Integrability of *p*-adic matrix coefficients joint work with Omer Offen

Maxim Gurevich

Weizmann Institute of Science Rehovot, Israel.

New developments in representation theory March 2016, National University of Singapore

2 Corollaries

3 Convergence of matrix coefficients

- ∢ ≣ ▶

Setting

G a reductive group defined over a *p*-adic field *F*. *G* = **G**(*F*). (π , *V*) an admissible representation of *G*. For $v \in V$, $v^* \in V^*$,

$$m_{v,v^*}(g) = v^*(\pi(g)v), \quad g \in G$$

is a generalized matrix coefficient. (non-generalized when v^* is smooth.)

/⊒ ▶ < ∃ ▶ <

Setting

G a reductive group defined over a *p*-adic field *F*. *G* = **G**(*F*). (π , *V*) an admissible representation of *G*. For $v \in V$, $v^* \in V^*$,

$$m_{\mathbf{v},\mathbf{v}^*}(g)=\mathbf{v}^*(\pi(g)\mathbf{v}), \quad g\in G$$

is a generalized matrix coefficient. (non-generalized when v^* is smooth.)

Relative setting

 $\mathbf{H} < \mathbf{G}$ a closed subgroup. $H = \mathbf{H}(F)$. Symmetric case: $\mathbf{H} = \mathbf{G}^{\theta}$ for an *F*-involution θ on \mathbf{G} . Relative harmonic analysis is interested in possible embeddings

$$\pi \quad \hookrightarrow \ \mathcal{C}^{\infty}(\mathcal{H} \setminus \mathcal{G})$$

given by

$$v \in V \mapsto m_{v,v^*}$$

for $0 \neq v^* \in (V^*)^H$.

Relative setting

 $\mathbf{H} < \mathbf{G}$ a closed subgroup. $H = \mathbf{H}(F)$. Symmetric case: $\mathbf{H} = \mathbf{G}^{\theta}$ for an *F*-involution θ on \mathbf{G} . Relative harmonic analysis is interested in possible embeddings

$$\pi \hookrightarrow C^{\infty}(H \setminus G)$$

given by

 $v \in V \mapsto m_{v,v^*}$

for $0 \neq v^* \in (V^*)^H$.

Relative setting

 $\mathbf{H} < \mathbf{G}$ a closed subgroup. $H = \mathbf{H}(F)$. Symmetric case: $\mathbf{H} = \mathbf{G}^{\theta}$ for an *F*-involution θ on \mathbf{G} . Relative harmonic analysis is interested in possible embeddings

$$\pi \quad \hookrightarrow \ \mathcal{C}^{\infty}(\mathcal{H} \setminus \mathcal{G})$$

given by

$$v \in V \mapsto m_{v,v^*}$$

for $0 \neq v^* \in (V^*)^H$.

H-integral

For a smooth mod center function f on G, we can try to define the integral

$$L_H(f) = \int_{(H \cap Z(G)) \setminus H} f(h) \, dh$$
. dh – Haar measure on H

Can be viewed as a distribution on G/Z(G).

・ 一 ・ ・ ・ ・ ・ ・

H-integral

For a smooth mod center function f on G, we can try to define the integral

$$L_H(f) = \int_{(H \cap Z(G)) \setminus H} f(h) \, dh$$
 . dh – Haar measure on H

Can be viewed as a distribution on G/Z(G).

/⊒ > < ∃ >

Questions

Main Question - Are there local periods for π ?

Given $0 \neq v^* \in (V^*)^H$, is there a smooth $\tilde{v} \in \tilde{V}$, such that

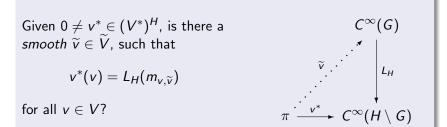
$$v^*(v) = L_H(m_{v,\widetilde{v}})$$

for all $v \in V$?

That is, which *H*-invariant functionals can be expressed as an integral over (smooth) matrix coefficients? In this case, we will say that $v^* = P(\tilde{v})$ is a *local period*.

Questions

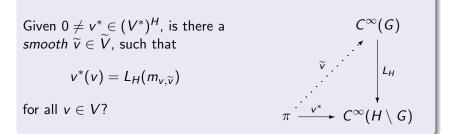
Main Question - Are there local periods for π ?



That is, which *H*-invariant functionals can be expressed as an integral over (smooth) matrix coefficients? In this case, we will say that $v^* = P(\tilde{v})$ is a *local period*.

Questions

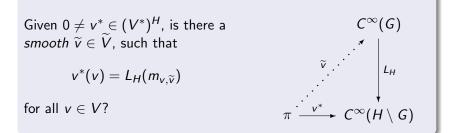
Main Question - Are there local periods for π ?



That is, which *H*-invariant functionals can be expressed as an integral over (smooth) matrix coefficients?

Questions

Main Question - Are there local periods for π ?

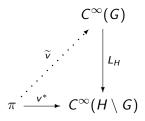


That is, which *H*-invariant functionals can be expressed as an integral over (smooth) matrix coefficients? In this case, we will say that $v^* = P(\tilde{v})$ is a *local period*.

Problem and motivation

Corollaries Convergence of matrix coefficients Results

Questions



Sub-questions

Is the *H*-integral over m_{v,ṽ} absolutely convergent?
 If so, we say π is *H*-integrable.

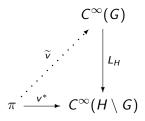
If convergent, are there non-zero local periods?

For some representations a positive answer for the first question would imply the second one.

Problem and motivation

Corollaries Convergence of matrix coefficients Results

Questions



Sub-questions

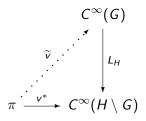
- Is the *H*-integral over m_{v,ṽ} absolutely convergent?
 If so, we say π is *H*-integrable.
- If convergent, are there non-zero local periods?

For some representations a positive answer for the first question would imply the second one.

Problem and motivation

Corollaries Convergence of matrix coefficients Results

Questions



Sub-questions

- Is the *H*-integral over m_{v,ṽ} absolutely convergent?
 If so, we say π is *H*-integrable.
- If convergent, are there non-zero local periods?

For some representations a positive answer for the first question would imply the second one. $(\Box) \in \mathbb{R} \to \mathbb{R} \to \mathbb{R} \to \mathbb{R}$

Global motivation

A cuspidal automorphic representation $\Pi = \bigotimes_{\nu}' \pi_{\nu}$ of $\mathbf{G}(\mathbb{A}_k)$ (k a number field) has a canonical $\mathbf{H}(\mathbb{A}_k)$ -invariant functional - the period integral: $P(\phi) = \int_{\mathbf{H}(k) \setminus \mathbf{H}(\mathbb{A}_k)} \phi(h) dh$.

In certain cases (not symmetric), it is expected that when $\{\pi_v\}$ a tempered, the period integral will factorize as

$$|P(\phi)|^{2} = P(\phi)P(\overline{\phi}) = \prod_{v} {}^{\prime}L_{H}(m_{\phi_{v},\overline{\phi}_{v}})$$

under *suitable normalizations* of measures, where $\phi = \otimes' \phi_v \in \Pi$.

- Ichino-Ikeda conjectures for the Gross-Prasad case.
- Lapid-Mao conjectures for the Whittaker case.
- Sakellaridis-Venkatesh general framework.

Global motivation

A cuspidal automorphic representation $\Pi = \otimes'_{\nu} \pi_{\nu}$ of $\mathbf{G}(\mathbb{A}_k)$ (k a number field) has a canonical $\mathbf{H}(\mathbb{A}_k)$ -invariant functional - the period integral: $P(\phi) = \int_{\mathbf{H}(k) \setminus \mathbf{H}(\mathbb{A}_k)} \phi(h) dh$. In certain cases (not symmetric), it is expected that when $\{\pi_{\nu}\}$ are tempered, the period integral will factorize as

$$|P(\phi)|^{2} = P(\phi)P(\overline{\phi}) = \prod_{v} {}^{\prime}L_{H}(m_{\phi_{v},\overline{\phi}_{v}})$$

under suitable normalizations of measures, where $\phi = \otimes' \phi_v \in \Pi$.

- Ichino-Ikeda conjectures for the Gross-Prasad case.
- Lapid-Mao conjectures for the Whittaker case.
- Sakellaridis-Venkatesh general framework.

Global motivation

A cuspidal automorphic representation $\Pi = \bigotimes_{\nu}' \pi_{\nu}$ of $\mathbf{G}(\mathbb{A}_k)$ (k a number field) has a canonical $\mathbf{H}(\mathbb{A}_k)$ -invariant functional - the period integral: $P(\phi) = \int_{\mathbf{H}(k) \setminus \mathbf{H}(\mathbb{A}_k)} \phi(h) dh$. In certain cases (not symmetric), it is expected that when $\{\pi_{\nu}\}$ are tempered, the period integral will factorize as

$$|P(\phi)|^{2} = P(\phi)P(\overline{\phi}) = \prod_{v} {}^{\prime}L_{H}(m_{\phi_{v},\overline{\phi}_{v}})$$

under suitable normalizations of measures, where $\phi = \otimes' \phi_v \in \Pi$.

- Ichino-Ikeda conjectures for the Gross-Prasad case.
- Lapid-Mao conjectures for the Whittaker case.
- Sakellaridis-Venkatesh general framework.

2 Corollaries

3 Convergence of matrix coefficients

・ 一 ・ ・ ・ ・ ・ ・

Definitions

• A representation π is called *square-integrable* if

$|m_{v,\widetilde{v}}| \in L^2(G/Z(G))$

for all $v \in V$, $\widetilde{v} \in \widetilde{V}$.

• A representation π is called *tempered* if

 $|m_{v,\widetilde{v}}| \in L^{2+\epsilon}(G/Z(G))$

for all $v \in V$, $\widetilde{v} \in \widetilde{V}$ and all $\epsilon > 0$.

Definitions

• A representation π is called *square-integrable* if

$$|m_{v,\widetilde{v}}| \in L^2(G/Z(G))$$

for all $v \in V$, $\widetilde{v} \in \widetilde{V}$.

• A representation π is called *tempered* if

$$|m_{v,\widetilde{v}}| \in L^{2+\epsilon}(G/Z(G))$$

for all $v \in V$, $\tilde{v} \in \tilde{V}$ and all $\epsilon > 0$.

Definitions

Strongly tempered pair

A pair (G, H) is called *strongly tempered* if any tempered irreducible representation of G is H-integrable.

Tempered distributions

The distribution L_H on G/Z(G) is *tempered* if it extends as a functional to the Harish-Chandra-Schwartz space of G/Z(G).

In particular, when L_H is tempered any square-integrable irreducible representation of G is H-integrable.

< 🗇 > < 🖃 >

Definitions

Strongly tempered pair

A pair (G, H) is called *strongly tempered* if any tempered irreducible representation of G is H-integrable.

Tempered distributions

The distribution L_H on G/Z(G) is *tempered* if it extends as a functional to the Harish-Chandra-Schwartz space of G/Z(G).

In particular, when L_H is tempered any square-integrable irreducible representation of G is H-integrable.

・ 一 ・ ・ ・ ・ ・ ・

Corollaries

Theorems (G.-Offen)

The following families of pairs are strongly tempered:

 $(GL_n, O_J), (U_{n, E/F}, O(J)), (Sp_{2n}, U_{n, E/F})$

for any orthogonal group O_J and any unitary group $U_{n, E/F}$ relative to a quadratic extension E of F.

For the following families of pairs (G, H), the distribution L_H is tempered^a:

 $(\mathbf{G}(E),\mathbf{G}(F)), (GL_n, GL_{\lfloor n/2 \rfloor} \times GL_{\lceil n/2 \rceil}) (GL_{2n},\mathbf{GL}_n(E))$

for any quadratic extension E of F.

^aas interpreted by Chong Zhang

Corollaries

Theorems (G.-Offen)

The following families of pairs are strongly tempered:

$$(GL_n, O_J), (U_{n, E/F}, O(J)), (Sp_{2n}, U_{n, E/F})$$

for any orthogonal group O_J and any unitary group $U_{n, E/F}$ relative to a quadratic extension E of F.

For the following families of pairs (G, H), the distribution L_H is tempered^a:

 $(\mathbf{G}(E), \mathbf{G}(F)), (GL_n, GL_{\lfloor n/2 \rfloor} \times GL_{\lceil n/2 \rceil}) (GL_{2n}, \mathbf{GL}_n(E))$

for any quadratic extension E of F.

^aas interpreted by Chong Zhang

Theorems - Non-vanishing

- Sakellaridis-Venkatesh: For a strongly tempered (*G*, *H*), every (tempered) *H*-distinguished irreducible representation of *G* which is parabolically induced from a square-integrable representation has non-zero local periods.
- C. Zhang: When L_H is a tempered distribution, every H-distinguished square-integrable representation of G has non-zero local periods.

2 Corollaries

3 Convergence of matrix coefficients

▲ 同 ▶ → 三 ▶

Convergence of matrix coefficients

Casselman's criterion

A representation is square-integrable (tempered), if and only if, its *exponents* are (weakly) positive.

- **→** → **→**

Some structure

- Fix a maximal F-split torus A < G, which is θ-stable and such that A₀ := (A^θ)[°] is a maximal F-split torus of H.
- Fix a minimal θ-stable parabolic A < P₀ < G and a minimal parabolic B < P₀.

$$\Delta_{G} \qquad \subset \Sigma^{G} = \Sigma(A, Lie(G)) \qquad \subset X^{*}(A)$$

$$\Delta_{H} \subset \Sigma^{H} \qquad \subset \Sigma^{G}_{H} = \Sigma(A_{0}, Lie(G)) = \Sigma^{G}|_{A_{0}} \qquad \subset X^{*}(A_{0})$$

Σ_H^G is a root system with basis Δ_H^G = Δ_G|_{A₀}. W_H < W_H^G
Cartan decomposition: H° = ⋃<sub>c∈C, a∈A₀^{+,Δ_H} KcaK, where K < G is a maximal compact subgroup, C is finite and
</sub>

$$A_0^{+,\Delta_H} = \{ x \in A_0 : |\alpha(x)|_F \le 1, \forall \alpha \in \Delta_H \}$$

Some structure

- Fix a maximal F-split torus A < G, which is θ-stable and such that A₀ := (A^θ)[°] is a maximal F-split torus of H.
- Fix a minimal θ-stable parabolic A < P₀ < G and a minimal parabolic B < P₀.

$$\begin{array}{ll} \Delta_G & \subset \Sigma^G = \Sigma(A, Lie(G)) & \subset X^*(A) \\ \Delta_H & \subset \Sigma^H & \subset \Sigma^G_H = \Sigma(A_0, Lie(G)) = \Sigma^G|_{A_0} & \subset X^*(A_0) \end{array}$$

Σ_H^G is a root system with basis Δ_H^G = Δ_G|_{A₀}. W_H < W_H^G
Cartan decomposition: H° = ⋃<sub>c∈C, a∈A₀^{+,Δ_H} KcaK, where K < G is a maximal compact subgroup, C is finite and
</sub>

$$A_0^{+,\Delta_H} = \{ x \in A_0 : |\alpha(x)|_F \le 1, \forall \alpha \in \Delta_H \}$$

Some structure

- Fix a maximal F-split torus A < G, which is θ-stable and such that A₀ := (A^θ)° is a maximal F-split torus of H.
- Fix a minimal θ-stable parabolic A < P₀ < G and a minimal parabolic B < P₀.

$$\begin{array}{ll} \Delta_G & \subset \Sigma^G = \Sigma(A, Lie(G)) & \subset X^*(A) \\ \Delta_H & \subset \Sigma^H & \subset \Sigma^G_H = \Sigma(A_0, Lie(G)) = \Sigma^G|_{A_0} & \subset X^*(A_0) \end{array}$$

Σ_H^G is a root system with basis Δ_H^G = Δ_G|_{A₀}. W_H < W_H^G
Cartan decomposition: H° = ⋃<sub>c∈C, a∈A₀^{+,Δ_H} KcaK, where K < G is a maximal compact subgroup, C is finite and
</sub>

$$A_0^{+,\Delta_H} = \{ x \in A_0 : |\alpha(x)|_F \le 1, \forall \alpha \in \Delta_H \}$$

Some structure

- Fix a maximal F-split torus A < G, which is θ-stable and such that A₀ := (A^θ)° is a maximal F-split torus of H.
- Fix a minimal θ-stable parabolic A < P₀ < G and a minimal parabolic B < P₀.

$$\begin{array}{ll} \Delta_G & \subset \Sigma^G = \Sigma(A, Lie(G)) & \subset X^*(A) \\ \Delta_H & \subset \Sigma^H & \subset \Sigma^G_H = \Sigma(A_0, Lie(G)) = \Sigma^G|_{A_0} & \subset X^*(A_0) \end{array}$$

Σ^G_H is a root system with basis Δ^G_H = Δ_G|_{A₀}. W_H < W^G_H
 Cartan decomposition: H° = ⋃<sub>c∈C, a∈A^{+,Δ_H}, KcaK, where K < G is a maximal compact subgroup, C is finite and
</sub>

$$A_0^{+,\Delta_H} = \{x \in A_0 : |\alpha(x)|_F \le 1, \forall \alpha \in \Delta_H\}$$

同下 イヨト イヨ

Some structure

- Fix a maximal F-split torus A < G, which is θ-stable and such that A₀ := (A^θ)° is a maximal F-split torus of H.
- Fix a minimal θ-stable parabolic A < P₀ < G and a minimal parabolic B < P₀.

$$\begin{array}{ll} \Delta_G & \subset \Sigma^G = \Sigma(A, Lie(G)) & \subset X^*(A) \\ \Delta_H & \subset \Sigma^H & \subset \Sigma^G_H = \Sigma(A_0, Lie(G)) = \Sigma^G|_{A_0} & \subset X^*(A_0) \end{array}$$

Σ^G_H is a root system with basis Δ^G_H = Δ_G|_{A₀}. W_H < W^G_H
Cartan decomposition: H° = ⋃<sub>c∈C, a∈A^{+,Δ_H} KcaK, where K < G is a maximal compact subgroup, C is finite and
</sub>

$$\mathcal{A}_0^{+,\Delta_H} = \{x \in \mathcal{A}_0 \; : \; |lpha(x)|_{\mathcal{F}} \leq 1, orall lpha \in \Delta_H\}$$

/□ ▶ < 글 ▶ < 글

Convergence of matrix coefficients

- Convergence of $L_H(m_{\nu,\tilde{\nu}})$ reduces to summability on A^{+,Δ_H} .
- Yet, the asymptotics of $m_{v,\widetilde{v}}$ (matrix coefficient of G!) can be effectively measured only on the subcone

$$A_0 \cap A^{+,\Delta_G} = \{ x \in A_0 : |\alpha(x)|_F \le 1, \, \forall \alpha \in \Delta_H^G \}$$

• This can be solved by choosing coset representatives $D = [W_H^G/W_H] \subset W_H^G$ for which

$$A_0^{+,\Delta_H} = \bigcup_{w \in D} w(A_0 \cap A^{+,\Delta_G})$$

Convergence of matrix coefficients

- Convergence of $L_H(m_{v,\tilde{v}})$ reduces to summability on A^{+,Δ_H} .
- Yet, the asymptotics of $m_{v,\tilde{v}}$ (matrix coefficient of G!) can be effectively measured only on the subcone

$$egin{aligned} \mathcal{A}_0 \cap \mathcal{A}^{+,\Delta_G} &= \{x \in \mathcal{A}_0 \; : \; |lpha(x)|_{\mathcal{F}} \leq 1, \, orall lpha \in \Delta_H^G \} \end{aligned}$$

• This can be solved by choosing coset representatives $D = [W_H^G/W_H] \subset W_H^G$ for which

$$A_0^{+,\Delta_H} = \bigcup_{w \in D} w(A_0 \cap A^{+,\Delta_G})$$

Convergence of matrix coefficients

- Convergence of $L_H(m_{v,\tilde{v}})$ reduces to summability on A^{+,Δ_H} .
- Yet, the asymptotics of $m_{v,\tilde{v}}$ (matrix coefficient of G!) can be effectively measured only on the subcone

$$egin{aligned} \mathcal{A}_0 \cap \mathcal{A}^{+, \Delta_G} &= \{x \in \mathcal{A}_0 \; : \; |lpha(x)|_{\mathcal{F}} \leq 1, \, orall lpha \in \Delta_H^G \} \end{aligned}$$

• This can be solved by choosing coset representatives $D = [W_H^G/W_H] \subset W_H^G$ for which

$$A_0^{+,\Delta_H} = igcup_{w\in D} w(A_0 \cap A^{+,\Delta_G})$$

2 Corollaries

3 Convergence of matrix coefficients

・ 一 ・ ・ ・ ・ ・ ・

Exponents

- For a parabolic B < P = MN with A < M, let $A_M < Z(M)$ be the maximal *F*-split torus.
- For irreducible π, Exp(π, P) ⊂ Hom(A_M, C[×]) is the collection of central characters appearing in subquotients of the Jacquet module J_P(π).
- For $\chi \in Exp(\pi, P)$,

 $|\chi| \in Hom(A_M, \mathbb{R}^{\times}_+) \cong \mathfrak{a}^*_{A_M} := X^*(A_M) \otimes \mathbb{R}$

• For θ -stable P we say that $\lambda \in \mathfrak{a}_{A_M}^*$ is relatively positive if $\lambda|_{(A_M^\theta)^\circ}$ is in the cone spanned by $\Delta_G|_{(A_M^\theta)^\circ}$.

イロト イポト イラト イラト

Exponents

- For a parabolic B < P = MN with A < M, let $A_M < Z(M)$ be the maximal *F*-split torus.
- For irreducible π, Exp(π, P) ⊂ Hom(A_M, C[×]) is the collection of central characters appearing in subquotients of the Jacquet module J_P(π).
- For $\chi \in Exp(\pi, P)$,

$$|\chi| \in \mathit{Hom}(A_M, \mathbb{R}^{ imes}_+) \cong \mathfrak{a}^*_{A_M} := X^*(A_M) \otimes \mathbb{R}$$

• For θ -stable P we say that $\lambda \in \mathfrak{a}_{A_M}^*$ is relatively positive if $\lambda|_{(A_M^\theta)^\circ}$ is in the cone spanned by $\Delta_G|_{(A_M^\theta)^\circ}$.

- 同 ト - ヨ ト - - ヨ ト

Exponents

- For a parabolic B < P = MN with A < M, let $A_M < Z(M)$ be the maximal *F*-split torus.
- For irreducible π, Exp(π, P) ⊂ Hom(A_M, C[×]) is the collection of central characters appearing in subquotients of the Jacquet module J_P(π).
- For $\chi \in Exp(\pi, P)$,

$$|\chi| \in \mathit{Hom}(A_M, \mathbb{R}^{ imes}_+) \cong \mathfrak{a}^*_{A_M} := X^*(A_M) \otimes \mathbb{R}$$

• For θ -stable P we say that $\lambda \in \mathfrak{a}_{A_M}^*$ is relatively positive if $\lambda|_{(A_M^\theta)^\circ}$ is in the cone spanned by $\Delta_G|_{(A_M^\theta)^\circ}$.

くほし くほし くほし

Main theorem

Convergence criterion (G.-Offen)

An admissible representation π of G is H-integrable, iff, for every θ -stable standard parabolic P, every $\chi \in Exp(\pi, P)$ and every $w \in D$,

$$|\chi| + \rho_w^{G/H}$$

is relatively positive. Here,

$$\rho_{\mathsf{w}}^{\mathsf{G}/\mathsf{H}} := \delta_{P_0}^{1/2}|_{\mathfrak{a}_0^*} - \mathsf{w}\left(\delta_{P_0^\theta}^{1/2}|_{\mathfrak{a}_0^*}\right),$$

with δ_{P_0} , $\delta_{P_0^{\theta}}$ being the modular characters of the groups.

Main theorem

Convergence criterion (G.-Offen)

An admissible representation π of G is H-integrable, iff, for every θ -stable standard parabolic P, every $\chi \in Exp(\pi, P)$ and every $w \in D$,

 $|\chi| + \rho_w^{G/H}$

is relatively positive. Here,

$$\rho_{w}^{G/H} := \delta_{P_{0}}^{1/2}|_{\mathfrak{a}_{0}^{*}} - w\left(\delta_{P_{0}^{0}}^{1/2}|_{\mathfrak{a}_{0}^{*}}\right),$$

with δ_{P_0} , $\delta_{P_0^{\theta}}$ being the modular characters of the groups.

In particular, combining with Casselman's criterion, (G, H) is strongly tempered when all $\rho_w^{G/H}$ are relatively positive, and L_H is tempered when all $\rho_w^{G/H}$ are weakly relatively positive.

Thank you!

æ