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1 Definitions

A Lie group is defined as a group G, which is at the same time a manifold, such that
the group operations are smooth operations in the manifold topology. A Lie group is a
specialization of the concept of a topological group which is at the same time a topological
space and a group, for which the group operations are smooth.

Many of the most important examples of Lie groups (at least finite-dimensional ones) may
be represented as subgroups of the matrix group GL(n, lC) or GL(n, IR). In these notes,
we shall be mainly concerned with these so-called matrix Lie groups (to be defined below).
The advantage of this approach is that it is more concrete, and the intuition is clearer
than in the abstract setting. Often, things are easier to prove in the setting of matrix Lie
groups. As a meta-mathematical statement, one can say that most statements that one
can make about matrix Lie groups, for which the statement does not specifically make
use of matrix concepts, are probably true in the case of abstract Lie groups in general.

Matrix Lie groups. The general linear group GL(n, IR) is the group of all non-
singular n × n matrices. It forms a group under the usual matrix multiplication. It
has the topology given by a standard norm. d(A, B) = ‖A− B‖∞ = maxij |Aij − Bij |.
Alternatively, (and equivalently) one may use the Frobenius or L2 distance

d(A, B)2 = ‖A−B‖F (1)

=
∑
ij

|Aij −Bij |2 (2)

= Tr(A>B) (3)

Definition 1.1. A matrix Lie group is a closed subgroup of GL(n, IR).

Clarification The condition that G < GL(n, IR) is closed subgroup means that if (Ai)
is a sequence of matrices in G, converging to a matrix A∞ ∈ GL(n, IR), then A∞ is in
G.

Example 1.2. Look at the matrices of the form

Aα =

[
1 0
0 α

]
for α > 0. These form a group G. The matrix diag(1, 0) is a limit of elements in this
group. However, this matrix is not an element of GL(2, IR). The group is a Lie group.
Note, that G is closed as a subset of GL(2, IR), but not as a subset of M(2, IR), the set
of 2× 2 real matrices.

In general, GL(n, IR) itself has limits that are not in GL(n,R), so GL(n, IR) is not closed
as a subset of M(n, IR). However, this is not relevant, since it GL(n, IR) is closed as a
subset of itself, which is all that is required.

Example 1.3. Look at the matrices

Aθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.
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Figure 1: Dihedral group.

These form a Lie group, homeomorphic (topologically) to the circle S1. It is called
SL(2, IR). Now consider the matrices[

Aθ 0
0 Akθ ,

]
(4)

where k is a non-zero real number. The ensemble of all such matrices (for varing k an θ)
forms a group G, isomorphic to SL(2, IR)× SL(2, IR).

However, if k is a fixed irrational number, the set of matrices so obtained (although a
group, call it Gk is not closed as a subgroup of GL(4, IR). Hence, G is not a Lie group.

Observe that Gk forms a subgroup of S1 × S1, the torus, and is related to the irrational
flow on a torus. (In fact, it forms one orbit of the irrational flow). Denote S1 × S1 to
mean the group of matrices of the form[

Aαθ 0
0 Aβθ ,

]
for α and β real numbers. Then Gk is strictly smaller than S1 × S1, and is not a closed
subset of S1 × S1. In fact S1 × S1 is the closure of G, meaning that any element in
S1 × S1 is the limit of some sequence of elements of G.

With the topology induced from being a (dense) subset of S1 × S1, the group Gk, with
k irrational is a topological group, isomorphic and homeomorphic to IR, where IR has a
somewhat curious topology – not the usual one.

Note, however, that for k rational, this forms a closed subgroup of GL(4, IR), and hence
a Lie group.

Various groups

1. Discrete Lie groups (for instance, the groups of reflections, dihedral groups (Dp)
(fig 1), groups of symmetries (fig 3). These groups have dimension 0, and are not
very interesting for us in these lectures.

2. Invertible matrices GL(n, IR) or GL(n, lC).

3. The group GL+(n, IR) consisting of those elements of GL(n, IR) with positive de-
terminant.
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Figure 2: The icosahedron is the group of symmetries of an icosahedron.

4. In the case n = 1, these are the same as the groups IR∗ and lC∗, the non-zero
elements of IR and lC respectively, which are groups under multiplication. The
group IR∗ consists of both positive and negative elements. The positive elements
of IR themselves form a group, denoted by IR+, which is once again a subgroup of
GL(1, IR). (Note that one cannot do a similar type of thing for lC∗.)

5. Matrices of determinant 1, namely SL(n, IR) and SL(n, lC).

6. Orthogonal groups O(n, IR) and O(n, lC), square matrices satisfying the condition
A>A = I.

7. Unitary groups, U(n) (or U(n, lC), the same thing) satisfying the condition A∗A = I,
where A∗ represents the conjugate transpose.

8. Projective linear groups, PGL(n, IR), and PGL(n, lC), which is the quotient group of
GL(n, IR) modulo multiplication by a constant. Thus PGL(n, IR) ≡ GL(n,R)/Z(GL(n, IR),
where Z represents the centre, namely the set of scalar matrices.

9. Projective special linear group, PSL(n, IR) and PSL(n, lC), which are the quotients
of SL(n, IR) and SL(n, lC).

Exercise 1.4. PSL(n, IR) is the same as PGL(n, IR), for n odd, since −1 has an n-th root.
In the case where n is even, PGL(n, IR) is twice as big as PSL(n, IR). Matrices with
determinant +1 and −1 are different in PGL(n, IR), when n is even, but the same when
n is odd (since multiplying by −1 changes the determinant. Thus, for n odd, PGL(n, IR)
has two disconnected components, those with negative and those with positive determi-
nant. The subgroup of PGL(n, IR), with n odd, with determinant positive, is isomorphic
to PSL(n, IR). This is known as the identity component of PGL(n, IR).

However, since −1 has an n-th root in lC, the groups PSL(n, lC) and PGL(n, lC) are
isomorphic. (Multiplication of a matrix by an n-th root of −1 changes the sign of the
determinant).

Additive Lie groups. Under addition, both IR and lC are groups. They are clearly
groups, and they both have a topology (the usual topology) compatible with the group
operation. They are examples of topological groups.

However, they are not exactly subgroups of any GL(n, IR) (most particularly GL(1, IR)),
since the group operation (addition) in IR does not correspond with the group operation
(multiplication) in GL(1, IR).
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However, there exists a mapping φ : (IR,+)→ (IR+,×), defined by φ(x) = ex. It is easy
to see that φ is a group isomorphism, and moreover it is a diffeomorphism with respect
to the usual topology of IR and IR+. Identifying IR+ as a subgroup of GL(1, IR), one may
verify that the image of φ is a Lie group (one must verify that it is a closed subgroup of
GL(1, IR), which is trivial). Such a mapping φ a faithful representation of the topological
group (R,+) as a Lie subgroup of GL(1, IR).1

Via a faithful representation, a topological group may be identified with a matrix Lie
group. and all that will be said about matrix Lie groups applies equally well to those
topological groups with a faithful representation as a matrix Lie group.

The above discussion can be extended to IRm and lCm, as groups under addition. They
have faithful representations as Lie subgroups of GL(m, IR) and GL(m, lC) respectively
(as groups of diagonal matrices) via the exponential mapping.

Thus, for x = (x1, x2, . . . , xm) in IRm or lCm) there is a faithful representation:

x 7→

 ex1

. . .

exm

 .

Although this is a possible faithful representation of IRm as a subgroup of GL(m, IR),
there is a different representation, sometimes more useful, where IRm is represented as a
subgroup of GL(m+ 1, IR), as

x 7→


1 x1

. . .
...

1 xm
1

 (5)

One may verify that this is a faithful representation of (IRm,+) as a matrix Lie group.

1.1 Groups of geometric transformations

In addition, there are several Lie groups consisting of different transformations of a
Euclidean space (that is, one-to-one continuous transformations of IRm). In applications,
this is commonly the 3D or 2D Euclidean space IR2 or IRn. In the cases described, the sets
of transformations clearly form a group, but the topology will be defined by identifying
them with groups of matrices.

First, the groups will be listed below. Later, it will be shown that they may be represented
as matrix Lie groups.

1. The group of linear transformations, equal to (or represented by) GL(n, IR).

2. The group of rigid linear transformations, represented by to O(n, IR). Note that
the group O(n, IR) includes reflections, so by rigid linear transformations, in this
context, we include reflections. To exclude reflections, one uses the group SO(n, IR)
instead (as mentioned again below).

1A subgroup H < G is a Lie subgroup if it is a closed in the topology of G.
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3. The group of scaled rigid linear transformations, This may be represented by the set
of matrices kA where A ∈ O(n, IR) and k 6= 0. This is clearly a matrix Lie group.
An alternative representation of the group of scaled rigid linear transformations
is as the group of matrices of the form

[
A 0
0 1/k

]
, where A ∈ O(m, IR) and k 6= 0.

This shows the group of scaled rigid linear transformations to be isomorphic to
O(m, IR)× IR∗, and is a faithful representation as a subgroup of GL(m+ 1, IR).

4. The group of translations of IRm. This may be identified with the group (IRm,+)
itself, so a faithful representation of this group is given by (5).

5. The group of rigid transformations (or scaled rigid transformations) of IRm. A
rigid transformation consists of a rigid linear transformation plus a translation.
The standard way to represent a rigid transformation as a group is to represent
an element x = (x1, . . . , xm)> ∈ IRm in homogeneous coordinates.2 An element

x ∈ IRm is represented by the vector (̃x) ∈ IRm+1 equal to (x1, . . . , xm, 1)>. Then
a rigid transformation is represented by a matrix

Ã =

[
A t
0> 1

]
(6)

where A is an orthogonal matrix and t ∈ IRm. Then, the product ỹ = Ãx̃ pro-
duces a further homogeneous vector ỹ = (y1, . . . , ym, 1)> which is the homogeneous
coordinate vector such that

y = (y1, . . . , ym)> = Ax + t .

Thus the association of the rigid transformation with the matrix Ã is a faithful Lie
group representation of the group of rigid transformations.

6. Scaled rigid transformations. In a similar way, a scaled rigid transformation can be
represented by the matrix of the form (6) where the matrix A is of the form kU ,
where U is orthogonal and k 6= 0.

7. Affine transformations. An affine transformation is a combination of a linear trans-
formation followed by a translation. An affine transformation is represented by a
matrix of the form (6) where A is an arbitrary element of GL(m, IR).

8. All these transformations can be defined also in their “orientation preserving”
forms, in which O(n, IR) or GL(n, IR) are replaced by SO(n, IR) and GL+(n, IR).
The group of orientation preserving rigid transformations of IRm is called SE(m).
The group SE(3) is of particular importance as representing the group of all pos-
sible “motions” of a rigid object. Similarly, the group SO(3) is the group of all
possible rotations of an object.

1.2 The group of homographies

A homography, or projective transform is a mapping between geometric projective spaces,
represented by an invertible linear mapping on homogeneous coordinates. The projective

2By our convention, vectors represented by (for instance) x are column vectors. When the elements
are listed, such as (x1, x2, . . . , xm), this is a row vector, since the elements are listed horizontally.
Consequently, to obtain a column vector, we transpose; so (x1, . . . , xm)> is the column vector equal to
x.
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space Pn consists of equivalence classes of non-zero vectors, modulo multiplication by a
non-zero contant. Thus, v ≡ kv for all k. A homography is a mapping that takes v to
Hv (more exactly, it takes the equivalence class represented by v to the equivalence class
represented by Hv. Since multiplication by a constant does not matter, the matrix H
and kH represent the same homography. Since only non-singular matrices are allowed,
the group of homographies Pn → Pn forms a group. The group of homographies of
this dimension, which we shall denote by H(n, IR) is therefore, the same thing as the
group PGL(n + 1, IR). (Sometimes, PGL(n, IR) is defined to mean equivalence classes
of (n + 1) × (n + 1) matrices (unlike here, where we mean n × n matrices, in line with
the Wikipedia page). In this case, what we have called H(n, IR) is the same thing as
PGL(n, IR), equivalence classes of n+ 1 dimensional matrices.

Just to avoid any ambiguity, we use the symbol H(n, IR) to represent the group of
homographies, equal to PGL(n+ 1, IR).

Homographies as a matrix Lie group. Since the group of homographies is defined
as a quotient group of the matrix Lie group GL(n, IR), it is not immediately obvious that
it is a matrix Lie group. What is in question here is whether there is a matrix Lie group
isomorphic to GL(n, IR). In other words, is there a homography from GL(n, IR) to some
matrix Lie group, having kernel Z(GL(n, IR)), the subgroup of scalar matrices.

In the case where n is odd, PGL(n, IR) is isomorphic to SO(n, IR). The mapping
τ : GL(n, IR) → SO(n, IR), defined by A 7→ A/ det(A)1/n, takes A to a matrix with
determinant 1, and hence an element of SO(n). Here det(A) has an n-th root det(A)1/n,
because n is odd. The kernel of this mapping is clearly the set of scalar matrices kI.
Hence, when n is odd, PGL(n, IR) is a matrix Lie group. In particular, the group of
homographies of P2, i.e. planar homographies, is a matrix Lie group.

In the case where n is even, the situation is not so clear. One argues as follows. Let
M(n, IR) be the set of n × n matrices. An element A of GL(n, IR) acts on an element
X ∈M(n, IR) according to φA : X 7→ A−1XA. One sees that M(n, IR) is a vector space
of dimension n2, and that φA is a linear mapping of M(n, IR). The association of A
with the mapping φA defines a mapping (denoted by φ) from GL(n, IR) to the group
GL(n2, IR), which one may verify is a homomorphism. In other words, φAB = φAφB ,
which one checks by observing that

φAB(X) = (AB)X(AB)−1

= A(BXB−1)A−1

= φA ◦ φB(X)

The kernel of φ is equal to the set of scalar matrices. So the image of φ can be seen
as a subgroup of GL(n2, IR) isomorphic to PGL(n, IR). This is not in itself sufficient to
show that PGL(n, IR) is a matrix Lie group, since it is necessary to show that the image
of φ is a closed subgroup of GL(n2, IR), hence a matrix Lie group. The proof of this is
omitted.
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Figure 3: The exponential and logarithm maps are inverse mappings on suffiently small
domains, exponential (left) and logarithm (right).

2 Exponential map

Given a matrix A ∈M(n, lC), the exponential is defined as

exp(A) = I +A+A2/2! + . . .+An/n! + . . . (7)

This series converges for all A.

It is easily seen that if matrices A and B commute, then

exp(A+B) = exp(A) exp(B) .

A proof would follow the proof that the same relationship holds for the usual exponential
defined on the real or complex field.

An inverse of this operation is the logarithm map.

log(A) =

∞∑
m=1

(−1)m+1 (A− I)m

m
. (8)

This does not converge for all matrices A. However, the following is true.

Theorem 2.5. If ‖A−I‖ < 1, then the sequence converges, and furthermore, exp(log(A)) =
A. Furthermore, if ‖A‖ < log(2), then ‖ exp(A)− I‖ < 1 and log(exp(A)) = A.

Note. The exponential map satisfies the identity

det(exp(A)) = eTr(A) . (9)

Since the right-hand side is always positive, the exponential map: exp : M(n, IR) →
GL(n, IR) is not surjective. However, exp : M(n, lC)→ GL(n, lC) is surjective.
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2.1 Calculating the exponential map

Since the exponential map is defined as an infinite sum, it is not obvious how to compute
it directly.

If A is symmetric, then its exponential can be computed by using the eigenvalue de-
composition. Observe first that if D is a diagonal matrix D = diag(d1, d2, . . . , dn), then
exp(D) = diag(ed1 , ed2 , . . . , edn), so computing the exponential is easy enough. An ar-
bitrary real symmetric matrix can be written as A = UDU>, where U is orthogonal.
Similarly, a complex Hermitian matrix can be written as A = UDU∗. In the real case,
it follows that i

exp(A) = U exp(D)U>

and a similar thing happens in the complex Hermitian case. Thus, the exponential of
symmetric or Hermitian matrices are easy to compute.

Similarly, if A is a matrix with distinct eigenvalues, then it can be diagonalized as A =
PDP−1 where P is a non-singular matrix. The exponential of this matrix is exp(A) =
P exp(D)P−1.

In the case where A is not symmetric, or Hermitian, it cannot usually be diagonalized.
However, one can use the Jordan normal form in this case. Every (square) matrix can
be written as

A = P diag(B1, . . . , Bn)P−1

where each Bi is a square, and P is some nonsingular matrix. In this case, it is easily
seen that

exp(A) = P diag(exp(B1), . . . , exp(Bn))P−1 .

In the Jordan normal form (see Wikipedia “Jordan normal form”), each matrix Bi in
this decomposition is of the form

Bi =


λi 1

. . .
. . .

. . . 1
λi

 .

Note that the diagonal entries are all equal (they are the eigenvalues of A), and there are
entries, equal to 1 on the super-diagonal. All other entries are zero. (If some eigenvalue
appears once only, then the corresponding block is 1× 1 and there is no superdiagonal.)

The matrix Bi can be written as Bi = λiI +E, where E is the matrix with entries 1 on
the superdiagonal. Note that λiI and E commute, so that

exp(Bi) = exp(λiI + E)

= exp(λiI) exp(E)

= eλi exp(E)

It is easily seen that if E has dimension m ×m, then Em = 0, so that the infinite sum
expansion of exp(E) terminates after m terms. Consequently, exp(E) is easy to compute,
and can be written down in closed form. Exercise: work out what exp(E) looks like
exactly.
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This gives a method to compute the exponential of an arbitrary matrix. (Note, how-
ever, the warning on the Wikipedia page about numerical stability of the Jordan normal
form. Note also that if the matrix has distinct eigenvalues, then it is diagonalizable, and
that a given matrix can be approximated arbitrarily closely by matrices with distinct
eigenvalues.)

For a more about ways to compute the matrix exponential, see the Wikipedia pages on
“Matrix exponential” and “Jordan-Chevalley decomposition”.

3 The Lie Algebra

Definition 3.6. The Lie Algebra g of a matrix Lie group G, a subgroup of GL(n, IR), is
the set of all matrices A such that exp(tA) ∈ G for all t ∈ IR.

In this case, fA(t) = exp(tA) forms a curve in G, defined for all time t. The curve must
lie in G for all t, not just for some t. Note however, that it is sufficient to insist that
exp(tA) lies in G for all sufficiently small t.

Exercise 3.7. If exp(tA) lies in group G for all 0 ≤ t < ε, then exp(tA) ∈ G for all t.

This is a curious definition of the Lie Algebra, so we shall look at it a bit more. The first
(and perhaps most important) remark is that the set of all such matrices A forms a real
vector space.

Theorem 3.8. If G is a matrix Lie group in GL(n, lC) and g is its Lie algebra, then g
has the following properties, for all, k ∈ IR, X,Y ∈ g and A ∈ G.

1. A−1XA−1 ∈ g.

2. kX ∈ g.

3. X + Y ∈ g

4. XY − Y X ∈ g.

The first statement is very easy, and the proof that kX ∈ g is trivial. Note however,
this relationship holds for k ∈ R, not k ∈ lC, even though G is a subgroup of GL(n, lC)).

To prove that X+Y is in g is a little more tricky, since one does not have the relationship
exp(t(X + Y )) = exp(tX) exp(tY ). The result relies on the fact that this relationship is
approximately true for small value of t, in particular one has the relationship

lim
m→0

(exp(mX) exp(mY ))1/m = exp(X + Y ) .

from which the result follows. The final condition is also relatively simple, and is shown
as follows.

As a function of t, the trajectory exp(tX)Y exp(−tX) is a smooth curve lying in g. Its
derivative therefore lies in g, since g is a linear subspace of GL(n, F ). Calculation shows
that the derivative, evaluated at t = 0 is exactly XY − Y X.
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The second and third conditions show that g is a real vector space. The final condition
defines the so-called bracket operator on the Lie group, giving it the structure of a real
Lie algebra, in the algebraic sense.

An (algebraic) Lie algebra is a vector space with a binary operator (the bracket operator)
[·, ·], which is bilinear, antisymmetric, and satisfies the Jacobi identity

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 .

Under some circumstances, g will also be a complex vector space, meaning that iX is
in g whenever X is. In this case G is called a complex Lie group. If G is a complex Lie
group, so that g is a complex vector space, hence isomorphic to lCn, then the exponential
map provides charts making G into a complex manifold.

Exercise 3.9. Investigate when the examples of Lie groups given above are complex Lie
groups. In particular, are the groups O(n, lC) (complex orthogonal group) and U(n) (the
unitary group) complex Lie groups?

3.1 The Lie algebra and the tangent space

The mapping exp takes a sufficiently small neighbourhood of the zero-matrix 0 in M(n, lC)
and maps it homeomorphically onto a neighbourhood of the identity I. Restricted to the
Lie algebra of some Lie group G, the exponential maps a small neighbourhood of 0 ∈ g
to a smooth embedded neighbourhood of the identity in G. More is true.

Theorem 3.10. Given a matrix Lie group G with Lie algebra g, there exists a (suffi-
ciently) small neighbourhood U of 0 ∈ g, which is mapped smoothly and bijectively onto
its image V = exp(U), and such that U ∩ g maps smoothly and bijectively onto G ∩ V .

The important point here is that the exponential map takes a neighbourhood of 0 onto
a neighbourhood of I ∈ G.

This mapping makes G into a smooth (real) manifold. The exponential map itself is a
chart for a neighbourhood of the identity in G. Moreover, for any other point g ∈ G,
the mapping X 7→ g exp(X) maps a small neighbourhood U ⊂ g epimorphically to a
neigbourhood of g ∈ G. Together, these maps form a complete set of charts for G.

Tangent space at the identity. The tangent space to the smooth manifold G3 at a
point g ∈ G may be viewed as the set of derivatives of all smooth curves passing through
g.

Consider the curve f(t) = exp(tX) for X ∈ g. The derivative of this curve, is computed
to be equal to X exp(tX) = exp(tX)X. When t = 0, this is equal to X. Thus, X is
in the tangent space at the identity. Conversely, if A(t) is a smooth curve in G with
A(0) = I, let a(t) = log(A(t)). In a small neighbourhood, the logarithm is defined and
smooth, so the curve a(t) is smooth. Furthermore A(t) = exp(a(t)). Taking derivatives
gives A′(t) = a′(t) exp(a(t)), and when t = 0, this gives A′(t) = a′(t). However, a(t) is a

3Since we are chiefly concerned with Lie groups, which have been shown to be (or are by definition)
manifolds, we use the symbol G to represent a manifold, or a Lie group.
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curve lying in g, which is a linear vector space. Hence a′(t) is in g, and so is A′(t). Thus,
the tangent space at the identity is a subset of g.

This proves that g is equal to the tangent space TI(G) of the Lie group at the identity.

Tangent space at other points. At a point A ∈ G, the tangent space is the set of
all tangents f ′(0), where f(t) is a smooth curve in G with f(0) = A. Given a curve f0(t)
with f0(t) = I, the curve f(t) = Af0(t) is a smooth curve with f(0) = A, and every
smooth curve is obtained in this way. Taking derivatives gives f ′(0) = Af ′0(0), which
shows that the tangent space TA(G) is equal to Ag.

Exercise 3.11. What (if anything) is special about left multiplication here? The tangent
space at A is equal to Ag, which is the set of all products AB with B ∈ g. Why not gA?
Show that for A ∈ G, the sets Ag and gA are the same.

For reference, we state the result as a theorem.

Theorem 3.12. Given a matrix Lie group G with Lie algebra g, the tangent space to G
at a point A is equal to the set TA(G) = Ag.

Exercise 3.13. The set TA(G) = Ag is a real vector subspace of GL(n, lC).

Finding the Lie algebra of a matrix Lie group. A useful method to find the Lie
algebra is to find tangents of curves in GL(n, IR) at the identity. Consider a point I+ ∆,
where ∆ is an incremental adjustment to I. The question is to find those ∆ such that
I + ∆ lies in G. The way to do this is to find a defining condition for G, and apply it to
I + ∆, treating ∆ as in infinitessimal adjustment, and ignoring second-order terms.

Thus, for example, consider the group O(3, IR) of all orthogonal 3 × 3 matrices. The
defining condition for an element in O(3, IR) is that A>A = I. Applying this to a matrix
A = I + ∆ gives

A>A = I + ∆ + ∆> + ∆>∆

= I + ∆ + ∆> .

where ∆>∆ is deleted, since it consists of elements of second order in the entries of ∆.

The condition that A+A> = I leads to ∆ + ∆> = 0. Hence, ∆ is skew-symmetric. This
shows that the Lie algebra of O(n, IR) is the vector space of skew-symmetrix matrices of
dimension n.

As a second example, consider the group SL(n, IR), which has the defining condition that
det(A) = 1. Consider an element I + ∆, and look at det(I + ∆). It is easily seen that to
first order, this is equal to 1+Tr(∆). Hence, the Lie algebra of SL(n, IR) is the subspace
of M(n, IR) consisting of all matrices with trace 0.

The exponential map does not map onto G. Consider a matrix Lie group G
with Lie algebra g (the tangent space at the identity). Since a curve exp(tA) is smooth
and continuous, the set of points exp(A) with A in g must be a path-connected, and
hence connected set. Consequently, the exponential map cannot map g onto the group G
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Figure 4: Eigenvalues of an element in SL(2, IR). The eigenvalues come in inverse
pairs. An element of SL(2, IR) is in the image of the exponential map if and only if both
eigenvalues satisfy Re(λ) ≥ −1.

unless G is connected. The group GL(n, IR) is not connected since the determinant map
takes it onto the set IR\{0}, which is not connected. There is no path from the identity
to a matrix with negative determinant. Hence, the exponential map is not onto.

Consider the set of elements g ∈ G that are in the same connected component of G as
the identity. This is a subgroup of G, called the identity component.

Exercise 3.14. The identity component of a Lie group G is a normal subgroup of G.

One may surmise that the exponential map for a matrix Lie group maps the Lie algebra
onto the identity component of G. However, this is not the case, as the following example
shows.

Example 3.15. Let G = SL(2, IR). This is a connected Lie group. The Lie algebra g is
the set of 2× 2 matrices with trace 0, namely the set

g =

{[
a b
c −a

]}
.

Now, if X ∈ g is a matrix of this form, then X2 = −det(X)I. Setting D = det(X), the
exponential expands as

exp(X) = cos(
√
D)I + sin(

√
D)/
√
DX if D > 0

= cosh(
√
−D)I + sinh(

√
−D)/

√
−DX if D < 0

Since trace of X is zero, this shows that Tr(exp(X)) ≥ −2. However, there are cer-
tainly matrices in SL(2, IR) with trace less than −2, for instance, the matrix X =
diag(−2,−1/2). This is illustrated in fig 4.

4 More about the Lie bracket

The Lie algebra was defined in the previous section, and was seen to be identifiable with
the tangent space of the Lie group at the identity. An important property of the Lie
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algebra is the existence of the bracket operator [·, ·] : g × g → g, which is a bilinear,
antisymmetric product satisfying the Jacobi identity.

However, the Lie bracket can be defined in the context of arbitrary differential manifolds,
as is well know. In the case of differential manifolds, however, the Lie bracket is defined
on vector fields, rather than (in the case of Lie groups) a single tangent space g, the
tangent space at the identity.

A (smooth) vector field on a differential manifold M is a smooth assignment of a vector
v ∈ Tm(M) at each point m ∈M . In other words, it is a smooth mapping X : M → TM
such that X(m) ∈ Tm(M) for all m ∈M .

Given a vector field X, and a function f : M → IR, defined on the manifold, one may
define the derivative of f in the direction X, denoted by Xf , which is defined at each
point m ∈ M . More specifically, at each point m ∈ M , there is defined a vector X(m)
in the tangent space at m. Then Xf denotes the derivative of f in the direction X(m)
at m ∈ M . Thus, Xf is a real number, for each point m ∈ M . In other words, Xf is
also a function Xf : M → IR.

Notation. We denote the set (vector space) of all vector fields on a manifold M by
T 1(M), and the set of functions defined in M by T 0(M). Thus for f ∈ T 0(M) and
X ∈ T 1(M), the directional derivative Xf is an element of T 0(M).

Now, given two vector fields, X and Y , sinceXf ∈ T 0(M), one may apply Y to this giving
Y (Xf), or simply Y Xf , which is again an element of T 0(M). Doing this in the opposite
direction, one can consider XY f − Y Xf , which is again an element of T 0(M). The
important observation one makes here is that, given X and Y , there exists a (unique) Z ∈
T 1(M) such that XY f − Y Xf = Zf . (This is easily shown by expanding XY f − Y Xf
in a local coordinate system, using the properties of the directional derivative.) Thus,
X and Y uniquely determine Z; one defines the Lie bracket operation by [X,Y ] = Z.
Clearly, the bracket operator so defined is bilinear a anti-symmetric. Once again, in
a local coordinate system, one can verify the Jacobi identity. Therefore, the bracket
operator makes T 1(M) into a Lie algebra.

The question is, what does this have to do with the Lie algebra of a Lie group, which we
have seen is a single vector space, the tangent space at the identity.

First, it is important to see that in the differential manifold setting, one cannot define
a Lie bracket structure on the tangent space at a single point. Why is this? Given
X ∈ T 1(M) and f ∈ T 0(M), on intuitive grounds one sees that the directional derivative
at a point m depends on the value of X only at the point m (defining a direction in
which f varies), but it requires the value of f to be defined in a neighbourhood of m. To
repeat, X needs to be known only at the point m, not in a neighbourhood. However,
when this operation is repeated by applying Y to Xf , it is necessary that Xf be defined
in a neighbourhood of m. For Xf to be defined in a neighbourhood of m, it is necessary,
therefore, for X to be defined in that neighbourhood. In a similar way, to make any
sense of XY f at a point m, it is necessary for Y to be defined in a neighbourhood of
m. To form XY f − Y Xf , therefore, both X and Y , as well as f must be defined in a
neighbourhood of m.

The question, then is what is different in the Lie group case. The answer has to do with
translation of tangentvectors by the group action. To look at this, let M be a smooth
manifold, and G a group. In the case of Lie groups, both M and G are the same thing,
but we use different symbols M and G to emphasize their different roles in the following
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discussion.

Actions of groups. A (left) action of G on M is a mapping G ×M → M denoted
by (g,m) 7→ g ◦m, or simply gm, where g ◦m (or simply gm) is an element of M , such
that the mapping m 7→ gm is smooth for all g, and such that g(hm) = (gh)m. A right
action is the same, with the condition g(hm) = (hg)m, written more conveniently as
(mh)g = m(hg). We assume that the action is transitive meaning that the action of G
on M takes any point to any other.

Denote the mapping m 7→ gm by λg (transformation by g), which is a smooth map from
M to M . Let m0 be a base point in M (any point). If M is the Lie group G, then
m0 should be the group identity. Then λg induces a linear transform λ∗g : Tm0(M) →
Tgm0

(M).

Now, given a vector X in Tm0
, one can define a vector λ∗g(X) lying in Tm0

, for any g. If
G acts transitively on M , then this defines a vector in the tangent space at any point.
One thing needs to be checked, namely that this vector is well defined, namely that if
there are two elements g, h ∈ G such that gm0 = hm0, then the mappings λ∗g and λ∗h,
taking Tm0

(M) to Tgm0
are the same, so that which vector X is mapped to does not

depend on whether one transforms it via λ∗g or λ∗h. For the result to be the same, one
requires that λ∗hλ

∗
g
−1, which is a linear transformation from Tm0(M) to itself, is equal

to the identity. This is equivalent to the condition that λhg−1 is the identity. Defining
stab(m0), the stabilizer of the point m0 under the group action to be the subgroup of
G that fixes m0, the required condition that the left translation of the vector X be well
defined is that if g ∈ stab(m0), then λ∗g is the identity map on Tm0

(M).

This is obviously true if the stabilizer of any point m0 is trivial, namely that G acts
without fixed points. This is certainly the case of the action of a Lie group G on itself.

Getting back to the definition of the Lie bracket on the Lie algebra of a Lie group, let
X and Y be vectors in g = TI(G). These can be extended to smooth vector fields (also
called X and Y here) on the whole of G. From this, we may define a Lie bracket, as in
section 4.

The key fact here is that the Lie bracket defined in this way for left-invariant vector fields
on differential manifolds, and the Lie bracket defined as a commutator XY −Y X on the
Lie algebra of a matrix Lie group are the same.

Exercise 4.16. Given X and Y in g, one may define their Lie bracket, as seen above, by
extending them to left-invariant vector fields XL and YL (where L stands for left) on the
whole of G, and then taking the Lie bracket of vector fields.

What happens if instead of extending X and Y by left multiplication in G, we extend
to two vector fields XR and YR by right multiplication by elements of the group? Note
that it will in general not be true that XL = XR or YL = YR. However, verify that the
Lie brackets [XL, YL] and [XR, YR] are the same in both cases.

5 Riemannian metrics

A Riemannian metric on a Lie group is a smooth assignment of an inner product defined
on each tangent space. For a matrix Lie group, G, the tangent space at any point is a
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vector space of matrices. At the point A ∈ G, this is the set of matrices Ag, as shown
above. As with any Riemannian manifold, there are a multitude of Riemannian metrics,
since the inner product can be chosen on each tangent space independently, as long as
they vary smoothly. A natural requirement, however, in considering Riemannian metrics
on Lie groups is that the choice of metric have something to do with the group operation
on the Lie group.

A natural and common way to define an inner product on a vector space of matrices is
the Frobenius inner product, given my

〈X, Y 〉F = Tr(X>Y )

=
∑
i,j

XijYij

where i, j range over all entries to the matrices.

Since the tangent space at each point in a matrix Lie group is a vector space of matrices,
one can choose the Frobenius inner product at each point to define a Riemannian metric
on G. This is a possible way to define a Riemannian metric, but it will be seen that it
may not always be the best choice.

Invariant metrics. A metric 〈·, ·〉 on M is said to be left-invariant if 〈X, Y 〉m0
=〈

λ∗g(X), λ∗g(Y )
〉
gm0

. In other words, the linear transform λ∗g preserves the inner product.

Given an inner product defined on Tm0
(M), one can define an inner product at any other

point x = gm0 by
〈X, Y 〉x =

〈
λ∗g

1(X), λ∗g
−1(Y )

〉
x
. (10)

The metric so defined is left-invariant.

Exercise 5.17. The discussion just above assumes that the action of the group G on M
is transitive and fixed-point free, so that the stabilizer of a point in M is trivial. In this
case, the mapping λ∗g is independent of possible different choices of g. However, one can
make do with a slightly weaker condition, namely that if g ∈ stab(m0) for some point
m0, then λg is an isometry with respect to the inner product on Tm0(M).

In the case of a matrix Lie group G with Lie algebra g, the tangent space at a point
A is equal to Ag. For an element A ∈ G, the left action of G on itself is a mapping
λA : G → G, with λA(B) = AB. The corresponding map λ∗A : TI(G) → TA(G) is given
by X 7→ AX. Thus, the condition of left-invariance of the metric is given by

〈X, Y 〉I = 〈AX, AY 〉A .

or equivalently
〈X, Y 〉A =

〈
A−1X, A−1Y

〉
I
. (11)

for any matrices X and Y in the tangent space at A ( which is Ag).

First, note that if inner product at any point A ∈ G is defined by the Frobenius inner
product, then this metric is not left-invariant, for such a condition would require that

Tr(X>Y ) = Tr(A−1XY >A−>)

= Tr((AA>)−1XY >)

for any A ∈ G. This condition clearly does not hold, unless G is a subgroup of the
orthogonal matrices.
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Defining a left-invariant metric. A left-invariant metric on a Lie group (or a
differential manifold with transitive smooth group action) can be constructed by choosing
an arbitrary inner product on the tangent space at one point (that is, on Tm0

(M) or
TI(G) = g, and then transporting it to other points, according to (11).

For instance, in the case of matrix Lie groups, one may choose the Frobenius inner
product on g, and transport it elsewhere using (11).

Right-invariant metrics. A metric on a Lie group is said to be right invariant if it
satisfies an analogous condition to (11), namely that

〈X, Y 〉A =
〈
XA−1, Y A−1

〉
I
. (12)

A metric that is left-invariant is not necessarily right-invariant. In fact, if a metric
〈X, Y 〉A is both left and right invariant, then this means that〈

XA−1, Y A−1
〉
I

=
〈
A−1X, A−1Y

〉
I

(13)

in other words,

〈X, Y 〉I = 〈XA, Y A〉A
=
〈
A−1XA, A−1Y A

〉
I

(14)

for all X,Y ∈ g and A ∈ G. The first equality holds, because of right invariance, and the
second because of left-invariance. Thus, a metric is bi-invariant, if and only if conjugation
by an element of G is an isometry.

For instance if 〈·, ·〉I is the Frobenius norm, then this condition does not normally hold,
unless G is a subgroup of the orthogonal group.

The condition above is expressed in terms of conjugation of elements in the Lie algebra g
by elements in the group G. As such, it makes sense in the context of matrix Lie groups.

A condition for bi-invariance of a metric can be expressed entirely in terms of the Lie
algebra, as follows.

Lemma 5.18. A left-invariant metric 〈·, ·〉 is bi-invariant if and only if the condition

〈[Z,X], Y 〉+ 〈X, [Z, Y ]〉 = 0 . (15)

holds for all X,Y, Z ∈ g.

Proof. The proof is given for matrix Lie groups. Suppose that the metric is bi-invariant,
so 〈X, Y 〉 =

〈
A−1XA, A−1Y A

〉
. If we write A = exp(tZ), this becomes

〈X, Y 〉 = 〈exp(−tZ)X exp(tZ), exp(−tZ)Y exp(tZ)〉

Now, differentiating with respect to t and setting t = 0 leads to

0 = 〈XZ − ZX, Y 〉+ 〈X, Y Z − ZY 〉 .

Writing XZ − ZX using the Lie bracket notation [X,Z] gives the required result.

The inverse implication can be obtained by integration.
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This expression is sometimes expressed in terms of the adjoint map, adZ : X 7→ [Z,X],
by saying that the adjoint map adZ is skew-adjoint for all Z. This means that

〈X, adZY 〉 = −〈adZX, Y 〉 ,

which is easily seen to be the same as (15).

Bi-invariant metrics. One may make an arbitrary choice of inner product at the
identity and create a left-invariant metric. It seems plausible that at least one such choice
leads to a metric that is both left and right invariant, called bi-invariant. In fact, it can
be shown that

Theorem 5.19. If G is a compact Lie group, then there exists a bi-invariant metric on
G.

The proof goes something like this, for matrix Lie groups.

Proof. It is sufficient to define an inner product at the identity. We start with the
Frobenius inner product (or any other inner product) 〈X, Y 〉 for X, Y ∈ g. Now, we
define a different inner product at the identity, by defining

〈X, Y 〉′I =

∫
A∈G

〈
AXA−1, AY A−1

〉
dA

where integration is carried out over compact G with respect to a left-invariant measure
(Haar measure). This can be extended to a left-invariant inner product according to
(11). This metric will be bi-invariant, according to (13) if

〈X, Y 〉′I =
〈
BXB−1, BY B−1

〉′
I
.

In terms of the definition of the inner product 〈·, ·〉 this is∫
A∈G

〈
ABXB−1A−1, ABY B−1A−1

〉
dA =

∫
A∈G

〈
AXA−1, AY A−1

〉
dA .

Taking the left hand side, and substituting U = AB, leads to∫
A∈G

〈
ABXB−1A−1, ABY B−1A−1

〉
dA =

∫
U∈G

〈
UXU−1, UY U−1

〉
dU .

where we have used the fact that the measure is left invariant, namely that the mapping
A 7→ BA = U preserves the measure.

The following theorem extends the known result above.

Theorem 5.20. There is a bi-invariant metric on a Lie group G if and only if G is
isomorphic to H1 × H2, and H1 is a compact Lie group, and H2 is a commutative Lie
group.

See [?] (Milnor: Curvature of left-invariant metrics on Lie groups.)
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5.1 Geodesics

Once a Riemannian metric is defined on a Lie group, we may talk about the Riemannian
exponential and logarithm maps. These may or may not be the same as the Lie (or
matrix) exponential map. In particular, the Riemannian exponential and logarithm
maps depend on the particular metric defined on the manifold, which of course the
matrix exponential map does not.

The matrix exponential is related to an integration curve on the manifold, as follows.
Given a vector field X, a curve γ(t) is an integration curve of the vector field X if for
all t, γ′(t) = X(γ(t)). So, the derivative of the curve at some point t, which is a vector
in Tγ(t)(M), is equal to the value of the vector field in the same tangent space. It is
a basic fact that integration curves of smooth vector fields always exist, are uniquely
defined by the initial point and velocity, (γ(0), γ′(0)) and are defined for all time t (See
Lee, Differential Manifolds).

Theorem 5.21. Given a smooth left-invariant vector field, X, the integration curve γ(t)
defined such that γ(0) = I and γ′(0) = X0 (a vector in TI(G)) is the curve γ(t) =
exp(tX0), where exp is the matrix (or Lie) exponential.

The proof is simple. One computes γ′(t) = exp(tX)X0 = γ(t)X0, so γ′(0) = X0 and
γ(0) = I. Since the field is left-invariant, by definition X(γ(t)) = γ(t)X0, which is equal
to γ′(t). So γ(t) is an integration curve of the vector field.

Since there is nothing special about left-invariant vector fields, compared with right-
invariant vector fields, the proof may be easily modified to show that the exponential
curves are integration curves of right-invariant vector fields as well.

In the case of a bi-invariant metric, the matrix (or Lie) exponential and the Riemannian
exponential maps are the same.

Theorem 5.22. If the group G is equipped with a bi-invariant metric, then expM (X) =
expR(X), for all X ∈ g, where expM represents the matrix exponential, and expR denotes
the Riemannian exponential map belonging to the metric. Hence, the geodesics are equal
to the one-parameter curves expM (tX).

Note also that according to Theorem 5.21, the curves expM (tX), the one-parameter
subgroups, are the integral curves of left-invariant vector fields.

Proof. We consider a Lie group with a left-invariant inner product, and a Riemannian
(Levi-Civita) connection ∇XY , where X and Y are two left-invariant vector fields.

Lemma 5.23. The connection 2∇ZX = [Z,X] for all left-invariant vector fields X and
Z if and only if the inner product 〈·, ·〉 is bi-invariant.

Proof. The proof in the forward direction is easy. Let X and Y be left-invariant vector
fields. Then 〈X,Y 〉 is constant. Therefore ∇Z(〈X,Y 〉) = Z 〈X,Y 〉 = 0. Expanding the
expression gives

0 = ∇Z(〈X,Y 〉) = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉

=
1

2
〈[Z,X], Y 〉+ 〈X, [Z, Y ]〉 .
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This is the condition for the metric to be bi-invariant, according to lemma 5.18.

For the reverse implication, we use the Koszul formula for the Levi-Civita conection ∇,
namely

2 〈∇XY,Z〉 =X 〈Y, Z〉+ Y 〈X,Z〉 − Z 〈X,Y 〉
+ 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈X, [Y,Z]〉 .

(16)

Now, for left-invariant vector fields, this simplifies, so that the directional derivatives
vanish (they are applied to constant quantities). Therefore, we obtain

2 〈∇XY,Z〉 = 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y,Z], X〉 (17)

which holds for all left-invariant vector fields. The last two terms in this expression are
the same as (15), namely zero for a bi-invariant metric, which shows that

∇XY =
1

2
[X,Y ] .

Lemma 5.24. The one-parameter subgroup expM (tXe) is a geodesic for all Xe ∈ g, if
and only if ∇XY = [X,Y ]/2 for all left-invariant vector fields X and Y .

(In the above notation, e is the identity of the group G and Xe is an element of g, which
is the tangent space at the identity.)

Consider the left-invariant vector field that extends Xe ∈ g, and call it X. Suppose
that an integration curve of this vector field is a geodesic, and let γ(t) be such a curve.
Then γ(t) = exp(t,Xe) and γ′(t) is equal to X for all t. Then γ′(0) = Xe, and X is the
vector field that extends the vector field γ′(t) defined along γ(t). If γ(t) is a geodesic,
then ∇X(X) = 0, by definition of geodesic. This shows that ∇X(X) = 0 for any left-
invariant vector field. Now, applying this to ∇X+Y (X + Y ) = 0 and expanding yields
∇XY +∇YX = 0.

The torsion-free property of the Riemannian connection is ∇XY −∇YX = [X,Y ]. To-
gether with the condition ∇XY +∇YX = 0, this yields 2∇XY = [X,Y ].

Conversely, if 2∇XY = [X,Y ] then ∇XX = 0 for all left-invariant vector fields X, then
this is true for the vector field extending γ′(t) for the integration curve γ(t) = exp(tXe),
which is therefore a geodesic.

From this we have the following corollary.

Corollary 5.25. Let G be a connected Lie group, for which there exists a bi-invariant
Riemannian metric. Then the Lie exponential map: expM : g→ G is surjective.

Proof. If there exists a bi-invariant metric on G, then by Theorem 5.22 the Lie expo-
nential and Riemannian exponential maps related to this metric are the same. The Lie
exponential map is defined on the whole of the tangent space at any point (that is, G is
geodesically complete); the same must therefore be true of the Riemannian exponential
map. By the Hopf-Rinow theorem4 (see Wikipedia), the Riemannian exponential map
is surjective, and therefore, so is the Lie exponential map.

4The Hopf Rinow theorem states (among other things) that the exponential map is surjective for a
geodesically complete (or, equivalently, metrically complete) connected Riemannian manifold.
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Corollary 5.26. If G is a connected compact Lie group then the Lie exponential map is
surjective.

Proof. If G is compact, then a bi-invariant metric exists, according to Theorem 5.19 In
addition, G is complete, because it is compact. Thus, the conditions of Corollary 5.25
hold, and the matrix exponential map is surjective.

Example 5.27. It was shown in example 3.15 that in the Lie Group SL(2, IR), the matrix
exponential map does not map g onto G. This is in agreement with Corollary 5.25, since
SL(2, IR) is not compact, containing as it does elements of the form diag(n, 1/n) which
are unbounded in norm. It is, however, complete, since a Cauchy sequence of matrices
with determinant 1 must converge to a matrix with determinant 1. It follows that there is
no bi-invariant metric on SL(2, IR), since otherwise, by Corollary 5.25 the corresponding
exponential map would be surjective.

6 Curvature

The sectional curvature of a Riemannian manifold is given by the formula

K(X,Y ) =
〈R(X,Y )Y, X〉

〈X,X〉 〈Y, Y 〉 − 〈X,Y 〉2
, (18)

where R(X,Y )Z is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z . (19)

This is equal to the Gaussian curvature of a surface formed by mapping the plane spanned
by X,Y via the exponential map.

Note that the denominator in (18) is just a normalization constant, designed to ensure
that the sectional curvature depends only on the subspace of the tangent space spanned
by X and Y . It is positive (as long as X and Y are independent) because of the Schwarz
inequality. In fact, it is equal to the square of the area of the parallelogram spanned by
X and Y (exercise).

Exercise 6.28. The value of K(X,Y ) depends only on the span of the vectors X and Y ,
and not on the particular choice of vectors X and Y .

Consequently, one may define an unscaled version of sectional curvature, denoted by
κ(X,Y ), to equal the numerator of (18). If X and Y are orthogonal unit vectors, or
more generally, if the denominator of (18) is equal to 1, then K and κ are the same.

Note that for a Lie group with left-invariant metric, the sectional curvature at any point
is determined by the sectional curvatures at the identity, by transporting the vector field
at the identity via the group action.

The main reference for this section is [?]. (Milnor: Curvature of left-invariant metrics on
Lie groups.) We note just the following theorems.
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Lemma 6.29. Given a Lie group G with a bi-invariant metric, then

κ(X,Y ) =
1

4
〈[X,Y ], [X,Y ]〉 , (20)

which is non-negative for all X and Y .

Proof. Since the metric is bi-invariant, it follows from lemma 5.23 that 2∇XY = [X,Y ]
for all left-invariant vector fields X and Y .

Now, we compute

4R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= [X, [Y,Z]]− [Y, [X,Z]]− 2 [[X,Y ], Z]

= [X, [Y,Z]] + [Y, [Z,X]] + 2 [Z, [X,Y ]]

= [Z, [X,Y ]] ,

(21)

where the last line follows from the Jacobi identity.

Consequently,

4κ(X,Y ) = 4 〈R(X,Y )Y, X〉
= 〈[Y, [X,Y ]], X〉
= 〈[X,Y ], [X,Y ]〉 ,

where the last line follows from a further application of the skew-adjoint property of adY .
This shows that K(X,Y ) ≥ 0.

From this argument, one obtains also a simple formula for the Riemannian curvature
tensor defined as R(X,Y, Z,W ) = 〈R(X,Y )Z, W 〉. Supposing that G is a Lie group
with bi-invariant metric, then

R(W,X, Y, Z) = 〈[Y, [W,X]], Z〉 /4

= −1

4
〈[W,X], [Y,Z]〉

= −〈∇WX, ∇Y Z〉 .

(22)

Since compact Lie groups admit a bi-invariant metric, we have the following result.

Theorem 6.30. Every compact Lie group admits a bi-invariant metric. For such a met-
ric, all sectional curvatures are non-negative.

7 Tracking with Lie groups

We consider the case where a Lie group acts on some set S (non-transitively). For two
elements x,y ∈ S, it is desired to find the element g ∈ G so that gx best approximates
y.

22



Example 7.31. Point alignment. Suppose that S are ordered sets of points in some
Euclidean space IRm and G acts on IRm. For instance, various Lie groups that act on IRm

are discussed in section 1.1. We include also the group of homographies (see section 1.2),
which are not strictly transformations of IRm, but rather of the projective space Pm.

For instance, G may be the Lie group SE(3) of rigid Euclidean transformations, or groups
of scaled Euclidean transformations, rotations, affine or projective transformations.

Each element of G acts on a point xi ∈ IRm, producing a transformed point g xi. Ap-
plying G to an ordered set of points x = (x1,x2, . . . ,xn), one obtains a transformed set
of points gx = (gx1, gx2, . . . , gxn). Here, we may consider x as a point in IRn×m.

Given another set of points y = (y1,y2, . . . ,yn), one may see the group transformation
g such that gx is “closest” to y, in some appropriate sense. The notion of closeness
suggests a distance metric, or more generally a cost function, in which case one wishes
to find g that minimizes d(gx, y). An appropriate cost function may be

C(g) = d(gx,y) =

n∑
i=1

‖gxi − yi‖2 (23)

where ‖ · ‖ is the Euclidean norm in IRm. (Observe that d(·, ·) so defined is actually the
square of a distance metric in IRn×m). The square (exponent) in ‖ · ‖2 in this expression
can be replaced by some other exponent (such as 1) to obtain a more robust alignment.5

The task is to find the value of g that minimizes the cost.

In a further variant of this problem, the points y vary with time and may be denoted
by yt. The task of finding the sequence of transformations (group elements) gt such
that gtx = yt is the problem of tracking a set of points, moving according to a common
motion model.

Example 7.32. Another example we wish to consider is the problem of image alignment.
Let I(x) represent an image. Here, x represents a location in the image (perhaps a pixel)
and I(x) represents the intensity of that pixel. Although in practice, digital images are
represented by intensities at a fixed finite set of points, or pixels, it is easier to consider x
to be a point of IR2 (or some region, perhaps rectangular) in IR2. Thus, for convenience,
an image may be modelled as a smooth function with bounded support.

Given a transformation g, one may apply this to an image to produce a transformed
image gI, defined by6

gI(x) = I(g−1x) . (24)

Now, given two images I1 and I2 one may wish to align via some sort of specific trans-
formation (rigid transformation, homography, affine transformation). The task is then
to minimize some distance function C(g) = d(g I1, I2), where d(·, ·) measures some sort
of “distance” between the images.

A possible measure of the distance between the two images I1 and I2 may be given by

d(I1, I2)2 =

∫
(I1(x)− I2(x))

2
dx .

5This is the topic of L1 or Lq optimization, which will not be considered in detail. Other possibilities
such as m-estimators, such as Huber cost functions are also possible.

6Note that the definition of gI is given in this way so that if D is the support of image I, then the
support of image gI is gD. Thus applying gI is obtained from I by shifting the whole image according
to the translation g.
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where the integration is taken over all x ∈ IR2. This is the L2 distance between the two
images considered as functions. Since images have finite extent, this integral is really an
integral over a bounded domain, and hence is defined. Another possibility is to take the
integral only over the intersection of the supports of images I1 and I2. 7 The problem of
aligning the two images now comes down to a problem of minimizing C(g) = d(gI1, I2)2

over choices of g in the given group.

In the case of either of these two examples, it is not likely that the problem being
posed can be solved exactly in closed form. This is particularly unlikely with the image
alignment problem, since the cost of alignment depends upon the particular intensity
profile of the images.8 The cost function will generally have numerous local minima.9

Iteration. Therefore, it is necessary to apply an iterative algorithm to solve the
problem. The usual way that this will be carried out is as follows. Given some aligment
gt (initialized with g0), one carries out the following set of operations to update the
estimate to a new value gt+1. (Here, the subscript t denotes iteration number, not time
or frame-number as in video alignment).

First, let us consider a standard way of iterative optimization, using Gauss-Newton
method. We have in mind the optimization problem is formulated (at least locally)
as optimization of a function defined on a manifold of dimension m, taking values in
some Euclidean space IRn, where n > m. To do optimization of a cost function over
some set, which will be called G, though no use is made of the set being a group, one
requires a parametrization of the set G, at least locally around the current estimate.
What this means is that one needs a function, called here φ : G × IRm → G, where
(g, θ) 7→ φ(g, θ). This function provides a local parametrization of G around some point
g ∈ G, in particular, around the current estimate gt. This function should satisfy the
condition that φ(g,0) = g, where 0 ∈ IRm.

The idea is that given a current point gt ∈ G, and some parameter δ ∈ IRm representing
an update, one obtains a new (updated) value gt+1 = φ(gt, δ).

Also given is some function f : G → IRn, and the optimization task is to minimize
‖f(g)‖ over values of g ∈ G. This task relates to the point alignment problem by setting
f(g) = gx− y.

The optimization algorithm is described now. Starting from some initial estimate g0,
through a sequence of iterations a sequence of estimates gt are generated until conver-
gence, as follows.

7It is not suggested here that either of these two possibilities represent the ideal cost function for com-
paring two images. There are difficulties that arise from the finite extent of the images, and consequent
overlap of the transformed image and the target image, and also from sampling into pixels. However,
these may be thought of as implementation details to be solved when coding an algorithm.

8The point alignment problem has a closed-form solution for certain groups G, and depending on
the particular cost function being used. For instance alignment of points under translation with an L2

cost function is as simple as aligning the centroids of the two point sets x and y. Alignment under
Euclidean transformations is possible in closed form [?] with an L2 cost function, and under scaled
Euclidean transformations with an L2 cost, but in this case, minimzing d(gx, y) (transforming points
x to fit points y) does not give the same result as minimizing d(x, g−1y) (transforming points y to fit
points x).

9The standard method of approaching non-convexity in the problem of image alignment is to carry
out the alignment at several levels of detail (a “pyramid”), in successively smoothed images, smoothed
with a low pass (Gaussian) filter. One starts with a highly smoothed images and works down the pyramid
towards a final alignment at the initial resolution of the images.
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1. Compute ε = f(gt), which is an element of IRn.

2. Considering the function F : IRm → IRn defined by Ft(θ) = f(φ(gt, θ)), for θ ∈ IRm,
define

J =
dFt
dθ

∣∣∣∣
θ=0

.

Observe that J is an n × m matrix. Normally, one requires that m < n, so the
dimension of the parameter space, m, is less than the number of measurements, n.

3. Solve Jδθ = −ε in least-squares. That is,

δθ = −(J>J)−1J> ε .

So, δθ is an m-vector, representing an update to the parameters.

4. Set gt+1 = φ(gt, δθ).

This is the basic algorithm. To ensure convergence, some damping may be required, such
as the use of a Levenberg-Marquardt algorithm.

There are two time consuming steps in this algorithm, namely the computation of the
Jacobian, and the solution of the set of linear equations. At each time step the Jacobian
is being taken of a different function.

Gauss-Newton on a Lie group. In the case of optimization on a Lie group, the
obvious choice of function φ(g, θ) is to define

φ(g, θ) = expg(θ) = g exp(θ)

for θ in the Lie algebra g.

The maps are the following: the first line shows the domain and range of each map; the
second line shows the sequence of values, and the third line gives the sequence of values
when θ = 0. Note that the symbol e is used here to represent the identity of the Lie
group G.

g
exp→ G

λg→ G
f→ IRn

θ exp(θ) g exp(θ) f(g exp(θ))
0 e g f(g)

(25)

Next, we compute the derivatives of this map

g
exp∗→ Te(G)

λ∗g→ Tg(G)
f∗g→ IRn

g
I→ g

λ∗g→ gg
f∗g→ IRn

(26)

The first and second line shows where the maps go from and to. The map exp∗ : g→ g
is the identity map.

Evaluating this at the identity of G reveals that the derivative of the combined mapping
is given by

J = f∗g ◦ λ∗g
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The derivative in a direction X is given by

JX =
d

dt
(f(g exp(tX)))

∣∣∣∣
t=0

= f∗g (gX)

(27)

and JX represents a linear mapping, expressible as a matrix in some choice of basis.

In the notation here, f∗ : T (G) → IRn is the derivative of f , and f∗g is this derivative
evaluated as g, and it is a mapping Tg(G)→ IRn.

For computational purposes, we choose a basis for each tangent space Tg(G). IfX1, . . . , Xn

is a basis for g, then we can choose gX1, . . . , gXn for the basis of Tg(G). In this case, it is
clear that the mapping λ∗g is represented by the identity matrix of dimension n. There-
fore, the mapping J is represented by an m×n matrix, which is the matrix representing
f∗ at the point g.

The difficulty is that f∗ must be evaluated anew at each iteration, at a different point gt.
This may be a considerable computational burden; in addition, the equations Jδ = −ε
must be solved at each iteration – each time a different set of equations.

Inverse composition. The idea behind inverse composition for iteration on a Lie
group is to change the goal of the iteration slightly.

In forward composition, one seeks to find the value of g ∈ G to minimize

g∗ = argmin
g∈G

d(gx, y) . (28)

This can be otherwise stated as the task of finding g∗ such that

e = argmin
g∈G

d(g∗gx, y) . (29)

(Here, e is the group identity.) By contrast, the goal in inverse decomposition is to find
g∗ such that

e = argmin
g∈G

d(gx, g∗−1y) (30)

It is easy to see that this is the same thing if d(gx, y) = d(x, g−1y). Of course, this
does not usually hold. Nevertheless, suppose that x and y can be matched exactly by
the action of G. For instance, suppose that in the point matching problem, there exists
a transformation g ∈ G that maps x to y exactly. In this case d(g∗x, y) = 0, or g∗x = y,
so, because of the property of the Lie group, x = g∗−1y. So g∗ is also the solution to
the inverse decomposition problem. Consequently, the goal of the inverse-decomposition
method (30) is not unreasonable.

Now, the advantage of inverse decomposition is as follows. The Jacobian has to be
evaluated only once. At each step, one solves (in least squares) a set of equations of the
form Jδ = −ε, where only the value of ε changes – not the matrix J . The least-squares
solution to these equations is obtained by solving the system

(J>J)δ = −J> ε

Since only ε changes, one can speed up the solution, either by computing an LU (or
Cholesky) factorization of J>J in advance, or by computing (just once) the pseudo-
inverse (J>J)−1J>, so that δ = (J>J)−1J> ε can be computed rapidly.
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The steps of the inverse-composition method are as follows. Recall that one is attempting
to find g∗ such that

e = argmin
g∈G

d(gx, g∗−1y)

At any point one has found an approximation gt, and one proceeds as follows. Here
φ(X) : g → G is a function such as φ(X) = exp(X). The function ft(X) is given by
ft(X) = φ(X)x− g−1t y.

1. Compute ε = ft(0) = x− g−1t y.

2. Considering the function F : IRm → IRn defined by

Ft(X) = ft(φ(X)) = φ(X)x− g−1t y ,

for X ∈ g, define

J =
dFt
dX

∣∣∣∣
X=0

.

Here, observe that J is the same at all times. (This is the key point.)

3. Solve JδX = −ε in least-squares. That is,

δX = −(J>J)−1J> ε .

4. Set gt+1 = gtφ(δX), which is the same as g−1t+1 = φ(δX)−1g−1t .

One way to think about this is that one is assuming an approximation

d(φ(δX)x, g−1t y) ≈ d(x, φ(δX)−1g−1t y) ,

which explains the update step g−1t 7→ g−1t+1 = φ(δX)−1g−1t .

Although complete justification of this point is perhaps lacking, one observes, writing
δg = φ(δX), that the stationary point of this algorithm is, as desired, when d(δgx, g

−1
t y)

is at a local minimum, with respect to small increments δg.

8 Homogeneous spaces

Consider a Lie group G with a Lie subgroup H (not necessarily a normal subgroup).
There is a right action of H on G. Denote by G/H the set of left cosets of H in G.10

The left cosets are of the form gH for g ∈ G, and they form the orbits of the action of
H on G. There is a mapping π : G→ G/H taking g ∈ G to gH.

The set G/H may be endowed with a topology, the strongest topology such that π is
continuous. With this topology, G/H is a manifold, according to the following theorem
(and using the fact that G is a manifold).

Theorem 8.33 Quotient Manifold Theorem. Suppose a Lie group H acts smoothly,
freely and properly on a smooth manifold G. Then G/H is a topological manifold of
dimension dim(G)− dim(H), and has a unique smooth structure. with the property that
π : G→ G/H is a smooth submersion.

10Of course the following discussion applies also to the set of right cosets, with obvious modifications.
We shall, however, always assume that we are dealing with the set of left cosets.
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Here, G/H means the set of all orbits of the action of H on G. This may be applied in
the case where G is a Lie group G show that G/H is a smooth manifold, which will be
called M .

This theorem is true when G is an arbitrary manifold; it is not necessary to assume that
G is a Lie group.

Proof. See Theorem 21.10 in [?]. (Lee – Introduction to Smooth Manifolds).

To explain the notation:

1. Freely means that the stabilizer of any point is trivial.

2. Properly means that the mapping (g,m) 7→ (gm,m) is proper (inverse images of
compact sets are compact). If G is a compact Lie group, then the action is always
proper.

In this case, there is also a left action of G on G/H ≡ M , given by g′(gH) = (g′g)H.
This is a transitive action, so G acts transitively on M .

Viewed the other way around. One may look at this from another point of view.
Consider a Lie group G acting transitively (by left action) on a manifold M and suppose
that H is the stabilizer of some point x0 in M . In this case, H is a Lie subgroup of G.

Since H is a subgroup of G, there is a right action of H on G, and H acts freely on G.
The set of orbits of the action of H on G is equal to the set of left-cosets, G/H, that is,
sets of the form gH, and these cosets are in one-to-one correspondence with the elements
of M . Then, G/H may be given a topology and smooth structure such that the mapping
G/H →M is a diffeomorphism.

We summarize the following relations between G, H and M .

1. G acts with a left action on M , transitively, with stabilizer H.

2. H acts on G with a right action. The set of orbits is identified as a manifold, M .

3. H also has a left action (multiplication from the left) on G.

The normal metric. We now describe how G/H may be given a Riemannian metric,
called the normal metric derived from a suitable metric on G.

Let
〈
·, ·
〉
g

be a smooth inner product on Tg(G), defined at each point g ∈ G. For now,

the only assumption that we make about
〈
·, ·
〉

is that it is right invariant under the
action of H . Some notation follows. Denote by λg : G→ G the mapping corresponding
to left multiplication by g. Thus for g′ ∈ G, λg(g

′) = gg′. Similarly, define ρg(g
′) = g′g,

the mapping corresponding to right multiplication. Note the choices of λ and ρ are
meant to suggest left and right multiplication. Correspondingly, there are mappings
λ∗g : T (G) → T (G) and ρ∗g : T (G) → T (G), the derivatives of the mappings λg and ρg.
Here T (G) is the tangent bundle of G. The mapping λ∗g restricted to Tg′(G) (the tangent
space at g′) is a linear mapping Tg′(G)→ Tgg′(G) for any g′. For convenience, we shall
also denote this mapping by λ∗g. The assumption that the metric is right-invariant under

28



the action of H is to be interpreted to mean that the mapping ρh is an isometry for each
h ∈ H. In other words, for X,Y ∈ Tg(G) we have〈

X,Y
〉
g

=
〈
ρ∗h(X), ρ∗h(Y )

〉
gh
.

It will often be convenient to think of tangent vectors as derivatives of curves in G. We
will denote such curves as γ : IR → G. When using the notation γ(t), it will always be
assumed that γ(0) = e, the identity of G. The notation γ̇ will represent the element in
Te(G) represented by the derivative of this curve evaluated as 0. Given g ∈ G and a curve
γ(t), one can define a curve gγ by (gγ)(t) = g(γ(t)) = λg(γ(t)). The derivative of the
curve gγ is gγ̇ = λ∗g(γ̇). One can similarly define a curve γg, in which case γ̇g = ρ∗g(γ̇).

The projection π : G→ G/H given by g 7→ gH induces a mapping π∗ : T (G)→ T (G/H).
Restriction to a tangent space at g gives a map π∗g : Tg(G)→ TgH(G/H). This map is a
linear epimorphism. The kernel of π∗g is known as the vertical subspace of Tg(G). Under

the metric
〈
·, ·
〉
g
, the orthogonal complement of the vertical subspace is known as the

horizontal subspace. The vertical and horizontal subspaces in Tg(G) will be denoted by
Vg(G) and V ⊥g (G).

There exists a left-action of the group G on the quotient G/H; for g ∈ G a coset g′H is
mapped to (gg′)H. It is necessary to verify that this mapping is well-defined, in that if
g′1H = g′2H, then (gg′1)H = (gg′2)H. The verification is straightforward. It is important
to note that one cannot define a right action is a similar way. If one tries to define an
action g′H 7→ (g′g)H, then this mapping is not well-defined.

Given a vector X ∈ TgH(G/H), it is easily seen that there exists a unique vector X̃ in

the horizontal subspace V ⊥g (G) such that π∗g(X̃) = X.

Lemma 8.34. For all h ∈ H and g ∈ G, π∗gh ◦ λ∗h = π∗g . The mapping ρ∗h : Tg(G) →
Tgh(G) maps the vertical subspace Vg(G) isomorphically onto Vgh(G). If ρ∗h is an isometry
(in other words, the metric is right-invariant under H), then it maps the horizontal
subspace V ⊥g isomorphically onto V ⊥gh.

Proof. For all h ∈ H and g ∈ G, π∗gh ◦ ρ∗g = π∗g . Let Z ∈ Vg(G), so
〈
Z, X̃

〉
g

= 0.

Since (by assumption) the inner product is right invariant under H, it follows that〈
λ∗h(Z), λ∗h(X̃)

〉
= 0. If Z is a vertical vector, then we must show that λ∗h(Z) is vertical.

If Z is vertical, then π∗g(Z) = 0. Let γ(t)g be a curve representing Z. Then π∗g(Z) is
represented by the curve gγ(t)H in G/H, and ρ∗h(Z) is represented by the curve gγ(t)h.
Finally, π∗gh(ρ∗h(Z) is represented by the curve gγ(t)hH = gγ(t)H = πg(gγ(t)) Thus,
π∗gh(ρ∗h(Z) = π∗g(Z) = 0, as was required. ut

Now, with this preparation, one can define the normal metric on G/H as follows. Given

two vectors X,Y ∈ TgH(G/H), one lifts them to two vectors X̃, Ỹ in the horizontal
subspace V ⊥g (G) and defines an inner product

〈
X,Y

〉
by〈

X,Y
〉
gH

=
〈
X̃, Ỹ

〉
g
.

It is necessary to verify that this inner-product is well defined. In this definition, an
element g is chosen and X,Y are lifted to the horizontal space V ⊥g (G) at g. Here, a
choice is made, since the coset gH may also be written in a different way as g′H, where
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g′ = gh for some h ∈ H. It is necessary to show that the same result arises from lifting
both X and Y to gh instead.

Assume that X̃g ∈ V ⊥g (G), and X̃gh ∈ V ⊥gh(G) both project to X. It follows from

lemma 8.34 that ρ∗h(X̃g) = X̃gh, and similarly for Ỹg. Therefore〈
X̃gh, Ỹgh

〉
gh

=
〈
ρ∗h(X̃g), ρ

∗
h(Ỹg)

〉
gh

=
〈
X̃g, Ỹg

〉
g

(31)

so the inner-product is well-defined.

8.1 Transport

Let us now consider the effect of left multiplication on the horizontal and vertical sub-
spaces. Recall that the space G/H affords a left action of G. For g ∈ G, denote the
map g′H 7→ (gg′)H by λg. (Thus we use the notation λg to represent a map from G/H
to G/H as well as a map from G to G, allowing the context to determine which map is
meant.) Correspondingly, there is a mapping λ∗g : T (G/H)→ T (G/H).

We assume that the group G has a metric 〈·, ·〉 which is right invariant under the action
of H. This is necessary so that the normal metric on G/H can be defined, as shown
above.

Lemma 8.35. Left-multiplication and projection commute: λg ◦ π = π ◦ λg. The map
λ∗g : Tg′(G)→ Tgg′(G) maps the vertical subspace Vg′(G) isomorphically onto Vgg′(G). If

in addition the metric
〈
·, ·
〉

is left-invariant (under the action of the whole of G), then
λ∗g maps the horizontal subspace V ⊥g′ onto V ⊥gg′ isomorphically.

Proof. Let g′ ∈ G. Applying the map λg ◦ π takes g′ 7→ g′H 7→ gg′H. On the other
hand, π ◦ λg takes g′ 7→ gg′ 7→ gg′H, and so the mappings are equal. Consequently
λ∗g ◦ π∗ = π∗ ◦ λ∗g, so if X ∈ ker(π∗), then λ∗g ◦ π∗(X) = 0 = π∗ ◦ λ∗(X), and so λ∗(X) is
in ker(π∗), which is the vertical subspace.

If the metric is left-invariant, then λ∗ preserves the horizontal subspace, by the same
argument as before. ut

Corollary 8.36. Let X0 ∈ V ⊥g , and assume that the metric
〈
·, ·
〉

is left-invariant. Let
γ(t) = exp(tX) be the corresponding curve in G (here exp represents the matrix expo-
nential, which may or may not be the same as the Riemannian exponential map). Let Xt

in Tγ(t)(G) be the vector γ′(t), the derivative of the curve at time t. Then, Xt ∈ V ⊥γ(t).
Thus, the derivative of the curve remains in the horizontal subspace, for all t.

Proof. The derivative of γ(t) = exp(tX0) is given by exp(tX0)X0 = γ(t)X0. which
is equal to λ∗γ(t)(X0). However, according to lemma 8.35, λ∗g preserves the horizontal
subspace. ut

Question. This proof involves the matrix exponential. Can we devise a proof for
arbitrary Lie groups, not just matrix Lie groups? Answer: probably. The exponential
map in groupG, starting at the identity, is a one-parameter subgroup, satisfying γ(s+t) =
γ(t)γ(s). Taking the derivative with respect to s and setting s = 0 gives γ′(t) = γ(t)γ′(0).
Writing X0 for γ′(0), we get the same result as before.
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8.2 Lifting of curves

Theorem 8.37. Let a metric in G be right-invariant under H, and G/H be equipped with
the normal metric. Given a curve γ(t) in G/H, and a point g ∈ G such that γ(0) = gH,
then there exists a unique lifted curve γ̃(t) in G such that γ(t) = π(γ̃(t)) and γ̇(t) lies
in the horizontal subspace V ⊥γ̃(t)(G) for all t. The lengths of the curves γ(t) and γ̃(t) are
equal, over any range of t.

Proof. We construct a vector field along γ(t), thus, a vector defined at each point in
the tangent spaces in a neighbourhood of the curve. Each of these vectors is lifted to a
horizontal vector at each point lying above a point in the curve. Then starting at any
point g, one takes the integral curve of this vector field. By definition, this curve will be
horizontal at each point. Not entirely obvious is that it will cover the original curve γ.

If the curve γ(t) crosses itself, then it is necessary to break up the γ into segments and
lift each segment in this way independently. ut

The proof here does not require that the metric is left-invariant.

The following theorem shows that the horizontal lifts of geodesics are geodesics, and vice
versa.

Theorem 8.38. Suppose that the metric is left-invariant, and the space G/H is equipped
with the normal metric. If γ is a geodesic in G/H, and γ̃(t) is a lifted horizontal curve
in G, then γ̃ is a geodesic. All geodesics in G/H are of this form, and the lengths of the
γ(t) and γ̃(t) are equal.

8.3 Curvature

In the case where the metric on G is bi-invariant under the action of H, the lifting of
geodesic curves in G/H are geodesic curves in G. In particular, (at least locally) given
two vectors X and Y in Tx(G/H), they lift to two vectors in the horizontal subspace of
G. Furthermore, since exponentials lift to horizontal exponentials, the mapping through
exp of the subspace of the tangent space at x, generated by X and Y may be lifted
locally to a two-dimensional surface in G, generated by the horizontal lifts X̃ and Ỹ .
This surface maps locally isometrically onto the surface in G/H. Correspondingly, the
Gaussian curvature of the two surfaces are the same.

The Gaussian curvature, denoted κ(X,Y ) is the same as κ(X̃, Ỹ ). These are the sectional
curvatures in the two manifolds. However, by Theorem ?? the sectional curvatures in
G, with a bi-invariant metric, are non-negative. Consequently, we have the following
theorem.

Theorem 8.39. If the Lie group G is equipped with a bi-invariant metric, and G/H is
given the inherited normal metric, then the sectional curvature of G/H is non-negative.

Note from Theorem 5.20 that if G is compact, or the product of compact and abelian
Lie groups, then there always exists a bi-invariant metric. Hence, the quotient space has
a metric with non-negative sectional curvatures.
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9 Grassmann Manifolds and their Riemannian Struc-
ture

For 0 < p ≤ d, the space of d× p matrices with orthonormal columns is not a Euclidean
space but a Riemannian manifold, the Stiefel manifold St(p, d). That is,

St(p, d) < {X ∈ IRd×p : XTX = Ip}. (32)

By grouping together all points on St(p, d) that span the same subspace we obtain the
Grassmann manifold G(d, p). More formally, the Stiefel manifold St(p, d) admits a right
action by the orthogonal group O(p) (consisting of p × p orthogonal matrices); for X ∈
St(p, d) and U ∈ O(p), the matrix XU is also an element of St(p, d). Furthermore
the columns of X and XU span the same subspace of IRd, and are to be thought of
representatives of the same element of the Grassmann manifold, G(d, p). Thus, the
orbits of this group action form the elements of the Grassman manifold.

An element X of G(d, p) can be specified by a basis, that is, a set of p vectors x1, · · · , xp
such that X is the set of all their linear combinations. When the x vectors are ordered as
the columns of a d× p matrix X, then X is said to span X and we write X = span(X).
In what follows, we refer to a subspace X and hence a point on G(d, p) by its d× p basis
matrix X. The choice of the basis is not unique but it has no effect in what we develop
later.

A Riemannian metric on a manifold is defined formally as a smooth inner product on
the tangent bundle. (See [?] for the form of Riemannian metric on G(d, p)). However,
we shall be concerned only with geodesic distances on the Grassmann manifold, which
allows us to avoid many technical points and give a straight-forward definition.

Geodesics. On a Riemannian manifold, points are connected via smooth curves. The
geodesic distance between two points is defined as the length of shortest curve in the
manifold (called a geodesic) connecting them. The Stiefel manifold St(p, d) is embedded
in the set of d×p matrices, which may be seen as a Euclidean space IRd×p with distances
defined by the Frobenius norm. Consequently the length of a smooth curve (or path) in
St(p, d) is defined as its length as a curve in IRd×p. Now, given two points X and Y in
G(d, p), the distance dgeo(X ,Y) is defined as the length of the shortest path in St(p, d)
between any two points X and Y in St(p, d) that are members of the equivalence classes
X and Y.
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