On the local Langlands correspondence and Arthur conjecture for orthogonal groups

Hiraku Atobe

Department of mathematics, Kyoto University
(Joint work with Wee Teck Gan)
March 14, 2016

Contents

1 Local Langlands correspondence (LLC)

2 Local Gross-Prasad conjecture (GP)

3 Arthur's multiplicity formula

1 Local Langlands correspondence (LLC)

2 Local Gross-Prasad conjecture (GP)

3 Arthur's multiplicity formula

Notation

- F non-arch. local field, $\operatorname{char}(F)=0$;

■ $W D_{F}=W_{F} \times \mathrm{SL}_{2}(\mathbb{C})$ Weil-Deligne group of F;

- G connected reductive quasi-split group over F;
- \widehat{G} the complex dual group of G;
- ${ }^{L} G=\widehat{G} \rtimes W_{F} \quad$ the L-group of G.

L-parameters and component groups

We say that a homomorphism $\varphi: W D_{F} \rightarrow{ }^{L} G$ is admissible if

$$
W D_{F}=W_{F} \times \mathrm{SL}_{2}(\mathbb{C}) \longrightarrow{ }^{L} G=\widehat{G} \rtimes W_{F}
$$

is commutative.
The set of L-parameters of G is defined by

$$
\Phi(G)=\left\{\varphi: W D_{F} \rightarrow{ }^{L} G \text { adm. hom. }\right\} /(\widehat{G} \text {-conjugacy }) .
$$

The component group of $\varphi \in \Phi(G)$ is defined by

$$
\mathcal{S}_{\varphi}=\pi_{0}\left(\operatorname{Cent}(\operatorname{Im}(\varphi), \widehat{G}) / Z(\widehat{G})^{W_{F}}\right)
$$

Local Langlands conjecture (LLC)

Langlands predicted a classification of

$$
\operatorname{Irr}(G(F))=\{\text { irreducible rep. of } G(F)\}
$$

in terms of

$$
\Phi(G) \quad \text { and } \quad \operatorname{Irr}\left(\mathcal{S}_{\varphi}\right) .
$$

LLC for G classical groups is established by Arthur, Mœgline, Mok, and Kaletha-Minguez-Shin-White.

Example: $G=\mathrm{SO}(2 n+1)$

When $G=\mathrm{SO}(2 n+1)$ split,

- ${ }^{L} G=\operatorname{Sp}(2 n, \mathbb{C}) \times W_{F}$;
- $\Phi(\mathrm{SO}(2 n+1)) \xrightarrow{1: 1}\left\{\phi: W D_{F} \rightarrow \mathrm{Sp}(2 n, \mathbb{C})\right\}$;

■ $A_{\phi}=\pi_{0}(\operatorname{Cent}(\operatorname{Im}(\phi), \operatorname{Sp}(2 n, \mathbb{C})) /\{ \pm 1\})=\mathcal{S}_{\varphi}\left(\cong(\mathbb{Z} / 2 \mathbb{Z})^{r}\right)$.

LLC for $\mathrm{SO}(2 n+1)$ (Arthur)

1 There exists a surjection

$$
\operatorname{Irr}(\mathrm{SO}(2 n+1, F)) \rightarrow \Phi(\mathrm{SO}(2 n+1))
$$

The fiber of ϕ is denoted by Π_{ϕ}^{0} and called the L-packet of ϕ.
2 There exists a bijection

$$
\iota: \Pi_{\phi}^{0} \xrightarrow{1: 1} \widehat{A_{\phi}}, \sigma^{0} \mapsto \iota\left(\sigma^{0}\right) .
$$

Example: $G=\mathrm{SO}(2 n)$

When $G=\mathrm{SO}(2 n)$ quasi-split over F and split over E / F,
■ ${ }^{L} G=\mathrm{SO}(2 n, \mathbb{C}) \rtimes W_{F}$.
■ Put

$$
\Phi(\mathrm{SO}(2 n)) / \sim:=\left\{\phi: W D_{F} \rightarrow \mathrm{O}(2 n, \mathbb{C}) \mid \operatorname{det}(\phi)=\omega_{E / F}\right\}
$$

Then $\Phi(\mathrm{SO}(2 n)) \rightarrow \Phi(\mathrm{SO}(2 n)) / \sim$.

- $A_{\phi}=\pi_{0}(\operatorname{Cent}(\operatorname{Im}(\phi), \mathrm{O}(2 n, \mathbb{C})) /\{ \pm 1\})\left(\cong(\mathbb{Z} / 2 \mathbb{Z})^{r}\right)$.

■ $A_{\phi}^{+}=\pi_{0}(\operatorname{Cent}(\operatorname{Im}(\phi), \mathrm{SO}(2 n, \mathbb{C})) /\{ \pm 1\})=\mathcal{S}_{\varphi}$.
Then

$$
1 \longrightarrow A_{\phi}^{+} \longrightarrow A_{\phi} \xrightarrow{\text { det }} \mathbb{Z} / 2 \mathbb{Z}=\{0,1\}
$$

Weak LLC for $\mathrm{SO}(2 n)$

Since $\Phi(\mathrm{SO}(2 n)) \rightarrow \Phi(\mathrm{SO}(2 n)) / \sim$ is not injective, Arthur established a weaker version of LLC for $\mathrm{SO}(2 n)$.

Weak LLC for $\mathrm{SO}(2 n)$ (Arthur)

1 There exists a surjection

$$
\operatorname{Irr}(\mathrm{SO}(2 n, F)) / \mathrm{O}(2 n, F) \rightarrow \Phi(\mathrm{SO}(2 n)) / \sim
$$

The fiber of ϕ is denoted by Π_{ϕ}^{0} and called the L-packet of ϕ.
2 There exists a bijection

$$
\iota: \Pi_{\phi}^{0} \xrightarrow{1: 1} \widehat{A_{\phi}^{+}},\left[\pi^{0}\right] \mapsto \iota\left(\left[\pi^{0}\right]\right) .
$$

Aim of this section

- Langlands program focuses only on connected reductive groups.

■ However, reps. of disconnected groups arise naturally in various context.

■ For example, in the theory of theta correspondence, irr. reps. of $\mathrm{Sp}(2 m, F)$ and of $\mathrm{O}(2 n, F)$ correspond to each other.

Goal of this section

Explain LLC for full (disconnected) orthogonal group $\mathrm{O}(m)$.
Arthur, Mœgline and Heiermann discussed the LLC for $\mathrm{O}(m)$.

LLC for $\mathrm{O}(2 n+1)$

Note $\mathrm{O}(2 n+1)=\mathrm{SO}(2 n+1) \times\{ \pm 1\}$. Define

$$
\Phi(\mathrm{O}(2 n+1))=\Phi(\mathrm{SO}(2 n+1)) \times\{ \pm 1\}
$$

LLC for $\mathrm{O}(2 n+1)$ is given as follows:

and $\iota: \Pi_{\phi}^{b} \xrightarrow{1: 1} \widehat{A_{\phi}}$ is defined by $\iota(\sigma)=\iota(\sigma \mid \mathrm{SO}(2 n+1, F))$.

L-parameter for $\mathrm{O}(2 n)$

In fact, Arthur gave LLC for $\mathrm{O}(2 n)$, and deduced Weak LLC for $\mathrm{SO}(2 n)$. Put

$$
\begin{aligned}
\Phi(\mathrm{O}(2 n)) & :=\Phi(\mathrm{SO}(2 n)) / \sim \\
& =\left\{\phi: W D_{F} \rightarrow \mathrm{O}(2 n, \mathbb{C}) \mid \operatorname{det}(\phi)=\omega_{E / F}\right\}
\end{aligned}
$$

Recall
■ $A_{\phi}=\pi_{0}(\operatorname{Cent}(\operatorname{Im}(\phi), \mathrm{O}(2 n, \mathbb{C})) /\{ \pm 1\})\left(\cong(\mathbb{Z} / 2 \mathbb{Z})^{r}\right)$.
■ $A_{\phi}^{+}=\pi_{0}(\operatorname{Cent}(\operatorname{Im}(\phi), \mathrm{SO}(2 n, \mathbb{C})) /\{ \pm 1\})=\mathcal{S}_{\varphi}$.
Then

$$
1 \longrightarrow A_{\phi}^{+} \longrightarrow A_{\phi} \xrightarrow{\text { det }} \mathbb{Z} / 2 \mathbb{Z}=\{0,1\}
$$

LLC for $\mathrm{O}(2 n)$ (Arthur)

1 There exist surjections

$$
\begin{aligned}
& \Pi_{\phi} \subset \operatorname{Irr}(\mathrm{O}(2 n, F)) \longrightarrow \Phi(\mathrm{O}(2 n)) \ni \phi \\
& \operatorname{Res} \downarrow \\
& \Pi_{\phi}^{0} \subset \operatorname{Irr}(\mathrm{SO}(2 n, F)) / \mathrm{O}(2 n, F) \longrightarrow \Phi(\mathrm{SO}(2 n)) / \sim .
\end{aligned}
$$

In particular, $\pi \in \Pi_{\phi} \Longleftrightarrow \pi \otimes \operatorname{det} \in \Pi_{\phi}$.
2 There exist bijections

$$
\begin{aligned}
& \Pi_{\phi} \xrightarrow{1: 1} \widehat{A_{\phi}} \\
& \stackrel{\downarrow}{\Pi_{\phi}^{0} \xrightarrow{\stackrel{\rightharpoonup}{l}} \xrightarrow{\stackrel{\vee}{A_{\phi}^{+}}} .}
\end{aligned}
$$

Property of LLC for $\mathrm{O}(2 n)$

There is a special property of LLC for $\mathrm{O}(2 n)$.

Proposition

The following are equivalent:

- $\phi \in \Phi(\mathrm{O}(2 n))$ contains an irreducible orthogonal odd-dimensional representation of $W D_{F}$;
- $\left[A_{\phi}: A_{\phi}^{+}\right]=2$;
- there exists $\pi \in \Pi_{\phi}$ such that $\pi \otimes \operatorname{det} \not \approx \pi$;
- any $\pi \in \Pi_{\phi}$ satisfies that $\pi \otimes \operatorname{det} \not \approx \pi$.

Intertwining operator

Let $P=M N \subset \mathrm{O}(2 n)$ be a parabolic subgroup with $M \cong \mathrm{GL}_{k} \times \mathrm{O}\left(2 n_{0}\right)$. If $\pi_{0} \in \operatorname{Irr}_{\text {temp }}\left(\mathrm{O}\left(2 n_{0}, F\right)\right)$ and $\tau \in \operatorname{Irr}_{\text {temp }}\left(\mathrm{GL}_{k}(F)\right)$, the induced representation $\operatorname{Ind}_{P(F)}^{\mathrm{O}(2 n, F)}\left(\tau \otimes \pi_{0}\right)$ decomposes into a direct sum of irr. reps. of $\mathrm{O}(2 n, F)$:

$$
\operatorname{Ind}_{P(F)}^{\mathrm{O}(2 n, F)}\left(\tau \otimes \pi_{0}\right) \cong \bigoplus_{\pi} \pi
$$

If τ is self-dual, Arthur defined a normalized self-dual intertwining operator

$$
R\left(w, \tau \otimes \pi_{0}\right): \operatorname{Ind}_{P(F)}^{\mathrm{O}(2 n, F)}\left(\tau \otimes \pi_{0}\right) \rightarrow \operatorname{Ind}_{P(F)}^{\mathrm{O}(2 n, F)}\left(\tau \otimes \pi_{0}\right)
$$

Intertwining relation

Let

- $\phi_{0} \in \Phi\left(\mathrm{O}\left(2 n_{0}\right)\right)$ such that $\pi_{0} \in \Pi_{\phi_{0}}$;

■ $\phi_{1}: W D_{F} \rightarrow \mathrm{GL}_{k}(\mathbb{C})$ corresponds to τ via LLC for GL_{k}. If we put $\phi=\phi_{1} \oplus \phi_{0} \oplus \phi_{1}^{\vee} \in \Phi(\mathrm{O}(2 n))$, then $A_{\phi_{0}} \hookrightarrow A_{\phi}$. If ϕ_{1} is orthogonal, it define an element $a \in A_{\phi}$.

Theorem (Arthur)

$1 \Pi_{\phi}=\left\{\pi \subset \operatorname{Ind}_{P(F)}^{\mathrm{O}(2 n, F)}\left(\tau \otimes \pi_{0}\right) \mid \pi_{0} \in \Pi_{\phi_{0}}\right\}$;
$2 \iota(\pi) \mid A_{\phi_{0}}=\iota\left(\pi_{0}\right)$ if $\pi \subset \operatorname{Ind}_{P(F)}^{\mathrm{O}(2 n, F)}\left(\tau \otimes \pi_{0}\right)$;
3 (Intertwining relation)

$$
R\left(w, \tau \otimes \pi_{0}\right) \mid \pi=\iota(\pi)(a) \cdot \mathrm{id}_{\pi}
$$

How to compute $\iota(\pi)$

Let $\pi \in \operatorname{Irr}_{\text {temp }}(\mathrm{O}(2 n))$ and $\phi \in \Phi(\mathrm{O}(2 n))$ such that $\pi \in \Pi_{\phi}$.
An element $a \in A_{\phi}$ defines an orthogonal rep. ϕ_{1} contained in ϕ.
Let $\tau \in \operatorname{Irr}_{\text {temp }}\left(\mathrm{GL}_{k}(F)\right)$ correspond to ϕ_{1}.
Then by the above theorem, we have:

Propositioin

- $\operatorname{Ind}_{P(F)}^{\mathrm{O}(2 n+2 k, F)}(\tau \otimes \pi)$ is irreducible;
- $R(w, \tau \otimes \pi)=\iota(\pi)(a) \cdot \mathrm{id}$.

Hence, if one could understand $R(w, \tau \otimes \pi)$ more explicitly, one could compute $\iota(\pi)(a)$.

1 Local Langlands correspondence (LLC)

2 Local Gross-Prasad conjecture (GP)

3 Arthur's multiplicity formula

Multiplicity one theorem

Now suppose that there exists an inclusion $\mathrm{O}(2 n) \hookrightarrow \mathrm{O}(2 n+1)$.
Then we have a diagonal map

$$
\Delta: \mathrm{O}(2 n) \rightarrow \mathrm{O}(2 n) \times \mathrm{O}(2 n+1)
$$

Multiplicity one theorem

1 (Aizenbud-Gourevitch-Rallis-Schiffmann)
For $\pi \in \operatorname{Irr}(\mathrm{O}(2 n, F))$ and $\tau \in \operatorname{Irr}(\mathrm{O}(2 n+1, F))$,

$$
\operatorname{dim}_{\operatorname{Hom}_{\Delta \mathrm{O}(2 n, F)}}(\pi \otimes \tau, \mathbb{C}) \leq 1
$$

2 (Waldspurger) For $\pi^{0} \in \operatorname{Irr}(\mathrm{SO}(2 n, F))$ and $\tau^{0} \in \operatorname{Irr}(\mathrm{SO}(2 n+1, F))$,

$$
\operatorname{dim} \operatorname{Hom}_{\Delta \mathrm{SO}(2 n, F)}\left(\pi^{0} \otimes \tau^{0}, \mathbb{C}\right) \leq 1
$$

Local Gross-Prasad conjecture

Local Gross-Prasad conjecture determines precisely when

$$
\operatorname{Hom}_{\Delta \mathrm{SO}(2 n, F)}\left(\pi^{0} \otimes \tau^{0}, \mathbb{C}\right) \neq 0
$$

Let $\phi \in \Phi_{\text {temp }}(\mathrm{SO}(2 n)) / \sim$ and $\phi^{\prime} \in \Phi_{\text {temp }}(\mathrm{SO}(2 n+1))$ (i.e., $\phi\left(W_{F}\right)$ and $\phi^{\prime}\left(W_{F}\right)$ are bounded).

When $\varepsilon\left(1 / 2, \phi \otimes \phi^{\prime}, \psi\right)=1$, Gross-Prasad defined characters

$$
\chi_{\phi^{\prime}}: A_{\phi} \rightarrow\{ \pm 1\} \quad \text { and } \quad \chi_{\phi}: A_{\phi^{\prime}} \rightarrow\{ \pm 1\}
$$

in terms of root numbers.

Gross-Prasad conjecture for $\mathrm{SO}(2 n) \times \mathrm{SO}(2 n+1)$

Note that $\operatorname{dim} \operatorname{Hom}_{\Delta \mathrm{SO}(2 n, F)}\left(\pi^{0} \otimes \tau^{0}, \mathbb{C}\right)$ depends only on $\left(\left[\pi^{0}\right], \tau^{0}\right) \in \operatorname{Irr}(\mathrm{SO}(2 n, F)) / \mathrm{O}(2 n, F) \times \operatorname{Irr}(\mathrm{SO}(2 n+1, F))$.

GP for $\mathrm{SO}(2 n) \times \mathrm{SO}(2 n+1)$ (proved by Waldspurger)

Let $\phi \in \Phi_{\text {temp }}(\mathrm{SO}(2 n)) / \sim$ and $\phi^{\prime} \in \Phi_{\text {temp }}(\mathrm{SO}(2 n+1))$
such that $\varepsilon\left(1 / 2, \phi \otimes \phi^{\prime}, \psi\right)=1$.
Then there exists a unique pair $\left(\left[\pi^{0}\right], \tau^{0}\right) \in \Pi_{\phi}^{0} \times \Pi_{\phi^{\prime}}^{0}$ such that

$$
\operatorname{Hom}_{\Delta \mathrm{SO}(2 n, F)}\left(\pi^{0} \otimes \tau^{0}, \mathbb{C}\right) \neq 0
$$

Moreover,

$$
\iota\left(\left[\pi^{0}\right]\right)=\chi_{\phi^{\prime}} \mid A_{\phi}^{+} \quad \text { and } \quad \iota\left(\tau^{0}\right)=\chi_{\phi} .
$$

Gross-Prasad conjecture for $\mathrm{O}(2 n) \times \mathrm{O}(2 n+1)$

We formulated and proved GP for orthogonal groups.

GP for $\mathrm{O}(2 n) \times \mathrm{O}(2 n+1)$ (formulated and proved by A.-Gan)

Let $\phi \in \Phi_{\text {temp }}(\mathrm{O}(2 n))$ and $\left(\phi^{\prime}, b\right) \in \Phi_{\text {temp }}(\mathrm{O}(2 n+1))$ such that $\varepsilon\left(1 / 2, \phi \otimes \phi^{\prime}, \psi\right)=1$.
Then there exists a unique pair $(\pi, \tau) \in \Pi_{\phi} \times \Pi_{\phi^{\prime}}^{b}$ such that

$$
\operatorname{Hom}_{\Delta \mathrm{O}(2 n, F)}(\pi \otimes \tau, \mathbb{C}) \neq 0
$$

Moreover,

$$
\iota(\pi)(a)=\chi_{\phi^{\prime}}(a) \cdot b^{\operatorname{det}(a)} \text { for } a \in A_{\phi} \quad \text { and } \quad \iota(\tau)=\chi_{\phi} .
$$

Recall that $1 \longrightarrow A_{\phi}^{+} \longrightarrow A_{\phi} \xrightarrow{\text { det }} \mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$.

Remarks

■ In fact, we formulated GP for $\mathrm{O}(m) \times \mathrm{O}(m+1)$ in terms of Vogan L-packets (i.e., for pure inner forms). Also, we proved it under assuming the intertwining relation.
■ When $m=2$ or 3 , there are results of D.Prasad, which are compatible with GP for $\mathrm{O}(m) \times \mathrm{O}(m+1)$.

- A refine version of the global Gross-Prasad conjecture (Ichino-Ikeda conjecture) for orthogonal groups is formulated by H. Xue.

Outline of proof of GP for $\mathrm{O}(m) \times \mathrm{O}(m+1)$

■ First, we show D. Prasad's conjecture (P), which describes local theta correspondences in terms of LLC comparing intertwining operators and using the intertwining relation.

- The following is a summary:

1 Local Langlands correspondence (LLC)

2 Local Gross-Prasad conjecture (GP)

3 Arthur's multiplicity formula

A-parameters

From now, let k be a number field, and \mathbb{A} be the adele ring of k. Suppose that $\mathrm{O}(2 n)$ is defined and quasi-split over k.

Definition

A global discrete A-parameter for $\mathrm{O}(2 n)$ and $\mathrm{SO}(2 n)$ is a formal sum

$$
\Sigma=\Sigma_{1}\left[d_{1}\right] \boxplus \cdots \boxplus \Sigma_{l}\left[d_{l}\right]
$$

such that
$■ \Sigma_{i} \quad$ irr. autom. cusp. unitary rep. of $\mathrm{GL}_{m_{i}}(\mathbb{A})$;
■ $d_{i} \in \mathbb{Z}_{>0}$ such that $m_{1} d_{1}+\cdots+m_{l} d_{l}=2 n$;
■ if $i \neq j$ and $\Sigma_{i} \cong \Sigma_{j}$, then $d_{i} \neq d_{j}$;

- additional conditions.

A-packets

■ We denote the set of global discrete A-parameters by

$$
\Psi_{2}(\mathrm{O}(2 n))=\Psi_{2}(\mathrm{SO}(2 n)) / \sim
$$

- Put $\Psi_{2, \text { temp }}(\mathrm{O}(2 n))=\left\{\boxplus_{i=1}^{l} \Sigma_{i}\left[d_{i}\right] \mid d_{i}=1\right\}$
to be the set of tempered A-parameters.
■ For $\Sigma \in \Psi_{2}(\mathrm{O}(2 n))$, Arthur constructed a global A-packet Π_{Σ}, which is a multiset of $\operatorname{Irr}(\mathrm{O}(2 n, \mathbb{A}))$.
- Let Π_{Σ}^{0} be the image of Π_{Σ} under

Res: $\operatorname{Irr}(\mathrm{O}(2 n, \mathbb{A})) \rightarrow \operatorname{Irr}(\mathrm{SO}(2 n, \mathbb{A})) / \mathrm{O}(2 n, \mathbb{A})$.
■ If $\Sigma \in \Psi_{2, \text { temp }}(\mathrm{O}(2 n)), \Pi_{\Sigma}$ and Π_{Σ}^{0} are multiplicity-free.

Additional notation

Let

- $\mathcal{H}(\mathrm{SO}(2 n))$ global Hecke algebra of $\mathrm{SO}(2 n, \mathbb{A})$;
- $\mathcal{H}(\mathrm{O}(2 n))$ global Hecke algebra of $\mathrm{O}(2 n, \mathbb{A})$;
- $\mathcal{A}_{2}(\mathrm{SO}(2 n))=\left\{L^{2}\right.$-autom. forms on $\left.\mathrm{SO}(2 n, \mathbb{A})\right\} \curvearrowleft \mathcal{H}(\mathrm{SO}(2 n))$.
- $\mathcal{A}_{2}(\mathrm{O}(2 n))=\left\{L^{2}\right.$-autom. forms on $\left.\mathrm{O}(2 n, \mathbb{A})\right\} \curvearrowleft \mathcal{H}(\mathrm{O}(2 n))$.

Fix $\epsilon=\left(\epsilon_{v}\right)_{v} \in \mathrm{O}(2 n, k) \subset \mathrm{O}(2 n, \mathbb{A})$ such that $\operatorname{det}(\epsilon)=-1$, and put $\mathcal{H}^{\epsilon}(\mathrm{SO}(2 n))$ to be the subalgebra of $\mathcal{H}(\mathrm{SO}(2 n))$ of functions which are invariant under each ϵ_{v}.

Arthur's multiplicity formula for $\mathrm{SO}(2 n)$

Arthur described $\mathcal{A}_{2}(\mathrm{SO}(2 n))$ in terms of A-packets.

Arthur's multiplicity formula for $\mathrm{SO}(2 n)$

For $\Sigma \in \Psi_{2}(\mathrm{SO}(2 n)) / \sim$, there is a subset $\Pi_{\Sigma}^{0}\left(\varepsilon_{\Sigma}^{0}\right) \subset \Pi_{\Sigma}^{0}$ such that

$$
\mathcal{A}_{2}(\mathrm{SO}(2 n))=\bigoplus_{\Sigma \in \Psi_{2}(\mathrm{SO}(2 n)) / \sim\left[\pi^{0}\right] \in \Pi_{\Sigma}^{0}\left(\varepsilon_{\Sigma}^{0}\right)} m_{\Sigma}\left[\pi^{0}\right]
$$

as $\mathcal{H}^{\epsilon}(\mathrm{SO}(2 n))$-modules. Here,

$$
m_{\Sigma}= \begin{cases}1 & \text { if } \Sigma=\boxplus_{i=1}^{l} \Sigma_{i}\left[d_{i}\right] \text { such that } m_{i} d_{i} \text { is odd for some } i \\ 2 & \text { otherwise }\end{cases}
$$

Arthur's multiplicity formula for $\mathrm{O}(2 n)$

We formulated and proved Arthur's multiplicity formula for $\mathrm{O}(2 n)$.

Arthur's multiplicity formula for $\mathrm{O}(2 n)$ (A.-Gan)

For $\Sigma \in \Psi_{2}(\mathrm{O}(2 n))$, there is a subset $\Pi_{\Sigma}\left(\varepsilon_{\Sigma}\right) \subset \Pi_{\Sigma}$ such that

$$
\mathcal{A}_{2}(\mathrm{O}(2 n))=\bigoplus_{\Sigma \in \Psi_{2}(\mathrm{O}(2 n))} \bigoplus_{\pi \in \Pi_{\Sigma}\left(\varepsilon_{\Sigma}\right)} \pi
$$

as $\mathcal{H}(\mathrm{O}(2 n))$-modules.
Hence the tempered spectrum

$$
\mathcal{A}_{2, \text { temp }}(\mathrm{O}(2 n))=\bigoplus_{\Sigma \in \Psi_{2, \text { temp }}(\mathrm{O}(2 n))} \bigoplus_{\pi \in \Pi_{\Sigma}\left(\varepsilon_{\Sigma}\right)} \pi
$$

is multiplicity-free.

Outline of proof

■ Note that $\epsilon \in \mathrm{O}(2 n, k)$ acts on $\mathcal{A}_{2}(\mathrm{SO}(2 n))$ by conjugation.
■ We regard $\mathcal{A}_{2}(\mathrm{SO}(2 n))$ as an $(\mathcal{H}(\mathrm{SO}(2 n)), \epsilon)$-module.

- Arthur also described $\mathcal{A}_{2}(\mathrm{SO}(2 n))$ as $(\mathcal{H}(\mathrm{SO}(2 n)), \epsilon)$-modules in terms of A-packets.
■ Note that if π^{0} is automorphic (i.e., occurs in $\mathcal{A}_{2}(\mathrm{SO}(2 n))$), then its conjugate $\left(\pi^{0}\right)^{\epsilon}$ by ϵ is also automorphic.
- Translate Arthur's results via the restriction map

$$
\operatorname{Res}: \mathcal{A}_{2}(\mathrm{O}(2 n)) \rightarrow \mathcal{A}_{2}(\mathrm{SO}(2 n))
$$

which is a surjective $(\mathcal{H}(\mathrm{SO}(2 n)), \epsilon)$-homomorphism.

What is m_{Σ} ?

Let $\Sigma=\boxplus_{i=1}^{l} \Sigma_{i}\left[d_{i}\right] \in \Psi_{2}(\mathrm{SO}(2 n)) / \sim=\Psi_{2}(\mathrm{O}(2 n))$.
Suppose $\left[\pi^{0}\right] \in \Pi_{\Sigma}^{0}$ and π^{0} is automorphic (i.e., occurs in $\mathcal{A}_{2}(\mathrm{SO}(2 n))$).
There are three cases as follows:
(A) If $m_{i} d_{i}$ is odd for some i, then $m_{\Sigma}=1$ and $\pi^{0} \cong\left(\pi^{0}\right)^{\epsilon}$.

In this case, there are many extensions of π^{0} to $\mathrm{O}(2 n, \mathbb{A})$, and exactly half of them are automorphic;
(B) If $m_{i} d_{i}$ is even for any i and $\pi^{0} \not \approx\left(\pi^{0}\right)^{\epsilon}$, then $m_{\Sigma}=2$. In this case, there is $\pi \subset \mathcal{A}_{2}(\mathrm{O}(2 n))$ such that $\operatorname{Res}(\pi)=\pi^{0} \oplus\left(\pi^{0}\right)^{\epsilon}$;
(C) If $m_{i} d_{i}$ is even for any i and $\pi^{0} \cong\left(\pi^{0}\right)^{\epsilon}$, then $m_{\Sigma}=2$.

In this case, there are $\pi_{1}, \pi_{2} \subset \mathcal{A}_{2}(\mathrm{O}(2 n, \mathbb{A}))$ such that $\pi_{1}\left|\mathrm{SO}(2 n, \mathbb{A}) \cong \pi^{0} \cong \pi_{2}\right| \mathrm{SO}(2 n, \mathbb{A})$ but $\operatorname{Res}\left(\pi_{1}\right) \neq \operatorname{Res}\left(\pi_{2}\right)$ as subspaces of $\mathcal{A}_{2}(\mathrm{SO}(2 n, \mathbb{A}))$.

Thank you

Thank you so much for your kind attention.

