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Covering groups after Brylinski and

Deligne



What is a covering group?

Let F be a field, and let G be a reductive group over F .

Definition (My working definition)

A cover of G over F is a pair G̃ = (G′, n), where

• K2 ↪→ G′ � G is a central extension of G by K2;

• 1 ≤ n (the degree) is such that #µn(F ) = n.

A “central extension of G by K2” was defined by Brylinski and

Deligne (Pub. Math. IHES 94 (2001)). They classified such

central extensions by root-theoretic data.
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What does a covering group over R give us?

Let G̃ be a degree 2 cover of a reductive group G over R. Taking

R-points and applying the Hilbert symbol yields a topological

central extension,

µ2 ↪→ G̃ � G ,

where G = G(R) and µ2 = {±1}.

Two questions:

1. What topological central extensions arise?

2. Why should one work with the Brylinksi-Deligne class of

covers anyways?
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Compact tori

Proposition

Let S be an algebraic torus over R such that S = S(R) is compact.

Then every topological central extension,

µ2 ↪→ S̃ � S

arises from a cover S̃ = (S′, 2).

Proof: A straightforward consequence of Brylinski-Deligne, §12.6.

N.B. the cover S̃ is not uniquely determined by the topological

cover S̃ .
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Chevalley-Steinberg groups

Definition

A Chevalley group (respectively Chevalley-Steinberg group) over a

field F is a split (resp., quasisplit), absolutely almost simple, simply-

connected linear algebraic group G over F .
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Chevalley-Steinberg groups over R

Type Group G = G(R) π1(G )

A`, ` ≥ 2 SL`+1(R) Z/2Z
B`, ` ≥ 3 Spin`,`+1(R) Z/2Z
C`, ` ≥ 1 Sp2`(R) Z
D`, ` ≥ 4 Spin`,`(R) Z/2Z

E6,E7,E8,F4,G2 Exceptional groups Z/2Z
A

(2)
2p , p ≥ 1 SUp,p+1(R) Z/2Z

A
(2)
2p−1, p ≥ 2 SUp,p(R) Z/2Z
D

(2)
` , ` ≥ 4 D

(2)
` (R) Z/2Z

E
(2)
6 E

(2)
6 (R) Z/2Z

A good reference is Tits, “Tabellen zu den einfachen Lie Gruppen

und ihren Darstellungen” (LNM 40, 1967).
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Covers of Chevalley-Steinberg groups over R

Fix G a Chevalley-Steinberg group over R. There exists a unique,

up to unique isomorphism, nonsplit topological central extension,

µ2 ↪→ G̃ � G .

Theorem (Brylinski-Deligne)

There is a canonical central extension

K2 ↪→ G′ � G.

Theorem (Prasad-Rapinchuk, Prasad, Brylinski-Deligne)

The double cover arising from the canonical extension of Brylinski-

Deligne is uniquely isomorphic to the nonsplit extension G̃ .
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Linearish covers

Nontrivial covers can yield (topologically) linear Lie groups.

Example

There exists a cover G̃ = (G′, 2), where G = PGL2, and the

resulting extension

µ2 ↪→ G̃ � PGL2(R)

is isomorphic (nonuniquely) to the extension

µ2 ↪→
GL2(R){(

t 0

0 t

)
: t > 0

} � PGL2(R).

N.B. g̃ 7→ g · | det(g)|−1/2 is a faithful continuous representation.
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Local fields

If F is a local field, and G̃ is a degree n cover of a reductive group

G over F , then one gets a topological central extension,

µn ↪→ G̃ � G ,

where G = G(F ). Universal extensions of Chevalley-Steinberg

groups arise from such a construction.
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Unramified and global properties

If F is a global field and G̃ is a degree n cover of a reductive group

G over F , then one gets a topological central extension,

µn ↪→ G̃A � GA = G(A),

as well as a splitting of this extension over G(F ).

If O is the ring of integers in a nonarchimedean local field F , and

G̃ is a degree n cover of a reductive group G over O, then one

gets a topological central extension

µn ↪→ G̃F � GF = G(F ),

as well as a splitting of this extension over G(O).
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Covers

The class of covers described here has some nice properties:

• They include the most important topological central

extensions, at least those that seem connected to arithmetic.

• Splitting properties allow one to study genuine unramified

representations and genuine automorphic representations.

• They include some central extensions that can be studied

using techniques for linear groups, but would not ordinarily

get attention.

• They have a nice classification due to Brylinski and Deligne.

I aim to extend the Langlands program to covers. For this purpose,

I have defined an L-group associated to all covers of quasisplit

groups over local and global fields.
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The dual group



A quadratic form

Let G̃ be a degree n cover of a quasisplit reductive group G over a

field F . Let T be a maximal torus in a Borel subgroup B ⊂ G.

Define

Y = Hom(Gm,T), X = Hom(T,Gm).

To G̃, Brylinski and Deligne associate a Weyl- and Galois-invariant

quadratic form

Q : Y → Z.

Simplest case: If G a Chevalley-Steinberg group and G̃ is the

canonical double cover, Q : Y → Z is the unique Weyl-invariant

quadratic form such that

Q(α∨) = 1 for all short coroots α∨.
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Modified root data

Let Φ ⊂ X and Φ∨ ⊂ Y the subsets of roots and coroots. Let

∆ ⊂ Φ and ∆∨ ⊂ Φ∨ be the subsets of simple roots and coroots.

Define

nα =
n

GCD(n,Q(α∨))
for all α ∈ Φ.

Define modified roots and coroots

α̃ = n−1
α α, α̃∨ = nαα

∨ for all α ∈ Φ.

Φ̃ = {α̃ : α ∈ Φ}, Φ̃∨ = {α̃∨ : α ∈ Φ}.

Define a modified coweight lattice

YQ,n = {y ∈ Y : Q(y+y ′)−Q(y)−Q(y ′) ∈ nZ for all y ′ ∈ Y } ⊂ nY .

Define a modified weight lattice

XQ,n = Hom(YQ,n,Z) ⊂ n−1X .
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Modified root data

Theorem (Lusztig, Finkelberg-Lysenko, McNamara, Reich, W.)

The sextuple (YQ,n, Φ̃
∨, ∆̃∨,XQ,n, Φ̃, ∆̃) is a based root datum.

α∨

β∨

α̃∨

β̃∨

Figure 1: Modifying the root datum for the double cover of Sp4. On the

left, Y ⊃ Φ∨ ⊃ ∆∨ On the right, YQ,2 ⊃ Φ̃∨ ⊃ ∆̃∨. In this case

Y = YQ,2 (I call such covers “sharp”).
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Modified root data

Theorem (Lusztig, Finkelberg-Lysenko, McNamara, Reich, W.)

The sextuple (YQ,n, Φ̃
∨, ∆̃∨,XQ,n, Φ̃, ∆̃) is a based root datum.

α∨
α̃∨

Figure 2: Modifying the root datum for a double cover of GL2, with

α∨ = (1, 1) and Q(u, v) = u2 + uv + v2 in standard coordinates.
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The dual group

Theorem (Lusztig, Finkelberg-Lysenko, McNamara, Reich, W.)

The sextuple (YQ,n, Φ̃
∨, ∆̃∨,XQ,n, Φ̃, ∆̃) is a based root datum.

Definition

The dual group of the cover G̃ is the pinned complex reductive

group G̃∨ associated to the based root datum above.

The pinning gives a Borel subgroup and maximal torus:

G̃∨ ⊃ B̃∨ ⊃ T̃∨. Note T̃∨ = Hom(YQ,n,C×).

The map (a homomorphism, in fact)

YQ,n → C×, y 7→ e2πiQ(y)/n

defines a 2-torsion element

ξ ∈ Z̃∨ := Z (G̃∨) = Hom

(
YQ,n

SpanZ(Φ̃∨)
,C×

)
.
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Tables

Double cover G̃∨

S̃L2(R) ∗SL2(C)

S̃L3(R) PGL3(C)

S̃L4(R) SL4(C)/µ2

S̃L5(R) PGL5(C)

S̃L6(R) ∗SL6(C)/µ3

S̃pin7(R) SO7(C)

S̃pin9(R) Spin9(C)

S̃pin11(R) SO11(C)

S̃pin13(R) ∗Spin13(C)

Double cover G̃∨

S̃p2`(R) ∗Sp2`(C)

S̃pin8(R) Spin8(C)

S̃pin10(R) SO10(C)

S̃pin12(R) ∗Spin12(C)

Ẽ6(R) E6(C)/µ3

Ẽ7(R) ∗E7(C)

Ẽ8(R) E8(C)

G̃2(R) G2(C)

F̃4(R) F4(C)

Table 1: Table of double covers of real Chevalley groups and their dual

groups. Asterisks denote the cases where the 2-torsion element ξ is

nontrivial. (For quasisplit groups, Gal acts by outer automorphisms

preserving ξ)
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The L-group



The näıve L-group

Others (e.g., Savin, Adams-Barbasch-Paul-Trapa-Vogan, Crofts,

Finkelberg-Lysenko, McNamara, Reich) related the dual G̃∨ to the

parameterization of genuine representations of G̃ .

This suggests a näıve L-group:

LG̃naive = GalnG̃∨.

I suggest a more elaborate L-group is the natural L-group. It will

be an extension,

G̃∨ ↪→ LG̃ � Gal,

but without a distinguished splitting in general.
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The first twist

The first step in constructing the L-group is the “first twist”.

Let σ denote complex conjugation, so Gal = Gal(C/R) = {1, σ}.

Define a cocycle, Gal×Gal→ Z̃∨ = Z (G̃∨) by

(σ, σ) 7→ ξ.

(1, 1) and (1, σ) and (σ, 1) 7→ 1.

This yields a central extension,

Z̃∨ ↪→ E1 � Gal .
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The second Brylinski-Deligne invariant

But this isn’t enough – a second twist is needed, which requires

another invariant of covers due to Brylinski-Deligne.

To a cover G̃ of a reductive group G over a field F , Brylinski and

Deligne associate a Gal(F̄/F )-equivariant extension of groups,

F̄× ↪→ D � Y ,

where Y is the coweight lattice and F̄ is a separable closure of F .
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Chevalley-Steinberg groups

Consider G̃ the canonical double cover of a Chevalley-Steinberg

group G over R. We can describe D by generators and relations.

Generators: all elements of C×, and elements dα for each simple

root α ∈ ∆.

Relations: C× is contained in the center of D, and for any

α, β ∈ ∆, [dα, dβ] = (−1)Q(α+β)−Q(α)−Q(β).

Inclusion of C× ↪→ D and projection dα 7→ α∨ yields a central

extension,

C× ↪→ D � Y .

Galois-invariance of Q gives a Gal(C/R)-action on D.
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Chevalley-Steinberg groups

From a double cover G̃, we have a central extension,

C× ↪→ D � Y ,

endowed with a Gal(C/R)-action.

Pull back to the sublattice YQ,2 ⊂ Y .

C× ↪→ DQ,2 � YQ,2.

This is an abelian extension.

Take Gal(C/R) = {1, σ} invariants.

R× ↪→ Dσ
Q,2 � Y σ

Q,2.
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Flipping the extension (split case)

In the split case, we have an abelian extension,

R× ↪→ Dσ
Q,2 � YQ,2.

Definition

The flipped extension E2 is the set of homomorphisms f : Dσ
Q,2 →

C× such that

• f (t) = 1 for all t ∈ R×>0.

• f (dnα
α · rα) = 1 for all α ∈ ∆. Here rα = (−1)Q(α∨)·(nα2 ).

This gives an extension (not so obviously)

Z̃∨ ↪→ E2 � Gal(C/R).

28



Flipping the extension (split case)

In the split case, we have an abelian extension,

R× ↪→ Dσ
Q,2 � YQ,2.

Definition

The flipped extension E2 is the set of homomorphisms f : Dσ
Q,2 →

C× such that

• f (t) = 1 for all t ∈ R×>0.

• f (dnα
α · rα) = 1 for all α ∈ ∆. Here rα = (−1)Q(α∨)·(nα2 ).

This gives an extension (not so obviously)

Z̃∨ ↪→ E2 � Gal(C/R).

28



Flipping the extension (quasisplit case)

We have an abelian extension with Gal(C/R)-action.

C× ↪→ DQ,2 � YQ,2.

Choose a splitting s : YQ,2 → DQ,2 which satisfies

s(α̃∨) = dnα
α · rα for all α ∈ ∆.

Then σs/s ∈ Hom(YQ,2,C×), and has a square root
√
σs/s.

There are two Z̃∨-torsors:

E2,1 = Z̃∨ = {f ∈ Hom(YQ,2,C×) : f (α̃∨) = 1 for all α ∈ ∆}.

E2,σ = {f ∈ Hom(YQ,2,C×) :

[
f ·
√

σs

s

]
(α̃∨) = 1 for all α ∈ ∆}.
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Assembly

Define E2 = E2,1 t E2,σ. Then we find a short exact sequence,

Z̃∨ ↪→ E2 � Gal(C/R).

The cocycle (σ, σ) 7→ ξ gave another short exact sequence,

Z̃∨ ↪→ E1 � Gal(C/R).

Take the Baer sum,

Z̃∨ ↪→ E1 u E2 � Gal(C/R).

Push out via the Gal(C/R)-equivariant inclusion Z̃∨ ↪→ G̃∨ to get

a short exact sequence.

G̃∨ ↪→ LG̃ � Gal(C/R).
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Evidences and questions



Evidence: Tori

Theorem (W. (also see Gan-Gao))

Let T be a split torus over a local or global field. Then there is a

natural one-to-one parameterization:

{ Irreducible genuine admissible/automorphic reps of T̃}

↪→ { Weil parameters valued in LT̃}

Theorem (W.)

Let T be a torus over R with T = T(R) compact. Then there is a

natural one-to-one parameterization:

{ Irreducible genuine characters of T̃}

↪→ { Weil parameters valued in LT̃}
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Evidence: Unramified representations

Let G̃ be a cover of a reductive group G, defined over the ring of

integers in a nonarchimedean local field.

Theorem (W. (also see Gan-Gao))

There is a natural bijective parameterization:

{ Irreducible genuine spherical reps of G̃} (mod equivalence)

→ { Unramified Weil parameters valued in LG̃} (mod Ad(G̃∨)) .

Proof: Satake isomorphim (McNamara, WenWei Li, Gan-Gao, W.)

+ Parameterization for split tori + carefully tracing through

Weyl-group action.
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Evidence: Discrete series

Let G̃ be a cover of a quasisplit semisimple group G over R, such

that G contains a compact maximal torus T over R.

Theorem (W.)

There is a natural one-to-one parameterization:

{ Discrete series reps of G̃} (mod equivalence)

↪→ { Discrete series Weil parameters valued in LG̃} (mod Ad(G̃∨)) .
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Evidence: Hecke algebras

Let G̃ be a degree n cover of a simple Chevalley group over Zp,

type A,D,E, with p = 3 mod 4. Let Glin be the split reductive

group whose Langlands dual group is G̃∨.

Theorem (Savin, 2004)

For each Satake painting S of the Dynkin diagram, choose a square

root of (−1)#S in C. This set of choices determines an isomorphism

from the Iwahori Hecke algebra of G̃ to the Iwahori Hecke algebra

of Glin.

Theorem (Gao? W.?)

For each Satake painting S of the Dynkin diagram, choose a square

root of (−1)#S in C. This set of choices determines an isomorphism

of L-groups from the L-group LG̃ of the cover to the L-group LGlin =

GalnG̃∨.
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Question: Functoriality for linearish groups

Consider a “linearish cover” G̃. Then genuine irreps of G̃

correspond to irreps of a linear group H with a specific central

character.

Example

(G = PGL2 and H = GL2)

There’s a cover G̃ for which µ2 ↪→ G̃ � PGL2(R) in which

G̃ ∼= GL2(R)/

{(
t 0

0 t

)
: t > 0

}
.

Exercise: Pullback from G̃ to H should be functorial, reflected in

a homomorphism of L-groups LG̃ → LH. This has been considered

for H = GL2 by Gan and Gao.
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Question: General tori (over R)

Parameterization has been accomplished for covers of split tori and

covers of compact tori over R.

Exercise: Complete the parameterization for all covers of tori

over R.

Problem: Complete the parameterization for all covers of tori over

local fields.
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Question: Which parameters are relevant?

The parameterizations are often one-to-one. Some Weil

parameters do not correspond to irreducible genuine irreps.

Question: Which Weil parameters are “relevant”? I.e., what is

the image of the parameterization map? This seems related to

endoscopy for covering groups.
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Question: The contragredient?

If G̃ is a cover, there is an “opposite cover” G̃
op

. (For double

covers, they can be taken to be the same).

If π is a genuine irreducible representation of G̃ (work over a local

field), its contragredient is a genuine irreducible representation of

G̃ op.

Question: (Adams-Vogan?) What is the corresponding map on

L-groups?
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Thank you...
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