, and

$$egin{aligned} m{\mathsf{F}} : \mathfrak{p} &
ightarrow \mathcal{S} \ m{\mathsf{P}} &\mapsto \exp(m{\mathsf{P}}) \cdot \eta \end{aligned}$$

Abstraction to Symmetric Spaces

G^{σ} -equivariance

Let $g \in G^{\sigma}$. If $\tilde{u}^{(i)} = g \cdot u^{(i)}$, i = 1, 2, ..., m, and if g is sufficiently close to the identity, then

$$\mathcal{I}\tilde{u}(x) = g \cdot \mathcal{I}u(x)$$

for every $x \in \Omega$.

Symmetry under geodesic reflection

If $\tilde{u}^{(i)} = s_{\eta}(u^{(i)}), i = 1, 2, \dots, m$, then

 $\mathcal{I}\tilde{u}(x) = s_{\eta}(\mathcal{I}u(x))$

for every $x \in \Omega$, where $s_{\eta} : S \to S$ denotes the geodesic reflection about η .

Connection with Geodesic Interpolation

Interpolation formula:

$$\mathcal{I}u(x) = F\left(\sum_{i=1}^m \phi_i(x)F^{-1}(u^{(i)})\right),$$

where $F(P) = \exp(P) \cdot \eta$. Interpolation formula (generalized):

$$\mathcal{I}_{\bar{g}}u(x) = F_{\bar{g}}\left(\sum_{i=1}^{m}\phi_i(x)F_{\bar{g}}^{-1}(u^{(i)})\right),$$

where $F_{\bar{g}}(P) = \bar{g} \exp(P) \cdot \eta$.

• By allowing \bar{g} to vary with x, we may define $\bar{g}(x)$ implicitly via

$$\mathcal{I}_{\bar{g}(x)}u(x)=\bar{g}(x)\cdot\eta.$$

The resulting interpolant coincides with the *geodesic* interpolant [Grohs, Sander].

The geodesic interpolant has the advantage of being G-equivariant rather than being merely G^σ-equivariant.

Summary

- Gauge field theories exhibit gauge symmetries that impose Cauchy initial value constraints, and are also underdetermined.
- These result in degenerate field theories that can be described using multi-Dirac mechanics and multi-Dirac structures.
- Described a systematic framework for constructing and analyzing Ritz variational integrators, and the extension to Hamiltonian PDEs.
- Presented a local isomorphism between a Lie triple system and the associated symmetric space, which can be used to construct group-equivariant finite-element spaces that take values in a symmetric space.

Thank you!

