On the local Langlands correspondence and Arthur conjecture for orthogonal groups

Hiraku Atobe

Department of mathematics, Kyoto University

(Joint work with Wee Teck Gan)

March 14, 2016

1 Local Langlands correspondence (LLC)

2 Local Gross–Prasad conjecture (GP)

3 Arthur's multiplicity formula

1 Local Langlands correspondence (LLC)

2 Local Gross–Prasad conjecture (GP)

3 Arthur's multiplicity formula

- F non-arch. local field, char(F) = 0;
- $WD_F = W_F \times SL_2(\mathbb{C})$ Weil-Deligne group of F;
- *G* <u>connected</u> reductive quasi-split group over *F*;
- \widehat{G} the complex dual group of G;
- ${}^{L}G = \widehat{G} \rtimes W_{F}$ the *L*-group of *G*.

L-parameters and component groups

We say that a homomorphism $\varphi \colon WD_F \to {}^LG$ is admissible if

is commutative.

The set of L-parameters of G is defined by

$$\Phi(G) = \{\varphi \colon WD_F \to {}^LG \text{ adm. hom.}\}/(\widehat{G}\text{-conjugacy}).$$

The component group of $\varphi\in \Phi(G)$ is defined by

$$\mathcal{S}_{\varphi} = \pi_0(\operatorname{Cent}(\operatorname{Im}(\varphi), \widehat{G}) / Z(\widehat{G})^{W_F}).$$

Langlands predicted a classification of

$$Irr(G(F)) = \{ irreducible rep. of G(F) \}$$

in terms of

$$\Phi(G)$$
 and $\operatorname{Irr}(\mathcal{S}_{\varphi})$.

LLC for G classical groups is established by Arthur, Mœgline, Mok, and Kaletha–Minguez–Shin–White.

Example: G = SO(2n+1)

When
$$G = \operatorname{SO}(2n + 1)$$
 split,
 ${}^{L}G = \operatorname{Sp}(2n, \mathbb{C}) \times W_{F};$
 $\Phi(\operatorname{SO}(2n + 1)) \xrightarrow{1:1} \{\phi: WD_{F} \to \operatorname{Sp}(2n, \mathbb{C})\};$
 $A_{\phi} = \pi_{0}(\operatorname{Cent}(\operatorname{Im}(\phi), \operatorname{Sp}(2n, \mathbb{C}))/\{\pm 1\}) = \mathcal{S}_{\varphi} (\cong (\mathbb{Z}/2\mathbb{Z})^{r}).$

LLC for SO(2n+1) (Arthur)

1 There exists a surjection

$$\operatorname{Irr}(\operatorname{SO}(2n+1,F)) \twoheadrightarrow \Phi(\operatorname{SO}(2n+1)).$$

The fiber of ϕ is denoted by Π_{ϕ}^{0} and called the *L*-packet of ϕ . 2 There exists a bijection

$$\iota \colon \Pi_{\phi}^{0} \xrightarrow{1:1} \widehat{A_{\phi}}, \ \sigma^{0} \mapsto \iota(\sigma^{0}).$$

When G = SO(2n) quasi-split over F and split over E/F, $L G = SO(2n, \mathbb{C}) \rtimes W_F$. Put

$$\begin{split} \Phi(\mathrm{SO}(2n))/\sim &:= \{\phi \colon WD_F \to \mathrm{O}(2n,\mathbb{C}) \mid \det(\phi) = \omega_{E/F} \}.\\ \mathrm{Then} \ \Phi(\mathrm{SO}(2n)) \twoheadrightarrow \Phi(\mathrm{SO}(2n))/\sim.\\ \bullet \ A_{\phi} &= \pi_0(\mathrm{Cent}(\mathrm{Im}(\phi),\mathrm{O}(2n,\mathbb{C}))/\{\pm 1\}) (\cong (\mathbb{Z}/2\mathbb{Z})^r).\\ \bullet \ A_{\phi}^+ &= \pi_0(\mathrm{Cent}(\mathrm{Im}(\phi),\mathrm{SO}(2n,\mathbb{C}))/\{\pm 1\}) = \mathcal{S}_{\varphi}.\\ \mathrm{Then} \end{split}$$

$$1 \longrightarrow A_{\phi}^+ \longrightarrow A_{\phi} \xrightarrow{\det} \mathbb{Z}/2\mathbb{Z} = \{0, 1\}.$$

Since $\Phi(SO(2n)) \twoheadrightarrow \Phi(SO(2n))/\sim$ is not injective, Arthur established a weaker version of LLC for SO(2n).

Weak LLC for SO(2n) (Arthur)

1 There exists a surjection

$$\operatorname{Irr}(\operatorname{SO}(2n,F))/\operatorname{O}(2n,F)\twoheadrightarrow \Phi(\operatorname{SO}(2n))/\sim.$$

The fiber of ϕ is denoted by Π_{ϕ}^{0} and called the *L*-packet of ϕ . 2 There exists a bijection

$$\iota \colon \Pi_{\phi}^{0} \xrightarrow{1:1} \widehat{A_{\phi}^{+}}, \ [\pi^{0}] \mapsto \iota([\pi^{0}]).$$

- Langlands program focuses only on <u>connected</u> reductive groups.
- However, reps. of <u>disconnected</u> groups arise naturally in various context.
- For example, in the theory of theta correspondence, irr. reps. of Sp(2m, F) and of O(2n, F) correspond to each other.

Goal of this section

Explain LLC for full (disconnected) orthogonal group O(m).

Arthur, Mægline and Heiermann discussed the LLC for O(m).

LLC for $\mathrm{O}(2n+1)$

In fact, Arthur gave LLC for $\mathrm{O}(2n),$ and deduced Weak LLC for $\mathrm{SO}(2n).$ Put

$$\begin{split} \Phi(\mathcal{O}(2n)) &\coloneqq \Phi(\mathcal{SO}(2n)) / \sim \\ &= \{\phi \colon WD_F \to \mathcal{O}(2n, \mathbb{C}) \mid \det(\phi) = \omega_{E/F} \}. \end{split}$$

Recall

•
$$A_{\phi} = \pi_0(\operatorname{Cent}(\operatorname{Im}(\phi), \operatorname{O}(2n, \mathbb{C}))/\{\pm 1\}) (\cong (\mathbb{Z}/2\mathbb{Z})^r).$$

• $A_{\phi}^+ = \pi_0(\operatorname{Cent}(\operatorname{Im}(\phi), \operatorname{SO}(2n, \mathbb{C}))/\{\pm 1\}) = \mathcal{S}_{\varphi}.$

Then

$$1 \longrightarrow A_{\phi}^+ \longrightarrow A_{\phi} \xrightarrow{\det} \mathbb{Z}/2\mathbb{Z} = \{0, 1\}.$$

1 There exist surjections

$$\begin{split} \Pi_{\phi} \subset \operatorname{Irr}(\mathcal{O}(2n,F)) & \longrightarrow \Phi(\mathcal{O}(2n)) \ni \phi \\ & \underset{\operatorname{Res}}{\overset{\operatorname{Res}}{\downarrow}} & & \\ \Pi_{\phi}^{0} \subset \operatorname{Irr}(\operatorname{SO}(2n,F)) / \mathcal{O}(2n,F) & \longrightarrow \Phi(\operatorname{SO}(2n)) / \sim . \end{split}$$

In particular, $\pi \in \Pi_{\phi} \iff \pi \otimes \det \in \Pi_{\phi}$.

2 There exist bijections

There is a special property of LLC for O(2n).

Proposition

The following are equivalent:

• $\phi \in \Phi(O(2n))$ contains an irreducible orthogonal odd-dimensional representation of WD_F ;

$$[A_{\phi}: A_{\phi}^+] = 2;$$

- there exists $\pi \in \Pi_{\phi}$ such that $\pi \otimes \det \not\cong \pi$;
- any $\pi \in \Pi_{\phi}$ satisfies that $\pi \otimes \det \not\cong \pi$.

Let $P = MN \subset O(2n)$ be a parabolic subgroup with $M \cong GL_k \times O(2n_0)$. If $\pi_0 \in \operatorname{Irr}_{temp}(O(2n_0, F))$ and $\tau \in \operatorname{Irr}_{temp}(GL_k(F))$, the induced representation $\operatorname{Ind}_{P(F)}^{O(2n,F)}(\tau \otimes \pi_0)$ decomposes into a direct sum of irr. reps. of O(2n, F):

$$\operatorname{Ind}_{P(F)}^{\mathcal{O}(2n,F)}(\tau\otimes\pi_0)\cong\bigoplus_{\pi}\pi.$$

If τ is self-dual, Arthur defined a normalized self-dual intertwining operator

$$R(w,\tau\otimes\pi_0)\colon \mathrm{Ind}_{P(F)}^{\mathrm{O}(2n,F)}(\tau\otimes\pi_0)\to\mathrm{Ind}_{P(F)}^{\mathrm{O}(2n,F)}(\tau\otimes\pi_0).$$

Let

•
$$\phi_0 \in \Phi(\mathcal{O}(2n_0))$$
 such that $\pi_0 \in \Pi_{\phi_0}$;

• $\phi_1 \colon WD_F \to \operatorname{GL}_k(\mathbb{C})$ corresponds to τ via LLC for GL_k .

If we put $\phi = \phi_1 \oplus \phi_0 \oplus \phi_1^{\vee} \in \Phi(\mathcal{O}(2n))$, then $A_{\phi_0} \hookrightarrow A_{\phi}$. If ϕ_1 is orthogonal, it define an element $a \in A_{\phi}$.

Theorem (Arthur)

1
$$\Pi_{\phi} = \{ \pi \subset \operatorname{Ind}_{P(F)}^{\mathcal{O}(2n,F)}(\tau \otimes \pi_0) \mid \pi_0 \in \Pi_{\phi_0} \};$$

$$2 \iota(\pi)|A_{\phi_0} = \iota(\pi_0) \text{ if } \pi \subset \operatorname{Ind}_{P(F)}^{\mathcal{O}(2n,F)}(\tau \otimes \pi_0);$$

3 (Intertwining relation)

$$R(w, \tau \otimes \pi_0)|\pi = \iota(\pi)(a) \cdot \mathrm{id}_{\pi}.$$

Let $\pi \in \operatorname{Irr}_{\operatorname{temp}}(\operatorname{O}(2n))$ and $\phi \in \Phi(\operatorname{O}(2n))$ such that $\pi \in \Pi_{\phi}$. An element $a \in A_{\phi}$ defines an orthogonal rep. ϕ_1 contained in ϕ . Let $\tau \in \operatorname{Irr}_{\operatorname{temp}}(\operatorname{GL}_k(F))$ correspond to ϕ_1 . Then by the above theorem, we have:

Propositioin

Hence, if one could understand $R(w, \tau \otimes \pi)$ more explicitly, one could compute $\iota(\pi)(a)$.

1 Local Langlands correspondence (LLC)

2 Local Gross–Prasad conjecture (GP)

3 Arthur's multiplicity formula

Multiplicity one theorem

Now suppose that there exists an inclusion $O(2n) \hookrightarrow O(2n+1)$. Then we have a diagonal map

$$\Delta \colon \mathcal{O}(2n) \to \mathcal{O}(2n) \times \mathcal{O}(2n+1).$$

Multiplicity one theorem

(Aizenbud–Gourevitch–Rallis–Schiffmann) For $\pi \in Irr(O(2n, F))$ and $\tau \in Irr(O(2n+1, F))$,

$$\dim \operatorname{Hom}_{\Delta \mathcal{O}(2n,F)}(\pi \otimes \tau, \mathbb{C}) \leq 1.$$

2 (Waldspurger) For $\pi^0 \in Irr(SO(2n, F))$ and $\tau^0 \in Irr(SO(2n+1, F))$,

$$\dim \operatorname{Hom}_{\Delta \operatorname{SO}(2n,F)}(\pi^0 \otimes \tau^0, \mathbb{C}) \le 1.$$

Local Gross-Prasad conjecture determines precisely when

$$\operatorname{Hom}_{\Delta \operatorname{SO}(2n,F)}(\pi^0 \otimes \tau^0, \mathbb{C}) \neq 0.$$

Let $\phi \in \Phi_{temp}(SO(2n))/\sim \text{and } \phi' \in \Phi_{temp}(SO(2n+1))$ (i.e., $\phi(W_F)$ and $\phi'(W_F)$ are bounded). When $\varepsilon(1/2, \phi \otimes \phi', \psi) = 1$, Gross–Prasad defined characters

$$\chi_{\phi'} \colon A_{\phi} \to \{\pm 1\} \text{ and } \chi_{\phi} \colon A_{\phi'} \to \{\pm 1\}$$

in terms of root numbers.

Note that $\dim \operatorname{Hom}_{\Delta \operatorname{SO}(2n,F)}(\pi^0 \otimes \tau^0, \mathbb{C})$ depends only on $([\pi^0], \tau^0) \in \operatorname{Irr}(\operatorname{SO}(2n,F))/\operatorname{O}(2n,F) \times \operatorname{Irr}(\operatorname{SO}(2n+1,F)).$

GP for $SO(2n) \times SO(2n+1)$ (proved by Waldspurger)

Let $\phi \in \Phi_{\text{temp}}(\text{SO}(2n))/\sim \text{and } \phi' \in \Phi_{\text{temp}}(\text{SO}(2n+1))$ such that $\varepsilon(1/2, \phi \otimes \phi', \psi) = 1$. Then there exists a unique pair $([\pi^0], \tau^0) \in \Pi^0_{\phi} \times \Pi^0_{\phi'}$ such that

$$\operatorname{Hom}_{\Delta \operatorname{SO}(2n,F)}(\pi^0 \otimes \tau^0, \mathbb{C}) \neq 0.$$

Moreover,

$$\iota([\pi^0]) = \chi_{\phi'} | A_\phi^+ \quad \text{and} \quad \iota(\tau^0) = \chi_\phi.$$

We formulated and proved GP for orthogonal groups.

GP for $O(2n) \times O(2n + 1)$ (formulated and proved by A.-Gan) Let $\phi \in \Phi_{temp}(O(2n))$ and $(\phi', b) \in \Phi_{temp}(O(2n + 1))$ such that $\varepsilon(1/2, \phi \otimes \phi', \psi) = 1$. Then there exists a unique pair $(\pi, \tau) \in \Pi_{\phi} \times \Pi_{\phi'}^b$ such that $\operatorname{Hom}_{\Delta O(2n,F)}(\pi \otimes \tau, \mathbb{C}) \neq 0$.

Moreover,

$$\iota(\pi)(a) = \chi_{\phi'}(a) \cdot b^{\det(a)} \text{ for } a \in A_{\phi} \text{ and } \iota(\tau) = \chi_{\phi}.$$

Recall that $1 \longrightarrow A_{\phi}^+ \longrightarrow A_{\phi} \xrightarrow{\det} \mathbb{Z}/2\mathbb{Z} = \{0, 1\}.$

- In fact, we formulated GP for O(m) × O(m + 1) in terms of Vogan L-packets (i.e., for pure inner forms).
 Also, we proved it under assuming the intertwining relation.
- When m = 2 or 3, there are results of D.Prasad, which are compatible with GP for $O(m) \times O(m+1)$.
- A refine version of the global Gross-Prasad conjecture (Ichino-Ikeda conjecture) for orthogonal groups is formulated by H. Xue.

Outline of proof of GP for $O(m) \times O(m+1)$

- First, we show D. Prasad's conjecture (P), which describes local theta correspondences in terms of LLC comparing intertwining operators and using the intertwining relation.
- The following is a summary:

1 Local Langlands correspondence (LLC)

2 Local Gross–Prasad conjecture (GP)

3 Arthur's multiplicity formula

From now, let k be a number field, and A be the adele ring of k. Suppose that O(2n) is defined and quasi-split over k.

Definition

A global discrete A-parameter for O(2n) and SO(2n) is a formal sum

 $\Sigma = \Sigma_1[d_1] \boxplus \cdots \boxplus \Sigma_l[d_l]$

such that

- Σ_i irr. autom. cusp. unitary rep. of $GL_{m_i}(\mathbb{A})$;
- $d_i \in \mathbb{Z}_{>0}$ such that $m_1d_1 + \cdots + m_ld_l = 2n$;

• if
$$i \neq j$$
 and $\Sigma_i \cong \Sigma_j$, then $d_i \neq d_j$;

additional conditions.

• We denote the set of global discrete A-parameters by

$$\Psi_2(\mathcal{O}(2n)) = \Psi_2(\mathcal{SO}(2n)) / \sim .$$

- Put $\Psi_{2,\text{temp}}(O(2n)) = \{ \boxplus_{i=1}^{l} \Sigma_{i}[d_{i}] \mid d_{i} = 1 \}$ to be the set of tempered A-parameters.
- For $\Sigma \in \Psi_2(O(2n))$, Arthur constructed a global *A*-packet Π_{Σ} , which is a multiset of $Irr(O(2n, \mathbb{A}))$.
- Let Π^0_{Σ} be the image of Π_{Σ} under Res: $\operatorname{Irr}(O(2n, \mathbb{A})) \to \operatorname{Irr}(SO(2n, \mathbb{A}))/O(2n, \mathbb{A}).$
- If $\Sigma \in \Psi_{2,\text{temp}}(O(2n))$, Π_{Σ} and Π_{Σ}^{0} are multiplicity-free.

Let

- $\mathcal{H}(SO(2n))$ global Hecke algebra of $SO(2n, \mathbb{A})$;
- $\mathcal{H}(O(2n))$ global Hecke algebra of $O(2n, \mathbb{A})$;
- $\mathcal{A}_2(\mathrm{SO}(2n)) = \{L^2 \text{-autom. forms on } \mathrm{SO}(2n, \mathbb{A})\} \curvearrowleft \mathcal{H}(\mathrm{SO}(2n)).$
- $\mathcal{A}_2(O(2n)) = \{L^2 \text{-autom. forms on } O(2n, \mathbb{A})\} \curvearrowleft \mathcal{H}(O(2n)).$

Fix $\epsilon = (\epsilon_v)_v \in O(2n, k) \subset O(2n, \mathbb{A})$ such that $\det(\epsilon) = -1$, and put $\mathcal{H}^{\epsilon}(\mathrm{SO}(2n))$ to be the subalgebra of $\mathcal{H}(\mathrm{SO}(2n))$ of functions which are invariant under each ϵ_v .

Arthur's multiplicity formula for SO(2n)

Arthur described $\mathcal{A}_2(SO(2n))$ in terms of A-packets.

Arthur's multiplicity formula for SO(2n)

For $\Sigma \in \Psi_2(\mathrm{SO}(2n))/\sim$, there is a subset $\Pi^0_\Sigma(\varepsilon^0_\Sigma) \subset \Pi^0_\Sigma$ such that

$$\mathcal{A}_2(\mathrm{SO}(2n)) = \bigoplus_{\Sigma \in \Psi_2(\mathrm{SO}(2n))/\sim [\pi^0] \in \Pi^0_{\Sigma}(\varepsilon^0_{\Sigma})} m_{\Sigma}[\pi^0]$$

as $\mathcal{H}^{\epsilon}(\mathrm{SO}(2n))\text{-modules}.$ Here,

$$m_{\Sigma} = \begin{cases} 1 & \text{if } \Sigma = \bigoplus_{i=1}^{l} \Sigma_{i}[d_{i}] \text{ such that } m_{i}d_{i} \text{ is odd for some } i, \\ 2 & \text{otherwise.} \end{cases}$$

Arthur's multiplicity formula for O(2n)

We formulated and proved Arthur's multiplicity formula for O(2n).

Arthur's multiplicity formula for O(2n) (A.-Gan)

For $\Sigma\in \Psi_2({\rm O}(2n)),$ there is a subset $\Pi_\Sigma(\varepsilon_\Sigma)\subset \Pi_\Sigma$ such that

$$\mathcal{A}_2(\mathcal{O}(2n)) = \bigoplus_{\Sigma \in \Psi_2(\mathcal{O}(2n))} \bigoplus_{\pi \in \Pi_{\Sigma}(\varepsilon_{\Sigma})} \pi$$

as $\mathcal{H}(O(2n))$ -modules.

Hence the tempered spectrum

$$\mathcal{A}_{2,\text{temp}}(\mathcal{O}(2n)) = \bigoplus_{\Sigma \in \Psi_{2,\text{temp}}(\mathcal{O}(2n))} \bigoplus_{\pi \in \Pi_{\Sigma}(\varepsilon_{\Sigma})} \pi$$

30 / 33

is multiplicity-free.

- Note that $\epsilon \in O(2n,k)$ acts on $\mathcal{A}_2(SO(2n))$ by conjugation.
- We regard $\mathcal{A}_2(SO(2n))$ as an $(\mathcal{H}(SO(2n)), \epsilon)$ -module.
- Arthur also described $\mathcal{A}_2(SO(2n))$ as $(\mathcal{H}(SO(2n)), \epsilon)$ -modules in terms of A-packets.
- Note that if π^0 is automorphic (i.e., occurs in $\mathcal{A}_2(SO(2n))$), then its conjugate $(\pi^0)^{\epsilon}$ by ϵ is also automorphic.
- Translate Arthur's results via the restriction map

Res: $\mathcal{A}_2(\mathcal{O}(2n)) \to \mathcal{A}_2(\mathcal{SO}(2n)),$

which is a surjective $(\mathcal{H}(SO(2n)), \epsilon)$ -homomorphism.

Let $\Sigma = \bigoplus_{i=1}^{l} \Sigma_i[d_i] \in \Psi_2(\mathrm{SO}(2n)) / \sim = \Psi_2(\mathrm{O}(2n)).$ Suppose $[\pi^0] \in \Pi_{\Sigma}^0$ and π^0 is automorphic (i.e., occurs in $\mathcal{A}_2(\mathrm{SO}(2n))).$ There are three cases as follows:

- (A) If $m_i d_i$ is odd for some *i*, then $m_{\Sigma} = 1$ and $\pi^0 \cong (\pi^0)^{\epsilon}$. In this case, there are many extensions of π^0 to $O(2n, \mathbb{A})$, and exactly half of them are automorphic;
- (B) If $m_i d_i$ is even for any i and $\pi^0 \not\cong (\pi^0)^{\epsilon}$, then $m_{\Sigma} = 2$. In this case, there is $\pi \subset \mathcal{A}_2(O(2n))$ such that $\operatorname{Res}(\pi) = \pi^0 \oplus (\pi^0)^{\epsilon}$;
- (C) If $m_i d_i$ is even for any i and $\pi^0 \cong (\pi^0)^{\epsilon}$, then $m_{\Sigma} = 2$. In this case, there are $\pi_1, \pi_2 \subset \mathcal{A}_2(O(2n, \mathbb{A}))$ such that $\pi_1 | \operatorname{SO}(2n, \mathbb{A}) \cong \pi^0 \cong \pi_2 | \operatorname{SO}(2n, \mathbb{A})$ but $\operatorname{Res}(\pi_1) \neq \operatorname{Res}(\pi_2)$ as subspaces of $\mathcal{A}_2(\operatorname{SO}(2n, \mathbb{A}))$.

Thank you so much for your kind attention.