Non-Siegel Eisenstein series for symplectic groups

Marcela Hanzer

Department of Mathematics, University of Zagreb

Notation

- $n \in \mathbb{Z}_{\geq 1} ; J_{n} n \times n$ matrix with 1 's on the opposite diagonal, and zeros everywhere else.

$F \in\left\{\mathbb{Q}, \mathbb{Q}_{p}, \mathbb{R}, \mathbb{A}\right\}$, where \mathbb{A} is the ring of adeles of \mathbb{Q}.
- $K_{p}=\operatorname{Sp}_{2 n}\left(\mathbb{Z}_{p}\right)$ for $p<\infty, K_{\infty}$ be the fixed point set of a Cartan involution (e.g., transposed inverse) on $\operatorname{Sp}_{2 n}(\mathbb{R}), K_{\infty} \cong U(n)$. $K=\prod_{p \leq \infty} K_{p}$.

Notation

- $n \in \mathbb{Z}_{\geq 1}$; $J_{n} n \times n$ matrix with 1 's on the opposite diagonal, and zeros everywhere else.

$$
S p_{2 n}(F)=\left\{g \in G L_{2 n}(F): g^{t}\left[\begin{array}{cc}
0 & J_{n} \\
-J_{n} & 0
\end{array}\right] g=\left[\begin{array}{cc}
0 & J_{n} \\
-J_{n} & 0
\end{array}\right]\right\}
$$

$F \in\left\{\mathbb{Q}, \mathbb{Q}_{p}, \mathbb{R}, \mathbb{A}\right\}$, where \mathbb{A} is the ring of adeles of \mathbb{Q}.
involution (e.g., transposed inverse) on $\operatorname{Sp}_{2 n}(\mathbb{R}), K_{\infty} \cong U(n)$. $K=\prod_{p \leq \infty} K_{p}$.

Notation

- $n \in \mathbb{Z}_{>1} ; J_{n} n \times n$ matrix with 1 's on the opposite diagonal, and zeros everywhere else.

$$
S p_{2 n}(F)=\left\{g \in G L_{2 n}(F): g^{t}\left[\begin{array}{cc}
0 & J_{n} \\
-J_{n} & 0
\end{array}\right] g=\left[\begin{array}{cc}
0 & J_{n} \\
-J_{n} & 0
\end{array}\right]\right\}
$$

$F \in\left\{\mathbb{Q}, \mathbb{Q}_{p}, \mathbb{R}, \mathbb{A}\right\}$, where \mathbb{A} is the ring of adeles of \mathbb{Q}.

- $K_{p}=S p_{2 n}\left(\mathbb{Z}_{p}\right)$ for $p<\infty, K_{\infty}$ be the fixed point set of a Cartan involution (e.g., transposed inverse) on $\operatorname{Sp}_{2 n}(\mathbb{R}), K_{\infty} \cong U(n)$. $K=\prod_{p \leq \infty} K_{p}$.

Borel subgroup; roots

- $B=$ the upper triangular matrices in $S p_{2 n}$; a Borel subgroup which we fix. \rightsquigarrow the standard parabolic subgroups.

Borel subgroup; roots

- $B=$ the upper triangular matrices in $S p_{2 n}$; a Borel subgroup which we fix. \rightsquigarrow the standard parabolic subgroups.
-

$$
T(F)=\left\{\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right) ; t_{1}, \ldots, t_{n} \in F^{*}\right\} .
$$

- $W=W(B, T)$ be the Weyl group of $S_{2 n} ; W \cong S_{n} \ltimes \mathbb{Z}_{2}^{n}$. . The Weyl group elements corresponding to S_{n}-permutations, and to \mathbb{Z}_{n}-the sign changes. The action of $p \in S_{n}$ is given by

and the action of $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right) \in \mathbb{Z}_{2}^{n}$ is given by
 and $\phi=\phi_{1} \otimes \phi_{2} \otimes \cdots \otimes \phi_{n}$ we have

Borel subgroup; roots

- $B=$ the upper triangular matrices in $S p_{2 n}$; a Borel subgroup which we fix. \rightsquigarrow the standard parabolic subgroups.
-

$$
T(F)=\left\{\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right) ; t_{1}, \ldots, t_{n} \in F^{*}\right\} .
$$

- $W=W(B, T)$ be the Weyl group of $S p_{2 n} ; W \cong S_{n} \ltimes \mathbb{Z}_{2}^{n}$. The Weyl group elements corresponding to S_{n}-permutations, and to \mathbb{Z}_{n}-the sign changes. The action of $p \in S_{n}$ is given by
$p\left(\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right)\right)=\left(t_{p^{-1}(1)}, t_{p^{-1}(2)}, \ldots, t_{p^{-1}(n)}, \ldots\right)$ and the action of $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right) \in \mathbb{Z}_{2}^{n}$ is given by

$$
\varepsilon\left(\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right)\right)=\operatorname{diag}\left(t_{1}^{\varepsilon_{1}}, t_{2}^{\varepsilon_{2}}, \ldots, t_{n}^{\varepsilon_{n}}, \ldots\right)
$$

Borel subgroup; roots

- $B=$ the upper triangular matrices in $S p_{2 n}$; a Borel subgroup which we fix. \rightsquigarrow the standard parabolic subgroups.
-

$$
T(F)=\left\{\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right) ; t_{1}, \ldots, t_{n} \in F^{*}\right\} .
$$

- $W=W(B, T)$ be the Weyl group of $S p_{2 n} ; W \cong S_{n} \ltimes \mathbb{Z}_{2}^{n}$, . The Weyl group elements corresponding to S_{n}-permutations, and to \mathbb{Z}_{n}-the sign changes. The action of $p \in S_{n}$ is given by
$p\left(\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right)\right)=\left(t_{p^{-1}(1)}, t_{p^{-1}(2)}, \ldots, t_{p^{-1}(n)}, \ldots\right)$ and the action of $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right) \in \mathbb{Z}_{2}^{n}$ is given by

$$
\varepsilon\left(\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right)\right)=\operatorname{diag}\left(t_{1}^{\varepsilon_{1}}, t_{2}^{\varepsilon_{2}}, \ldots, t_{n}^{\varepsilon_{n}}, \ldots\right)
$$

- for $w \in W$ and $t \in T,(w \phi)(t)=\phi\left(w^{-1} t\right)$. In more words, if $w=p \varepsilon$ and $\phi=\phi_{1} \otimes \phi_{2} \otimes \cdots \otimes \phi_{n}$ we have

$$
\begin{equation*}
p \varepsilon\left(\phi_{1} \otimes \phi_{2} \otimes \cdots \otimes \phi_{n}\right)=\phi_{p^{-1}(1)}^{\varepsilon_{p^{-1}(1)}} \otimes_{\cdots} \cdot \otimes \phi_{p^{-1}(n)}^{\varepsilon_{p^{-1}}(n)}= \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
\alpha_{i}\left(\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right)=t_{i} t_{i+1}^{-1}, i=1,2, \ldots n-1,\right. \\
\alpha_{n}\left(\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right)=t_{n}^{2}\right.
\end{gathered}
$$

are the simple roots (Δ) corresponding to our choice of Borel. We also use $e_{i}-e_{i+1}$ to denote $\alpha_{i}, i=1, \ldots, n-1$ and $2 e_{n}$ to denote α_{n}. In the same way, we can describe the set of all positive roots (with respect to B) as $\Sigma^{+}=\left\{e_{i}-e_{j}, 1 \leq i<j \leq n\right\} \cup\left\{e_{i}+e_{j}, 1 \leq\right.$ $i<j \leq n\} \cup\left\{2 e_{i}: 1 \leq i \leq n\right\}$. For $\alpha_{i} \in \Delta$ we denote

$$
W^{\alpha_{i}}=\left\{w=p \varepsilon \in W: W \alpha_{i}>0\right\} .
$$

representatives of left cosets of W modulo its subgroup W_{Ω}).

$$
\begin{gathered}
\alpha_{i}\left(\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right)=t_{i} t_{i+1}^{-1}, i=1,2, \ldots n-1,\right. \\
\alpha_{n}\left(\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots t_{2}^{-1}, t_{1}^{-1}\right)=t_{n}^{2}\right.
\end{gathered}
$$

are the simple roots (Δ) corresponding to our choice of Borel. We also use $e_{i}-e_{i+1}$ to denote $\alpha_{i}, i=1, \ldots, n-1$ and $2 e_{n}$ to denote α_{n}. In the same way, we can describe the set of all positive roots (with respect to B) as $\Sigma^{+}=\left\{e_{i}-e_{j}, 1 \leq i<j \leq n\right\} \cup\left\{e_{i}+e_{j}, 1 \leq\right.$ $i<j \leq n\} \cup\left\{2 e_{i}: 1 \leq i \leq n\right\}$. For $\alpha_{i} \in \Delta$ we denote

$$
W^{\alpha_{i}}=\left\{w=p \varepsilon \in W: W \alpha_{i}>0\right\} .
$$

- $\Omega \subset \Delta \rightsquigarrow\left[W / W_{\Omega}\right]=\cap_{\alpha \in \Omega} W^{\alpha}$ (this is indeed a set of representatives of left cosets of W modulo its subgroup W_{Ω}).

Normalization factors for local intertwining operators

$$
r\left(\Lambda_{s, p}, w\right)=\prod_{\alpha \in \Sigma^{+}, w(\alpha)<0} \frac{L\left(1, \Lambda_{s, p} \circ \check{\alpha}\right) \epsilon\left(1, \Lambda_{s, p} \circ \check{\alpha}, \psi_{p}\right)}{L\left(0, \Lambda_{s, p} \circ \check{\alpha}\right)},
$$

i.e., globally

$$
\begin{equation*}
r\left(\Lambda_{s}, w\right)^{-1}=\prod_{\alpha \in \Sigma^{+}, w(\alpha)<0} \frac{L\left(0, \Lambda_{s} \circ \check{\alpha}\right)}{L\left(1, \Lambda_{s} \circ \check{\alpha}\right) \epsilon\left(1, \Lambda_{s} \circ \check{\alpha}\right)} \tag{2}
\end{equation*}
$$

Description of the Weyl group elements

Lemma

Let $1 \leq i \leq n$ and let $0 \leq j \leq i$. Denote by Y_{j}^{i} the set of all $p \varepsilon \in W$ such that the following six conditions are satisfied:

Then $\left[W / W_{\Delta \backslash\left\{\alpha_{i}\right\}}\right]=\cup_{0 \leq j \leq I} Y_{j}^{i}$.

Description of the Weyl group elements

Lemma

Let $1 \leq i \leq n$ and let $0 \leq j \leq i$. Denote by Y_{j}^{i} the set of all $p \varepsilon \in W$ such that the following six conditions are satisfied:
(1) $\varepsilon_{k}=1$, for $1 \leq k \leq j$;

Then $\left[W / W_{\Delta \backslash\left\{\alpha_{i}\right\}}\right]=\cup_{0 \leq j \leq i} Y_{j}^{i}$.

Description of the Weyl group elements

Lemma

Let $1 \leq i \leq n$ and let $0 \leq j \leq i$. Denote by Y_{j}^{i} the set of all $p \varepsilon \in W$ such that the following six conditions are satisfied:
(1) $\varepsilon_{k}=1$, for $1 \leq k \leq j$;
(2) $p\left(k_{1}\right)<p\left(k_{2}\right)$, for $1 \leq k_{1}<k_{2} \leq j$;
(c) $p\left(k_{1}\right)>p\left(k_{2}\right)$ for $j+1 \leq k \leq i$;

Then $\left[W / W_{\Delta \backslash\left\{\alpha_{i}\right\}}\right]=\cup_{0 \leq j \leq i} Y_{j}^{i}$.

Description of the Weyl group elements

Lemma

Let $1 \leq i \leq n$ and let $0 \leq j \leq i$. Denote by Y_{j}^{i} the set of all $p \varepsilon \in W$ such that the following six conditions are satisfied:
(1) $\varepsilon_{k}=1$, for $1 \leq k \leq j$;
(2) $p\left(k_{1}\right)<p\left(k_{2}\right)$, for $1 \leq k_{1}<k_{2} \leq j$;
(3) $\varepsilon_{k}=-1$, for $j+1 \leq k \leq i$;
(0) $p\left(k_{1}\right)<p\left(k_{2}\right)$, for $i+1 \leq k_{1}<k_{2} \leq n$.

Then $\left[W / W_{\Delta \backslash\left\{\alpha_{i}\right\}}\right]=\cup_{0 \leq i \leq i} Y_{j}^{i}$.

Description of the Weyl group elements

Lemma

Let $1 \leq i \leq n$ and let $0 \leq j \leq i$. Denote by Y_{j}^{i} the set of all $p \varepsilon \in W$ such that the following six conditions are satisfied:
(1) $\varepsilon_{k}=1$, for $1 \leq k \leq j$;
(2) $p\left(k_{1}\right)<p\left(k_{2}\right)$, for $1 \leq k_{1}<k_{2} \leq j$;
(3) $\varepsilon_{k}=-1$, for $j+1 \leq k \leq i$;
(1) $p\left(k_{1}\right)>p\left(k_{2}\right)$ for $j+1 \leq k \leq i$;
(i) $p\left(k_{1}\right)<p\left(k_{2}\right)$, for $i+1 \leq k_{1}<k_{2} \leq n$.

Then $\left[W / W_{\Delta \backslash\left\{\alpha_{i}\right\}}\right]=\cup_{0 \leq i \leq i} Y_{j}^{i}$.

Description of the Weyl group elements

Lemma

Let $1 \leq i \leq n$ and let $0 \leq j \leq i$. Denote by Y_{j}^{i} the set of all $p \varepsilon \in W$ such that the following six conditions are satisfied:
(1) $\varepsilon_{k}=1$, for $1 \leq k \leq j$;
(2) $p\left(k_{1}\right)<p\left(k_{2}\right)$, for $1 \leq k_{1}<k_{2} \leq j$;
(3) $\varepsilon_{k}=-1$, for $j+1 \leq k \leq i$;
(1) $p\left(k_{1}\right)>p\left(k_{2}\right)$ for $j+1 \leq k \leq i$;
(0) $\varepsilon_{k}=1$, for $i+1 \leq k \leq n$;

Then $\left[W / W_{\Delta \backslash\left\{\alpha_{i}\right\}}\right]=\cup_{0 \leq j \leq i} Y_{j}^{i}$.

Description of the Weyl group elements

Lemma

Let $1 \leq i \leq n$ and let $0 \leq j \leq i$. Denote by Y_{j}^{i} the set of all $p \varepsilon \in W$ such that the following six conditions are satisfied:
(1) $\varepsilon_{k}=1$, for $1 \leq k \leq j$;
(2) $p\left(k_{1}\right)<p\left(k_{2}\right)$, for $1 \leq k_{1}<k_{2} \leq j$;
(3) $\varepsilon_{k}=-1$, for $j+1 \leq k \leq i$;
(1) $p\left(k_{1}\right)>p\left(k_{2}\right)$ for $j+1 \leq k \leq i$;
(0) $\varepsilon_{k}=1$, for $i+1 \leq k \leq n$;
(0) $p\left(k_{1}\right)<p\left(k_{2}\right)$, for $i+1 \leq k_{1}<k_{2} \leq n$.

Then $\left[W / W_{\Delta \backslash\left\{\alpha_{i}\right\}}\right]=\cup_{0 \leq i \leq i} Y Y_{j}^{i}$.

Lemma

Assume $\chi^{2}=1$. Assume $w^{\prime}=p^{\prime} \varepsilon^{\prime} \in[w]_{\chi}$ with $w=p \varepsilon \in Y_{j_{1}}^{i}$ and $w^{\prime} \in Y_{j_{1}}^{i}$. Then $j_{1}=j_{2}$ or $j_{2}=i-2 s-j_{1}$.

Lemma

Assume that $\chi^{2}=1, \chi \neq 1$ and $2 s \in \mathbb{Z}$ with $0<2 s \leq i-1$. Let $w_{1}=p_{1} \varepsilon_{1}, w_{2}=p_{2} \varepsilon_{2} \in\left[W / W_{\Delta \backslash\left\{\alpha_{i}\right\}}\right], w_{1} \neq w_{2}$ and $w_{1} \in\left[w_{2}\right]_{\chi}$. Then, one of the following holds

Lemma

Assume that $\chi^{2}=1, \chi \neq 1$ and $2 s \in \mathbb{Z}$ with $0<2 s \leq i-1$. Let $w_{1}=p_{1} \varepsilon_{1}, w_{2}=p_{2} \varepsilon_{2} \in\left[W / W_{\Delta \backslash\left\{\alpha_{i}\right\}}\right], w_{1} \neq w_{2}$ and $w_{1} \in\left[w_{2}\right]_{\chi}$. Then, one of the following holds

- $w_{1}, w_{2} \in Y_{j}^{i}$ for some $0<j<i$. Then, we have $p_{1}(k)=p_{2}(k), k=i+1, \ldots, n$. For $k=1, \ldots, j$ we have $p_{1}(k)=p_{2}(k)$ or $p_{1}(k)=p_{2}(i+1-2 s-k)$. In the latter case, we must have $k \leq \min \{i-2 s-j, j\}$. For $k=j+1, \ldots, i$ we have $p_{1}(k)=p_{2}(k)$ or $p_{1}(k)=p_{2}(i+1-2 s-k)$. In the latter case, we must have $k \geq \max \{i+1-2 s-j, j+1\}$.
- $w_{1} \in Y_{j_{1}}^{i}$ and $w_{2} \in Y_{j_{2}}^{i}$ with $j_{1}<j_{2}$. Then, $j_{2}=i-2 s-j_{1}$ and we have

$$
\begin{aligned}
& p_{1}(k)=p_{2}(k) \text { or } p_{1}(k)=p_{2}(i+1-2 s-k), 1 \leq k \leq j_{1}, \\
& p_{1}(k)=p_{2}(i+1-2 s-k), j_{1}+1 \leq k \leq j_{2} \\
& p_{1}(k)=p_{2}(k) \text { or } p_{1}(k)=p_{2}(i+1-2 s-k), j_{2}+1 \leq k \leq i,
\end{aligned}
$$

where the latter case can appear if $k \leq i-2 s$,

$$
p_{1}(k)=p_{2}(k), k=i+1, \ldots, n .
$$

- $w_{1} \in Y_{j_{1}}^{i}$ and $w_{2} \in Y_{j_{2}}^{i}$ with $j_{1}<j_{2}$. Then, $j_{2}=i-2 s-j_{1}$ and we have

$$
\begin{aligned}
& p_{1}(k)=p_{2}(k) \text { or } p_{1}(k)=p_{2}(i+1-2 s-k), 1 \leq k \leq j_{1} \\
& p_{1}(k)=p_{2}(i+1-2 s-k), j_{1}+1 \leq k \leq j_{2} \\
& p_{1}(k)=p_{2}(k) \text { or } p_{1}(k)=p_{2}(i+1-2 s-k), j_{2}+1 \leq k \leq i,
\end{aligned}
$$

where the latter case can appear if $k \leq i-2 s$,

$$
p_{1}(k)=p_{2}(k), k=i+1, \ldots, n .
$$

- If $w_{1}=w_{0}$ (the longest element), then $w_{2}=p \varepsilon$, where $w_{2} \in Y_{i-2 s}^{i}$ and $p(k)=2 s+k, k=1,2, \ldots, i-2 s p(k)=i+1-k, k=$ $i-2 s+1, \ldots, i$ and $p(k)=k, k=i+1, \ldots, n$. Note that Y_{0}^{i} does not consist of w_{0} alone.

Remark

(1) If $\chi \neq 1$ and $j \geq i-2 s+1$, then $[w]_{\chi}=\{w\}$.
(2) If $\chi=1$ and $w^{\prime}=p^{\prime} \varepsilon \in[w=p \varepsilon]_{1}$ with $2 s>i$ (so that $w, w^{\prime} \in Y_{j}^{\prime}$ for some j) then $\left.p\right|_{\{1,2, \ldots, j\}}=\left.p^{\prime}\right|_{\{1,2, \ldots, j\}}$.
(3) With the assumptions of Lemma 3 with $w_{1}, w_{2} \in Y_{j}^{j}$, if, for $k \in\{1,2, \ldots, j\} p_{1}(k)=p_{2}(i+1-2 s-k)$, then $p_{1}(i+1-2 s-k)=p_{2}(k)$. All such k 's belong to intervals of change-i.e. the shortest intervals on which these interchanges can take place. Then we can describe whole $[w]_{\chi} \cap Y_{j}^{i}$ by prescribing whether some of these intervals are included or not; similarily as in the case of $G L_{n}$ or the Siegel case of $S p_{2 n}$. These cases can be modified to our, more complicated case (the global normalization factors are much more complicated in the non-Siegel case)

Remark

(1) If $\chi \neq 1$ and $j \geq i-2 s+1$, then $[w]_{\chi}=\{w\}$.
(2) If $\chi=1$ and $w^{\prime}=p^{\prime} \varepsilon \in[w=p \varepsilon]_{1}$ with $2 s>i$ (so that $w, w^{\prime} \in Y_{j}^{i}$ for some j) then $\left.p\right|_{\{1,2, \ldots, j\}}=\left.p^{\prime}\right|_{\{1,2, \ldots, j\}}$.
(3) With the assumptions of Lemma 3 with $w_{1}, w_{2} \in Y_{i}^{i}$, if, for $k \in\{1,2, \ldots, j\} p_{1}(k)=p_{2}(i+1-2 s-k)$, then
$p_{1}(i+1-2 s-k)=p_{2}(k)$. All such k 's belong to intervals of change-i.e. the shortest intervals on which these interchanges can take place. Then we can describe whole $[w]_{\chi} \cap Y_{j}^{i}$ by prescribing whether some of these intervals are included or not; similarily as in the case of $G L_{n}$ or the Siegel case of $\mathrm{Sp}_{2 n}$. These cases can be modified to our, more complicated case (the global normalization factors are much more complicated in the non-Siegel case)

Remark

(1) If $\chi \neq 1$ and $j \geq i-2 s+1$, then $[w]_{\chi}=\{w\}$.
(2) If $\chi=1$ and $w^{\prime}=p^{\prime} \varepsilon \in[w=p \varepsilon]_{1}$ with $2 s>i$ (so that $w, w^{\prime} \in Y_{j}^{i}$ for some j) then $\left.p\right|_{\{1,2, \ldots, j\}}=\left.p^{\prime}\right|_{\{1,2, \ldots, j\}}$.
(3) With the assumptions of Lemma 3 with $w_{1}, w_{2} \in Y_{j}^{i}$, if, for $k \in\{1,2, \ldots, j\} p_{1}(k)=p_{2}(i+1-2 s-k)$, then
$p_{1}(i+1-2 s-k)=p_{2}(k)$. All such k 's belong to intervals of change-i.e. the shortest intervals on which these interchanges can take place. Then we can describe whole $[w]_{\chi} \cap Y_{j}^{i}$ by prescribing whether some of these intervals are included or not; similarily as in the case of $G L_{n}$ or the Siegel case of $S p_{2 n}$. These cases can be modified to our, more complicated case (the global normalization factors are much more complicated in the non-Siegel case)

In the case of $\chi=1$, these intervals of changes between $\{1, \ldots, j\}$ and $\{j+1, \ldots, i\}$ are not enough to describe whole $[w]_{1}$; the orbits for $\chi=1$ are much larger than orbits for $\chi \neq 1$ and their description and combinatorics are much more involved and the normalization factors have poles of even higher order.

Global normalization factors-continued

(2) for $w \in Y_{j_{1}}^{i}$ becomes a product of the following expressions:

$$
\begin{align*}
& \prod_{k=j_{1}+1}^{i} \frac{L\left(s-\frac{i-1}{2}+k-1, \chi\right)}{L\left(s-\frac{i-1}{2}+k, \chi\right) \epsilon\left(s-\frac{i-1}{2}+k, \chi\right)} \tag{3}\\
& \prod_{k=j_{1}+1}^{i} \prod_{l=i+1}^{n} \frac{L\left(s-\frac{i-1}{2}+k+n-I, \chi\right)}{L\left(s-\frac{i-1}{2}+k+n-I+1, \chi\right) \epsilon\left(s-\frac{i-1}{2}+k+n-I+1, \chi\right)} \tag{4}\\
& \prod_{\substack{k=1, \ldots, j_{1} \\
=i+1, n \\
p(k)>p(l)}} \frac{L\left(s-\frac{i-1}{2}+k+n-I, \chi\right)}{L\left(s-\frac{i-1}{2}+k+n-I+1, \chi\right) \epsilon\left(s-\frac{i-1}{2}+k+n-I+1, \chi\right)} \tag{5}
\end{align*}
$$

$$
\begin{gather*}
\prod_{\substack{k=1, \ldots, j_{1}, i \\
l=j_{1}+1, \ldots, i \\
p(k)>p(l)}} \frac{L\left(2 s+k+I-i-1, \chi^{2}\right)}{L\left(2 s+k+I-i, \chi^{2}\right) \epsilon\left(2 s+k+I-i, \chi^{2}\right)} \\
\prod_{\substack{k=j_{1}+1, \ldots, i \\
l i+1, \ldots, n \\
p(I)>p(k)}} \frac{L\left(s-\frac{i-1}{2}+k+I-n-2, \chi\right)}{L\left(s-\frac{i-1}{2}+k+I-n-1, \chi\right) \epsilon\left(s-\frac{i-1}{2}+k+I-n-1, \chi\right)} \\
\prod_{\substack{j_{1}+1 \leq k, l \leq i \\
k<l}} \frac{L\left(2 s-i+k+I-1, \chi^{2}\right)}{L\left(2 s-i+k+I, \chi^{2}\right) \epsilon\left(2 s-i+k+I, \chi^{2}\right)} . \tag{7}
\end{gather*}
$$

- (6) is non-trivial for $w=p \varepsilon$ such that $p\left(j_{1}\right)>p(i)$. - k_{p} the smallest $k \in\left\{1,2, \ldots, j_{1}\right\}$ such that $p(k)>p(i)$. - For $k \in\left\{k_{p}, k_{p}+1, \ldots, j_{1}\right\}$ let I_{k} be the smallest element in $\left\{j_{1}+1, \ldots, i\right\}$ such that $p(k)>p\left(I_{k}\right)$ The expression (6) becornes

- (6) is non-trivial for $w=p \varepsilon$ such that $p\left(j_{1}\right)>p(i)$.
- k_{p} the smallest $k \in\left\{1,2, \ldots, j_{1}\right\}$ such that $p(k)>p(i)$.
- For $k \in\left\{k_{p}, k_{p}+1, \ldots, j_{1}\right\}$ let I_{k} be the smallest element in $\left\{j_{1}+1, \ldots, i\right\}$ such that $p(k)>p\left(I_{k}\right)$ The expression (6) becomes

- (6) is non-trivial for $w=p \varepsilon$ such that $p\left(j_{1}\right)>p(i)$.
- k_{p} the smallest $k \in\left\{1,2, \ldots, j_{1}\right\}$ such that $p(k)>p(i)$.
- For $k \in\left\{k_{p}, k_{p}+1, \ldots, j_{1}\right\}$ let I_{k} be the smallest element in $\left\{j_{1}+1, \ldots, i\right\}$ such that $p(k)>p\left(I_{k}\right)$ The expression (6) becomes

$$
\begin{align*}
& \prod_{k=k_{p}}^{j_{1}} \prod_{l=l_{k}}^{i} \frac{L\left(2 s+k+I-i-1, \chi^{2}\right)}{L\left(2 s+k+I-i, \chi^{2}\right) \epsilon\left(2 s+k+I-i, \chi^{2}\right)}= \tag{9}\\
& \prod_{k=k_{p}}^{j_{1}} \frac{L\left(2 s+k-i-1+I_{k}, \chi^{2}\right)}{L\left(2 s+k, \chi^{2}\right)}
\end{align*}
$$

- t_{p} an element of $\{i+1, \ldots, n\}$ such that $p\left(t_{p}\right)<p\left(j_{1}\right)$ and $p\left(t_{p}+1\right)>p\left(j_{1}\right)$

- t_{p} an element of $\{i+1, \ldots, n\}$ such that $p\left(t_{p}\right)<p\left(j_{1}\right)$ and $p\left(t_{p}+1\right)>p\left(j_{1}\right)$
- for $I \in\left\{i+1, \ldots, t_{p}\right\}$ let m_{I} an element of $\left\{1,2, \ldots, j_{1}\right\}$ such that $p(I)<p\left(m_{l}\right)$ and $p(I)>p\left(m_{l}-1\right)$. Then, (5) becomes

$$
\begin{equation*}
\prod_{I=i+1}^{t_{p}} \prod_{k=m_{l}}^{j_{1}} \frac{L\left(s-\frac{i-1}{2}+k+n-I, \chi\right)}{L\left(s-\frac{i-1}{2}+k+n-I+1, \chi\right) \epsilon\left(s-\frac{i-1}{2}+k+n-I+1, \chi\right)} \tag{10}
\end{equation*}
$$

- $s_{p} \in\{i+1, \ldots, n\}$ such that $p\left(s_{p}\right)>p(i), p\left(s_{p}-1\right)<p(i)$. for $I \in\left\{s_{p}, \ldots, n\right\}$ we denote by r_{l} an element of $\left\{j_{1}+1, \ldots\right.$,
such that $p\left(r_{l}\right)<p(I)$ and $p\left(r_{l}-1\right)>p(I)$ and (7) becomes

- $s_{p} \in\{i+1, \ldots, n\}$ such that $p\left(s_{p}\right)>p(i), p\left(s_{p}-1\right)<p(i)$.
- for $I \in\left\{s_{p}, \ldots, n\right\}$ we denote by r_{l} an element of $\left\{j_{1}+1, \ldots, i\right\}$ such that $p\left(r_{l}\right)<p(I)$ and $p\left(r_{l}-1\right)>p(I)$ and (7) becomes

$$
\prod_{l=s_{p}}^{n} \prod_{k=r_{l}}^{i} \frac{L\left(s-\frac{i-1}{2}+k+I-n-2, \chi\right)}{L\left(s-\frac{i-1}{2}+k+I-n-1, \chi\right) \epsilon\left(s-\frac{i-1}{2}+k+I-n-1, \chi\right)}
$$

The Langlands parameters of $\widehat{\sigma_{1}}$ and $\widehat{\sigma_{2}}$-the Siegel case

Theorem

Let $\frac{n-1}{2}-s \in \mathbb{Z}_{>0}$. If $\chi=1$ then

$$
\widehat{\sigma_{1}}=L\left(\nu^{\frac{n-1}{2}+s}, \nu^{\frac{n-3}{2}+s}, \ldots, \nu^{\frac{n+1}{2}-s}, \nu^{\frac{n-1}{2}-s}, \nu^{\frac{n-1}{2}-s}, \ldots, \nu^{1}, \nu^{1} ; \nu^{0} \rtimes 1\right),
$$

and

$$
\widehat{\sigma_{2}}=L\left(\nu^{\frac{n-1}{2}+s}, \nu^{\frac{n-3}{2}+s}, \ldots, \nu^{\frac{n+1}{2}-s}, \nu^{\frac{n-1}{2}-s}, \nu^{\frac{n-1}{2}-s}, \ldots, \nu^{2}, \nu^{2}, \nu^{1} ; T_{2}^{\prime \prime}\right) .
$$

Here $T_{2}^{\prime \prime}$ is the unique common (tempered) subquotient of $\nu^{0} \rtimes S t_{S L_{2}(F)}$ and $\zeta\left(\nu^{0}, \nu^{1}\right) \rtimes 1$.

Theorem

If $\chi \neq 1$ we get analogously
$\widehat{\sigma}_{i}=L\left(\nu^{\frac{n-1}{2}+s}, \nu^{\frac{n-3}{2}+s}, \ldots, \nu^{\frac{n+1}{2}-s}, \nu^{\frac{n-1}{2}-s}, \nu^{\frac{n-1}{2}-s}, \ldots, \nu^{1}, \nu^{1} ; T_{i}^{0}\right), i=1,2$,
where $\chi \rtimes 1=T_{1}^{0} \oplus T_{2}^{0}$ (tempered representations of $S L_{2}(F)$).

The description of the image-the Siegel case

Theorem

Assume $\chi^{2}=1$ with $\chi_{\infty}=1$, and $n \geq 3$ with $\frac{n-1}{2}-s \in \mathbb{Z}_{\geq 0}$. Let $\widehat{\sigma_{i, p}}, i=1,2$ be the representations described above at the place $p<\infty$. Then, the Eisenstein series (0) has a pole of order one on I(s).

Description of image-the Siegel case-continuation

- Assume $0<s<\frac{n-1}{2}, f=\otimes_{p \leq \infty} f_{p} \in I(s)$ and let S be a finite set of finite places, and for $p \notin S$, let f_{p} be the normalized spherical vector. For $S_{1} \subset S$, we pick $f_{p} \in \widehat{\sigma_{1, p}}$ and for $p \in S_{2}:=S \backslash S_{1}$, we take $f_{p} \in \widehat{\sigma_{2, p}}$. Then, for such $f,\left(0^{\prime}\right)$ is holomorphic if $\left|S_{2}\right|$ is odd, and if $\left|S_{2}\right|$ is even it has a pole of order one. In the latter case $\left(\left(0^{\prime}\right)\right)$ gives an automorphic realization (in the space of automorphic forms $\mathcal{A}\left(S p_{2 n}(\mathbb{Q}) \backslash S p_{2 n}(\mathbb{A})\right)$ of a global irreducible representation having a local representation $\widehat{\sigma_{2, p}}$ on the places from S_{2} and $\widehat{\sigma_{1, p}}$ as a local component elsewhere on finite places ($\widehat{\sigma_{1, p}}$ is spherical for $p \notin S, p<\infty$).

