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We study some local L-factors GL(n), via a method developed by Cogdell and Piatetski-
Shapiro in [C-P]. We will look at two examples. There are other settings for which exceptional
poles of L-factors are defined and useful, in particular the L-factor of pairs defined by Jacquet,
Shalika and Piatetski-Shapiro in [J-P-S.83]. Cogdell and Piatetski-Shapiro introduced the notion
of ”exceptional pole” in this context, and provided a different proof of the multiplicativity relation
of the latter L-factor. The method should also work for the Jacquet-Shalika integral representation
of the exterior-square L-factor, and maybe others, and relies a lot on the theory of derivatives
developped in [B-Z.76], [B-Z.77], and [Z.80].

1 General setting

• F : a p-adic field with ring of integers OF .

• W ′F : the Weil-Deligne group of F .

• Mn =M(n, F ), and Gn = GL(n, F ). We embed Gn−1 ↪→ Gn via g 7→ diag(g, 1).

• ν : Gn → C∗, such that ν(g) = |det(g)|F .

• ln : a ∈Mn 7→ ln(a) ∈ Fn where ln(a) is the bottom row of a.

• Pn: the mirabolic group of matrices

(
g x
0 1

)
for g ∈ Gn−1 and x ∈ Fn−1. If ηn =

(0, . . . , 0, 1) in Fn, then g ∈ Gn is in Pn if and only if ηng = ηn.

• Nn: the group of unipotent upper triangular matrices in Gn.

• Hn: the fixed points of an involution of Gn. More precisely we will consider:

1. Hn = Gσn for σ a Galois involution of F . We set d = 1/2, and χn = 1Hn in this case.

2. Hn = Gσn with σ the conjugation by the matrix diag(1,−1, . . . , (−1)n−1), it is a quasi-
standard maximal Levi subgroup of type (b(n+ 1)/2c, bn/2c), and we chose a certain
isomorphism h : (g1, g2) 7→ h(g1, g2) from Gb(n+1)/2c × Gbn/2c to Hn. We set d = 1,

and χn : h(g1, g2) 7→ (
ν(g1)

ν(g2)
)εn/2 in this case, with εn = 0 if n is even, and 1 if n is odd.

• ψ a non trivial character of (F,+) trivial on F0 = Fσ in Case 1.

• θn: the non degenerate character g 7→ ψ(g1,2+ · · ·+gn−1,n) of Nn, we have θn|Nn ∩Hn = 1.

• q: the residual cardinality of F in Case 1, and of F0 in Case 2.
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2 Local L-factors

Let π = LQ(τ) = LQ(δ1, . . . , δr) be an irreducible representation of Gn, which is the Langlands
quotient of a representation τ = δ1 × · · · × δr induced of Langlands type of Gn (a ”standard
module”). Set

W (π, θn) = W (τ, θn).

Set Vn = ln(Mσ
n). For W ∈W (π, θn), and Φ ∈ C∞c (Vn), we set

In(s,W,Φ) =

∫
Nn∩Hn\Hn

W (h)Φ(ln(h))χn(h)ν(h)dsdh.

There is rπ ∈ R such that all such integrals converge absolutely for Re(s) ≥ rπ. They generate
a fractional ideal of C[q±s], it has a unique generator which is an Euler factor (1/PH,π(q−s) with
Pπ in C[X] such that P (0) = 1). We denote by LH(s, π) this Euler factor. In Case 1, it is the
Asai L-factor defined by Flicker ([F]), and in Case 2 the Bump-Friedberg L-factor ([B-F]). The
integrals In satisfy a functional equation relating s and 1−s in Case 1, and s and 1/2−s in Case 2.

We set

In,(0)(s,W ) =

∫
Nn−1∩Hn−1\Hn−1

W (h)χn−1(h)ν(h)d(s−1)dh.

There is tπ ∈ R such that all such integrals converge for Re(s) ≥ tπ. They generate a fractional
ideal of C[q±s], it has a unique generator which is an Euler factor. We denote by LH,(0)(s, π)
this Euler factor. As the vector space spanned by the integrals In,(0)(s,W ) is the same as that
spanned by the integrals In(s,W,Φ) with Φ(0) = 0, the factor LH,(0)(s, π) divides LH(s, π).

When π = ρ is cuspidal, it follows from the fact that the Whittaker functions in W (ρ, θn)
restrict to Pn with compact support mod Nn, that LH,(0)(s, ρ) = 1.

We call π = LQ(τ) generic if π = τ . Suppose that θn is of level zero, and that φ is the
Langlands parameter of a generic unramified representation π. Then with a good normalisation
of the right invariant measure on Nn\Hn, if W0 is the normalised spherical Whittaker function
in W (π, θn), and Φ0 the characteristic function of ln(M(n,OF )σ), it is known that In(s,W0,Φ0)
is equal to the Asai L-function

LH(s, φ) := L(s,M
W ′F0

W ′F
(φ))

in Case 1 (with M
W ′F0

W ′F
the Asai transfer), and to

LH(s, φ) := L(s+ 1/2, φ)L(2s,Λ2(φ))

in Case 2. Those Galois factors satisfy natural multiplicativity relations which reflect the way

that M
W ′F0

W ′F
and Λ2 behave with respect to direct sum. In fact, it is known that

LH(s, φ) = LH(s, π)

for any irreducible representation φ of Gn with Langlands parameter φ, and one needs to establish
the multiplicativity relation of LH to prove this.

3 Exceptional poles and distinction

Let π = LQ(τ) with τ = δ1 × · · · × δr. We set

L
(0)
H (s, π) =

LH(s, π)

LH,(0)(s, π)
.
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The factor LH,(0) has simple poles, which are called the exceptional poles of LH(s, π).

In particular, when π = ρ is cuspidal, one has LH(s, ρ) = L
(0)
H (s, ρ), and all the poles of

LH(s, ρ) are exceptional.

Proposition 3.1. If s0 is an exceptional pole of LH(s, π), then τ is (Hn, χ
−1
n ν−ds0)-distinguished

(we will often say χ−1n ν−ds0-distinguished, or simply distinguished if χ−1n ν−ds0 = 1Hn
), i.e.

HomHn(τ, χ−1n ν−ds0) 6= {0}.

Proof. Of the second statement. We already said that the vector-space generated by the integrals
In,(0)(s,W ) is the same as that generated by the integrals In,(0)(s,W,Φ) with φ ∈ C∞c,0(Vn) (i.e.
Φ(0) = 0). Let s0 be a pole of LH(s, π) of order e. Write the Laurent expansion:

I(s,W, φ) =
Bs0(W,Φ)

(1− q(s0−s))e
+ . . . .

By definition, the bilinear form is nonzero, and for all h ∈ Hn, it satisfies

Bs0(ρ(h)W,ρ(h)Φ) = χ−1n ν−ds0(h)Bs0(W,Φ).

To say that s0 is a pole of L
(0)
H (s, π) is equivalent to say that Bs0 vanishes on W (π, θ)×C∞c,0(Vn).

If it is the case then
Bs0 = λs0 ⊗ (Φ 7→ Φ(0)),

with λs0 ∈ HomHn
(π, χ−1n ν−ds0)− {0}.

For u ∈ ( C
2iπZ/Ln(qF ) )

r, we write

τu = νu1δ1 × · · · × νurδr.

In Case 1, a converse of the last statement above is true when π is generic. It should also be true
in Case 2. More precisely, one has the following characterisation of distinction.

Theorem 3.1. Let π be a generic representation of Gn which is χ−1n ν−ds0-distinguished. If

HomHn
(π, χ−1n ν−ds0) = HomHn∩Pn

(π, χ−1n ν−ds0), (1)

then LH(s, π) has an exceptional pole at s0. By a theorem of Ok ([Ok.97]), in Case 1., Equality
(1) is always satisfied. In Case 2., it is proved that Equality (1) is satisfied for discrete series,
and when r ≥ 2, for τu at least when u is in general position with respect to π (i.e. belongs to a
well-chosen non empty Zariski open subset of ( C

2iπZ/Ln(qF ) )
r depending on π but not on s0).

In all cases, at least when u is in general position, one has

L
(0)
H (s, τu) =

∏
s0, Hom(τu,χ

−1
n ν−ds0 )6=0

1

1− q(s0−s)
.

It follows that one can get an explicit expression of L
(0)
H (s, τu) in terms of the inducing data

of τu as soon as one has a classification of generic distinguished representations in terms of this
inducing data.

Theorem 3.2 ([M.11],[M.15]). Let π be a generic representation of Gn, it is distinguished if and
only if π is obtained as an induced representation

(δ∨1 × δσ1 )× · · · × (δ∨s × δσs )× δs+1 × · · · × δt,

with δi distinguished for i > s.

3



Remark 3.1. In Case 2., when n is even, then it is possible to use the theorem above to show
that Hn-distinguished generic representations are the generic representations admitting a Shalika
model (see [M.15-2]). Kaplan has proved an analogous theorem for generic representations of Gn
distinguished by the tensor product of a pair of exceptional representations of a metaplectic cover
of Gn ([K.15]).

Example 3.1. We restrict to Case 1, in particular χn = 1Hn and d = 1/2. Let ρ1 and ρ2 be two
unlinked cuspidal representations, in this case u = 0 is in general position with respect to

π = LQ(ρ1, ρ2) = ρ1 × ρ2.

Then
L
(0)
H (s, ρ1 × ρ2) = lcm(gcd(LH(s, ρ1), LH(s, ρ2)), L(2ds, ρ1, ρ

σ
2 )),

where L(s, ρ1, ρ
σ
2 ) is the Rankin-Selberg L-factor of the pair (ρ1, ρ

σ
2 ). Indeed, both Euler factors

have simple poles, so it is enough to check that they are the same. But s0 is a pole of L
(0)
H (s, ρ1×ρ2)

if and only if ρ1 × ρ2 is ν−s0/2-distinguished, which is the same as:

νs0/2(ρ1 × ρ2) = νs0/2ρ1 × νs0/2ρ2

is distinguished. But according to the theorem above, it means that either both νs0/2ρ1 and
νs0/2ρ2 are distinguished, or that ν−s0/2ρ∨1 ' νs0/2ρσ2 . The first condition is equivalent to

LH(s, ρ1) and LH(s, ρ2), i.e. their gcd having a pole at s0, and the second to L
(0)
H (s, ρ1, ρ

σ
2 )

having a pole at s0.

4 Computation of LH,(0)(s, π) and the multiplicativity rela-
tion

The integrals which define LH,(0)(s, π) only depend on the restrictions of the Whittaker functions
W ∈ W (π, θn) = W (τ, θn) to Gn−1, or equivalently to Pn. Now by the theory of derivatives
(Gelfand-Kazhdan, Bernstein-Zelevinsky), it is known that τ|Pn

admits a filtration with each

subquotient induced to Pn by a representation τ (k) of Gn−k of finite length. Following Cogdell
and Piatetski-Shapiro, one shows that when u is in general position (with respect to π), τu is
generic, all the derivatives of τu are semi-simple and one has the formula:

L(0),H(s, τu) = lcm(LH(s, τu,ik)) (2)

for n − 1 ≥ k ≥ 1, and τu,ik varying amongst the simple factors of the nonzero derivatives τ
(k)
u ,

which are explicitely known thanks to the work of Bernstein and Zelevinsky.

Hence L(0),H(s, τu) can be computed inductively, and reassembling the expression obtained

for L(0),H(s, τu), and L
(0)
H (s, τu), one gets:

Theorem 4.1. Let π be an irreducible representation of Gn, for u in general position with respect
to π, then one has:

LH(s, τu) =
∏
k

LH(s, νukδk)
∏
i<j

LH(2ds, νuiδi, ν
ujδσj ).

We continue our example.

Example 4.1. π = ρ1×ρ2 with the ρi’s cuspidal, unlinked, and not isomorphic to one another. In
this case u = 0 belongs to the set of points in general position with respect to π where the formula
for L(0),H(s, π) applies, and the simple factors of the non zero derivatives π(k) for n− 1 ≥ k ≥ 1
are ρ1 and ρ2. Hence

L(0),H(s, π) = lcm(LH(s, ρ1), LH(s, ρ2)).
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But we already saw that

L
(0)
H (s, π) = lcm(gcd(LH(s, ρ1), LH(s, ρ2)), L(s, ρ1, ρ

σ
2 )).

The assumption that ρ1 is not ismorphic to ρ2 implies that gcd(LH(s, ρ1), LH(s, ρ2)) and L(s, ρ1, ρ
σ
2 )

are coprime, hence

L
(0)
H (s, π) = gcd(LH(s, ρ1), LH(s, ρ2))L(s, ρ1, ρ

σ
2 ),

so that
LH(s, π) = lcm(LH(s, ρ1), LH(s, ρ2))gcd(LH(s, ρ1), LH(s, ρ2))L(s, ρ1, ρ

σ
2 )

= LH(s, ρ1)LH(s, ρ2))L(s, ρ1, ρ
σ
2 ).

To obtain the multiplicativity relation for π, following again Cogdell and Piatetski-Shapiro,
one uses a theorem of Bernstein to show that the integrals In(s,Wu, φ) for Wu in W (τu, θn)
corresponding to a flat section, are rational in the variables q−s and q−ui . Then, following
Jacquet, Shalika, and Piatetski-Shapiro, using the local functional equation, it is possible to show
that the multiplicativity relation holds for all u such that τu is induced of Langlands type, in
particular it holds for LH(s, π).

5 Multiplicativity relation for discrete series

We treat Case 1. We denote by ηE/F the quadratic character of F ∗ attached to the extension
E/F . We recall the following result. (Here we cheat a little, as the proof of the result below uses
the multiplicativity relation of LH , which is what we want to prove using this result. However,
it should be possible to prove the result in question directly, we won’t try to justify this claim.)

Theorem 5.1. Let ρ be a cuspidal representation of Gr, and St(k, ρ) the irreducible quotient of

ν
1−k
2 ρ× · · · × ν

k−1
2 ρ.

The representation St(k, ρ) is distinguished if and only if ρ is ηk−1E/F -distinguished.

Call η an extension of ηE/F to E∗. The result above implies the following multiplicativity
relation:

Theorem 5.2.

LH(s, St(k, ρ)) =

k−1∏
l=0

LH(s+ l, ηk−1−lρ).

Proof. The theorem 5.1 implies that he generalised Steinberg representation St(k, ρ) is ν−s0/2-

distinguished if and only if ηk−1ρ is ν−s0/2-distinguished. Hence the factor L
(0)
H (s, St(k, ρ)) has

a pole at s0 if and only if L
(0)
H (s, ηk−1ρ) = LH(s, ηk−1ρ) has a pole at s0. As both factors have

simple poles, they are equal, and we deduce the equality

L
(0)
H (s, St(k, ρ)) = LH(s, ηk−1ρ).

On the other hand, u = 0 is in general position with respect to St(k, ρ), and the derivatives
St(k, ρ)(d) of St(k, ρ) for n − 1 ≥ d ≥ 1 are either zero, or irreducible, and the nonzero ones are
the representations νl/2St(k − l, ρ) for l = 1, . . . , k − 1. By induction hypothesis, one thus has

LH(s, νl/2St(k − l, ρ)) =

k−l−1∏
i=0

LH(s+ i+ l, ηk−l−1−iρ) =

k−1∏
i=l

LH(s+ i, ηk−1−iρ),
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and thanks to Equality (2), we know that LH,(0)(s, π) is the lcm of the factors above. This gives

LH,(0)(s, St(k − l, ρ)) =

k−1∏
l=1

LH(s+ l, ηk−1−lρ).

Finally, one gets:

LH(s, St(k, ρ)) = L
(0)
H (s, St(k, ρ))LH,(0)(s, St(k, ρ)) =

k−1∏
l=0

LH(s+ l, ηk−1−lρ).

Remark 5.1. The multiplicativity relation of the integral representation of the Asai γ-factor,
exterior and symmetric square, as well as its stability under highly ramified twists are not proved.
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