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Setting

G a reductive group defined over a p-adic field F . G = G(F ).
(π,V ) an admissible representation of G .
For v ∈ V , v∗ ∈ V ∗,

mv ,v∗(g) = v∗(π(g)v), g ∈ G

is a generalized matrix coefficient.
(non-generalized when v∗ is smooth.)
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Relative setting

H < G a closed subgroup. H = H(F ).
Symmetric case: H = Gθ for an F -involution θ on G.
Relative harmonic analysis is interested in possible embeddings

π ↪→ C∞(H \ G )

given by
v ∈ V 7→ mv ,v∗

for 0 6= v∗ ∈ (V ∗)H .
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H-integral

For a smooth mod center function f on G , we can try to define
the integral

LH(f ) =

∫
(H∩Z(G))\H

f (h) dh . dh − Haar measure on H

Can be viewed as a distribution on G/Z (G ).
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Questions

Main Question - Are there local periods for π?

Given 0 6= v∗ ∈ (V ∗)H , is there a
smooth ṽ ∈ Ṽ , such that

v∗(v) = LH(mv ,ṽ )

for all v ∈ V ?

C∞(G )

π C∞(H \ G )
?

LH

p p p p p p
p p p p p p

p
�

ṽ

-v∗

That is, which H-invariant functionals can be expressed as an
integral over (smooth) matrix coefficients?
In this case, we will say that v∗ = P(ṽ) is a local period.
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Questions

C∞(G )

π C∞(H \ G )
?

LH

p p p p p p
p p p p p p

p
�

ṽ

-v∗

Sub-questions

1 Is the H-integral over mv ,ṽ absolutely convergent?
If so, we say π is H-integrable.

2 If convergent, are there non-zero local periods?

For some representations a positive answer for the first question
would imply the second one.
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Global motivation

A cuspidal automorphic representation Π = ⊗′vπv of G(Ak) (k a
number field) has a canonical H(Ak)-invariant functional - the
period integral: P(φ) =

∫
H(k)\H(Ak ) φ(h) dh.

In certain cases (not symmetric), it is expected that when {πv} are
tempered, the period integral will factorize as

|P(φ)|2 = P(φ)P(φ) =
∏
v

′
LH(mφv ,φv

)

under suitable normalizations of measures, where φ = ⊗′φv ∈ Π.

Ichino-Ikeda conjectures for the Gross-Prasad case.

Lapid-Mao conjectures for the Whittaker case.

Sakellaridis-Venkatesh - general framework.
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Definitions

A representation π is called square-integrable if

|mv ,ṽ | ∈ L2(G/Z (G ))

for all v ∈ V , ṽ ∈ Ṽ .

A representation π is called tempered if

|mv ,ṽ | ∈ L2+ε(G/Z (G ))

for all v ∈ V , ṽ ∈ Ṽ and all ε > 0.
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Definitions

Strongly tempered pair

A pair (G ,H) is called strongly tempered if any tempered
irreducible representation of G is H-integrable.

Tempered distributions

The distribution LH on G/Z (G ) is tempered if it extends as a
functional to the Harish-Chandra-Schwartz space of G/Z (G ).

In particular, when LH is tempered any square-integrable
irreducible representation of G is H-integrable.
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Corollaries

Theorems (G.-Offen)

1 The following families of pairs are strongly tempered:

(GLn,OJ), (Un,E/F ,O(J)), (Sp2n,Un,E/F )

for any orthogonal group OJ and any unitary group Un,E/F

relative to a quadratic extension E of F .

2 For the following families of pairs (G ,H), the distribution LH

is tempereda:

(G(E ),G(F )), (GLn,GLbn/2c × GLdn/2e) (GL2n,GLn(E ))

for any quadratic extension E of F .

aas interpreted by Chong Zhang
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Theorems - Non-vanishing

Sakellaridis-Venkatesh: For a strongly tempered (G ,H), every
(tempered) H-distinguished irreducible representation of G
which is parabolically induced from a square-integrable
representation has non-zero local periods.

C. Zhang: When LH is a tempered distribution, every
H-distinguished square-integrable representation of G has
non-zero local periods.
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Convergence of matrix coefficients

Casselman’s criterion

A representation is square-integrable (tempered), if and only if, its
exponents are (weakly) positive.
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Some structure

Fix a maximal F -split torus A < G , which is θ-stable and such
that A0 := (Aθ)◦ is a maximal F -split torus of H.

Fix a minimal θ-stable parabolic A < P0 < G and a minimal
parabolic B < P0.

∆G ⊂ ΣG = Σ(A, Lie(G )) ⊂ X ∗(A)

∆H ⊂ ΣH ⊂ ΣG
H = Σ(A0, Lie(G )) = ΣG |A0 ⊂ X ∗(A0)

ΣG
H is a root system with basis ∆G

H = ∆G |A0 . WH < W G
H

Cartan decomposition: H◦ =
⋃

c∈C , a∈A+,∆H
0

KcaK , where

K < G is a maximal compact subgroup, C is finite and

A+,∆H
0 = {x ∈ A0 : |α(x)|F ≤ 1, ∀α ∈ ∆H}
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Convergence of matrix coefficients

Convergence of LH(mv ,ṽ ) reduces to summability on A+,∆H .

Yet, the asymptotics of mv ,ṽ (matrix coefficient of G !) can be
effectively measured only on the subcone

A0 ∩ A+,∆G = {x ∈ A0 : |α(x)|F ≤ 1, ∀α ∈ ∆G
H}

This can be solved by choosing coset representatives
D =

[
W G

H /WH

]
⊂W G

H for which

A+,∆H
0 =

⋃
w∈D

w(A0 ∩ A+,∆G )
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Exponents

For a parabolic B < P = MN with A < M, let AM < Z (M)
be the maximal F -split torus.

For irreducible π, Exp(π,P) ⊂ Hom(AM ,C×) is the collection
of central characters appearing in subquotients of the Jacquet
module JP(π).

For χ ∈ Exp(π,P),

|χ| ∈ Hom(AM ,R×+) ∼= a∗AM
:= X ∗(AM)⊗ R

For θ-stable P we say that λ ∈ a∗AM
is relatively positive if

λ|(AθM)◦ is in the cone spanned by ∆G |(AθM)◦ .
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Main theorem

Convergence criterion (G.-Offen)

An admissible representation π of G is H-integrable, iff, for every
θ-stable standard parabolic P, every χ ∈ Exp(π,P) and every
w ∈ D,

|χ|+ ρ
G/H
w

is relatively positive. Here,

ρ
G/H
w := δ

1/2
P0
|a∗0 − w

(
δ

1/2

Pθ0
|a∗0
)
,

with δP0 , δPθ0
being the modular characters of the groups.
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Main theorem

Convergence criterion (G.-Offen)

An admissible representation π of G is H-integrable, iff, for every θ-stable standard
parabolic P, every χ ∈ Exp(π,P) and every w ∈ D,

|χ|+ ρ
G/H
w

is relatively positive. Here,

ρ
G/H
w := δ

1/2
P0
|a∗0 − w

(
δ

1/2

Pθ
0

|a∗0

)
,

with δP0
, δPθ

0
being the modular characters of the groups.

In particular, combining with Casselman’s criterion, (G ,H) is

strongly tempered when all ρ
G/H
w are relatively positive, and LH is

tempered when all ρ
G/H
w are weakly relatively positive.
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Thank you!
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