Local gamma factor, Converse Theorem and Related problems

Chufeng Nien Department of Mathematics, NCKU

March 24, NSU, 2016

Chufeng Nien Department of Mathematics, NCKU Local gamma factor, Converse Theorem and Related

Outlines

Introduction

- Notations
- Gamma Factors
- 2 Jacquet's conjecture on LCP
 - Sharpness on the bound $\left[\frac{n}{2}\right]$
- **3** Bessel functions of $\operatorname{GL}_n(\mathbb{F}_q)$ and gamma factors
- 4 n imes 1 gamma factor and Gauss sum
 - Green's construction
- **5** 4×1 LCT for $GL_4(\mathbb{F}_3)$ and 5×1 LCT for $GL_5(\mathbb{F}_2)$
- 6 Gamma Factors for Level Zero Cuspidals
- Related Problems: Distinction

Notations

 \mathbb{F}_q : a finite field of q elements.

F: a p-adic field.

K: either be a finite field \mathbb{F}_q or a p-adic field F.

 B_n : the standard Borel subgroup of GL_n .

 U_n : the unipotent radical of B_n .

 Z_n : the center of GL_n .

A B A B A B A

Notations

Let ψ be a fixed nontrivial additive character of K.

Definition

A character ψ' of U_n is called **non-degenerate** if

$$\psi'(u) = \psi(\sum_{i=1}^{n-1} a_i u_{i,i+1}), \text{ for } u = (u_{i,j}) \in U_n,$$

for some $a_i \in K^{\times}$.

 ψ_n : the standard non-degenerate character given by

$$\psi_n(u) = \psi(\sum_{i=1}^{n-1} u_{i,i+1}), \text{ for } u = (u_{i,j}) \in \mathcal{U}_n.$$

Definition

Let π be an irreducible representation of GL_n . Given a non-degenerate character ψ' of U_n , we call $\pi \psi'$ -generic if

 $\dim \operatorname{Hom}_{\operatorname{GL}_n}(\pi, \operatorname{Ind}_{\operatorname{U}_n}^{\operatorname{GL}_n} \psi') \neq 0.$

Image: A math a math

Definition

Let π be an irreducible representation of GL_n . Given a non-degenerate character ψ' of U_n , we call $\pi \psi'$ -generic if

 $\dim \operatorname{Hom}_{\operatorname{GL}_n}(\pi, \operatorname{Ind}_{\operatorname{U}_n}^{\operatorname{GL}_n} \psi') \neq 0.$

If π is $\psi'\text{-generic},$ then it is also $\psi''\text{-generic}$ for any other non-degenerate character ψ'' of $\mathrm{U}_n.$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

Let π be an irreducible representation of GL_n . Then

 $\dim \operatorname{Hom}_{\operatorname{U}_n}(\pi|_{\operatorname{U}_n},\psi_n) = \dim \operatorname{Hom}_{\operatorname{GL}_n}(\pi,\operatorname{Ind}_{\operatorname{U}_n}^{\operatorname{GL}_n}\psi_n) \leq 1.$

< □ > < 同 > < 回 > < Ξ > < Ξ

Theorem

Let π be an irreducible representation of GL_n . Then

 $\dim \operatorname{Hom}_{\operatorname{U}_n}(\pi|_{\operatorname{U}_n},\psi_n) = \dim \operatorname{Hom}_{\operatorname{GL}_n}(\pi,\operatorname{Ind}_{\operatorname{U}_n}^{\operatorname{GL}_n}\psi_n) \leq 1.$

When π is generic, the above Hom-space is of dimension one.

Let $\ell_{\psi_n} \in \operatorname{Hom}_{U_n}(\pi|_{U_n}, \psi_n)$ be a nonzero Whittaker functional of π .

Define $W_v(g) := \ell_{\psi_n}(\pi(g)v)$, for $v \in V_{\pi}$.

 $W_v \in \operatorname{Ind}_{U_n}^{\operatorname{GL}_n} \psi_n$ is called the Whittaker function attached to the vector v.

The subspace generated by all Whittaker functions $W_v(g)$ is unique and will be denoted by $\mathcal{W}(\pi, \psi_n)$. This space is called the Whittaker model of π .

イロト イポト イヨト イヨト

Cuspidal representations are generic

For $W_v \in \mathcal{W}(\pi, \psi)$, denote by $\widetilde{W_v}$ the function on GL_n given by

$$\widetilde{W}_v(g) = W_v(w_n({}^tg^{-1})), \ g \in \operatorname{GL}_n,$$

where w_n is the longest Weyl element of GL_n ,

with 1's on the second diagonal and zeros elsewhere.

Then

$$\widetilde{W_v} \in \mathcal{W}(\tilde{\pi}, \psi_n^{-1}),$$

where $\tilde{\pi}$ denotes the representation contragredient to π .

Cuspidal representations are generic

For $W_v \in \mathcal{W}(\pi, \psi)$, denote by $\widetilde{W_v}$ the function on GL_n given by

$$\widetilde{W_v}(g) = W_v(w_n({}^tg^{-1})), \ g \in \operatorname{GL}_n,$$

where w_n is the longest Weyl element of GL_n ,

with 1's on the second diagonal and zeros elsewhere.

Then

$$\widetilde{W_v} \in \mathcal{W}(\tilde{\pi}, \psi_n^{-1}),$$

where $\tilde{\pi}$ denotes the representation contragredient to π .

Theorem

Any irreducible cuspidal representation of GL_n is generic.

Let $n, t \ge 1$ be integers.

Let π be an irreducible generic representations of $\operatorname{GL}_n(F)$, with central characters ω_{π} .

Let τ be irreducible generic representations of $GL_t(F)$, with central characters ω_{τ} .

Let $W_{\pi} \in \mathcal{W}(\pi, \Phi_n)$ be a Whittaker function of π .

Let $W_{\tau} \in \mathcal{W}(\tau, \Phi_t^{-1})$ be a Whittaker function of τ .

We assume that n > t.

For $g \in GL_n(F)$, we denote by R_g the right translation action of g on functions from $GL_n(F)$ to \mathbb{C} .

Let
$$w_{n,t} = \begin{pmatrix} I_t & 0 \\ 0 & w_{n-t} \end{pmatrix}$$
.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

For $n-t-1 \ge j \ge 0$, a local zeta integral for the pair (π, τ) is defined by

$$\mathcal{Z}(W_{\pi}, W_{\tau}, s; j) := \int_{g} \int_{x} W_{\pi} \begin{pmatrix} g & 0 & 0 \\ x & \mathbf{I}_{n-t-1-j} & 0 \\ 0 & 0 & \mathbf{I}_{j+1} \end{pmatrix} W_{\tau}(g) |\det g|^{s-\frac{n-t}{2}} dx dg,$$

where the integration in the variable g is over $U_t(F) \setminus GL_t(F)$ and the integration in the variable x is over $Mat_{(n-t-j-1)\times t}(F)$.

< ロ > < 同 > < 三 > < 三

Jacquet, Piatetski-Shapiro, and Shalika proved in [JP-SS83] the following theorem.

Theorem ([JP-SS83, Section 2.7])

Each integral Z(W_π, W_τ, Φ, s; j) is absolutely convergent for Re(s) sufficiently large and is a rational function of q^{-s}. More precisely, for fixed j, the integrals Z(W_π, W_τ, s; j) span a fractional ideal (independent of j)

 $\mathbb{C}[q^s, q^{-s}]L(s, \pi \times \tau)$

of the ring $\mathbb{C}[q^s, q^{-s}]$, where the local *L*-factor $L(s, \pi \times \tau)$ has the form $P(q^s)^{-1}$, with $P \in \mathbb{C}[x]$ and P(0) = 1.

2 For $n - t - 1 \ge j \ge 0$, there is a factor $\epsilon(s, \pi \times \tau, \psi)$ independent of j, such that

$$\frac{\mathcal{Z}(R_{w_{n,r}}\widetilde{W}_{\pi},\widetilde{W}_{\tau},1-s;n-t-j-1)}{L(1-s,\widetilde{\pi}\times\widetilde{\tau})} = \omega_{\tau}(-1)^{n-1}\epsilon(s,\pi\times\tau,\psi)\frac{\mathcal{Z}(W_{\pi},W_{\tau},s;j)}{L(s,\pi\times\tau)}.$$

The local gamma factor attached to a pair of representations π and τ is defined by

$$\Gamma(s, \pi \times \tau, \psi) = \epsilon(s, \pi \times \tau, \psi) \frac{L(1 - s, \tilde{\pi} \times \tilde{\tau})}{L(s, \pi \times \tau)}.$$
(1.1)

The local gamma factor attached to a pair of representations π and τ is defined by

$$\Gamma(s, \pi \times \tau, \psi) = \epsilon(s, \pi \times \tau, \psi) \frac{L(1 - s, \tilde{\pi} \times \tilde{\tau})}{L(s, \pi \times \tau)}.$$
(1.1)

The functional equation in Part (ii) of Theorem 1.5 can be rewritten

$$\mathcal{Z}(R_{w_{n,t}}\widetilde{W}_{\pi},\widetilde{W}_{\tau},1-s;n-t-j-1)$$

$$= \omega_{\tau}(-1)^{n-1}\Gamma(s,\pi\times\tau,\psi_F)\mathcal{Z}(W_{\pi},W_{\tau},s;j).$$
(1.2)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Gamma factors for $\mathrm{GL}_n(\mathbb{F}_q)$

Roditty in her thesis considered the finite field analogue of zeta integral and gamma factors.

Theorem

Let π be an irreducible cuspidal representation of $\operatorname{GL}_n(\mathbb{F}_q)$ and τ an irreducible generic representation of $\operatorname{GL}_t(\mathbb{F}_q)$, with n > t. Then there exists a complex number $\gamma(\pi \times \tau, \psi)$ such that

$$\begin{split} \gamma(\pi \times \tau, \psi) q^{tj} & \sum_{m \in \mathcal{U}_t \setminus \mathrm{GL}_t(\mathbb{F}_q)} \sum_{x \in \mathcal{M}_{n-t-j-1,t}} W_{\pi} \begin{pmatrix} m & 0 & 0 \\ x & \mathbf{I}_{n-t-j-1} & 0 \\ 0 & 0 & \mathbf{I}_{j+1} \end{pmatrix} W_{\tau}(m) \\ &= \sum_{m \in \mathcal{U}_j \setminus \mathrm{GL}_t(\mathbb{F}_q)} \sum_{y \in \mathcal{M}_{t,j}} W_{\pi} (\begin{pmatrix} 0 & \mathbf{I}_{n-t-j} & 0 \\ 0 & 0 & \mathbf{I}_j \\ m & 0 & y \end{pmatrix}) W_{\tau}(m), \end{split}$$
for all $0 < j < n-t-1, W_{\pi} \in \mathcal{W}(\pi, \psi_n)$ and $W_{\tau} \in \mathcal{W}(\tau, \psi_t^{-1}).$

Question $(n \times m \text{ Local Converse Problem for } GL_n(F))$

Let π_1 , π_2 be two irreducible generic representations of $GL_n(F)$ with the same central character. If the (local) γ -factors $\gamma(\pi_1 \times \tau, \psi)$ and $\gamma(\pi_2 \times \tau, \psi)$ agree for any irreducible generic representation τ of $GL_t(F)$, with $t = 1, 2, \cdots, m$, can we deduce that π_1 and π_2 are isomorphic?

Question $(n \times m \text{ Local Converse Problem for } GL_n(F))$

Let π_1 , π_2 be two irreducible generic representations of $GL_n(F)$ with the same central character. If the (local) γ -factors $\gamma(\pi_1 \times \tau, \psi)$ and $\gamma(\pi_2 \times \tau, \psi)$ agree for any irreducible generic representation τ of $GL_t(F)$, with $t = 1, 2, \dots, m$, can we deduce that π_1 and π_2 are isomorphic?

Question $(n \times m \text{ Local Converse Problem for } GL_n(\mathbb{F}_q))$

Let π_1 , π_2 be two irreducible cuspidal representations of $\operatorname{GL}_n(\mathbb{F}_q)$ with the same central character. If the (local) γ -factors $\gamma(\pi_1 \times \tau, \psi)$ and $\gamma(\pi_2 \times \tau, \psi)$ agree for any irreducible generic representation τ of $\operatorname{GL}_t(\mathbb{F}_q)$, with $t = 1, 2, \cdots, m$, can we deduce that π_1 and π_2 are isomorphic?

Conjecture (Jacquest's conjecture for *p*-adic case)

Let π_1 and π_2 be irreducible smooth generic representations of $\operatorname{GL}_n(F)$ with the same central character. Assume that the local gamma factors $\Gamma(s, \pi_1 \times \tau, \psi)$ and $\Gamma(s, \pi_2 \times \tau, \psi)$ are equal as functions in the complex variable $s \in \mathbb{C}$, for all irreducible representations τ of $\operatorname{GL}_t(F)$, $1 \leq t \leq \lfloor \frac{n}{2} \rfloor$. Then π_1 and π_2 are isomorphic.

A B A B A B A

Conjecture (Jacquest's conjecture for *p*-adic case)

Let π_1 and π_2 be irreducible smooth generic representations of $\operatorname{GL}_n(F)$ with the same central character. Assume that the local gamma factors $\Gamma(s, \pi_1 \times \tau, \psi)$ and $\Gamma(s, \pi_2 \times \tau, \psi)$ are equal as functions in the complex variable $s \in \mathbb{C}$, for all irreducible representations τ of $\operatorname{GL}_t(F)$, $1 \leq t \leq \lfloor \frac{n}{2} \rfloor$. Then π_1 and π_2 are isomorphic.

Conjecture (Finite field analogue of Jacquest's conjecture)

Let π_1 and π_2 be irreducible smooth **cuspidal** representations of $\operatorname{GL}_n(\mathbb{F}_q)$ with the same central character. Assume that the local gamma factors $\gamma(\pi_1 \times \tau, \psi)$ and $\gamma(\pi_2 \times \tau, \psi)$ are equal for all irreducible representations τ of $\operatorname{GL}_t(\mathbb{F}_q)$, $1 \leq t \leq [\frac{n}{2}]$. Then π_1 and π_2 are isomorphic.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Henniart's proved $n \times (n-1)$ Local Converse Theorem for $GL_n(F)$ in 1993.

Jeff, Jiang-Ping Chen proved in $n \times (n-2)$ Local Converse Theorem for $GL_n(F)$ in 1996.

Edva-Aida Roditty proved the $n \times (n-1)$ and $n \times (n-2)$ Local Converse Theorem for $GL_n(\mathbb{F}_q)$.

Nien proved the $n \times [\frac{n}{2}]$ Local Converse Theorem for $GL_n(\mathbb{F}_q)$ in 2014.

In the joint work with Dihua Jiang and Shaun Stevens, we gave a formulation and used this formulation to verify Jacquet's conjecture on Local Converse Theorem for many cases, in 2015.

イロト イポト イヨト イヨト

- o: the ring of integers in F.
- \mathfrak{p} : the prime ideal in \mathfrak{o}_F .
- \mathfrak{k} : the residue field of F, of cardinality q.
- $c-\mathrm{Ind}:$ the compact induction functor.
- Z_n : the center of $GL_n(F)$.

 $K_n := GL_n(\mathfrak{o})$: the maximal compact subgroup of $GL_n(F)$

 $\mathfrak{P}_n := \mathbf{I}_n + \mathrm{Mat}_n(\mathfrak{p}).$

Proposition ([JS85])

Let π be an irreducible generic representation of $\operatorname{GL}_n(F)$ with $n \ge 2$. Then there exits m_{π} such that, for any character χ of F^{\times} of conductor $m \ge m_{\pi}$ and any $c \in \mathfrak{p}^{-m}$ satisfying $\chi(1+x) = \psi(cx)$, for $x \in \mathfrak{p}^{\left\lfloor \frac{m}{2} \right\rfloor + 1}$, we have

 $L(s, \pi \times \chi) = 1$ and $\epsilon(s, \pi \times \chi, \psi) = \omega_{\pi}(c)^{-1} \epsilon(s, 1 \times \chi, \psi)^n$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Corollary ([JNS15])

Let π_1 , π_2 be irreducible generic representations of $\operatorname{GL}_n(F)$. If their local gamma factors $\Gamma(s, \pi_1 \times \chi, \psi_F)$ and $\Gamma(s, \pi_2 \times \chi, \psi_F)$ are equal as functions in the complex variable s, for any character χ of F^{\times} , then they possess the same central character.

Proof.

For i = 1, 2, let $m_{\pi_i}, m_{\tilde{\pi}_i}$ be the numbers given by Proposition 2.3 and put $m_0 = \max\{m_{\pi_i}, m_{\tilde{\pi}_i} \mid i = 1, 2\}$. For χ a character of F^{\times} of conductor $m \ge m_0$, we have $\epsilon(s, \pi_i \times \chi, \psi) = \Gamma(s, \pi_i \times \chi, \psi)$, by stability of Gamma factors..

For any $c \in \mathfrak{p}^{-m} \setminus \mathfrak{p}^{1-m}$, with $m \ge m_0$, there exists a character χ_c character of conductor m such that $\chi_c(1+x) = \psi(cx)$, for $x \in \mathfrak{p}_F^{\left[\frac{m}{2}\right]+1}$; thus Proposition 2.3 implies

$$\omega_{\pi_1}(c) = \omega_{\pi_2}(c).$$

Since any element of F^{\times} can be expressed as the quotient of two elements of valuation at most -m, we deduce that $\omega_{\pi_1} = \omega_{\pi_2}$.

$n \times \left[\frac{n}{2}\right]$ Local Converse Theorem for *p*-adic GL_n

Adrian, M.; Liu, B.; Stevens, S. and Xu, P. verified Jacquet's conjecture for $GL_p(F)$ for prime p in 2015.

Image: A math a math

$n \times \left[\frac{n}{2}\right]$ Local Converse Theorem for *p*-adic GL_n

Adrian, M.; Liu, B.; Stevens, S. and Xu, P. verified Jacquet's conjecture for $GL_p(F)$ for prime p in 2015.

Recently, Liu, B. and Jacquet, H. using analytic approaches and J. Chai using Bessel distributions independently settled this long standing conjecture.

Theorem

Let π_1 and π_2 be irreducible smooth generic representations of $\operatorname{GL}_n(F)$ with the same central character. Assume that the local gamma factors $\Gamma(s, \pi_1 \times \tau, \psi)$ and $\Gamma(s, \pi_2 \times \tau, \psi)$ are equal as functions in the complex variable $s \in \mathbb{C}$, for all irreducible representations τ of $\operatorname{GL}_t(F)$, $1 \leq t \leq [\frac{n}{2}]$. Then π_1 and π_2 are isomorphic.

• • • • • • • • • • • • •

Sharpness of the bound $\left[\frac{n}{2}\right]$ for cuspidal representations of ${\rm GL}_n(F)$

In 2015, Adrian, M.; Liu, B.; Stevens, S. and Tam, K.-F. showed $\left[\frac{n}{2}\right]$ is the sharp bound for necessary twisting in Local Converse Theorem for a pair of supercuspidal representations of *p*-adic GL_n if *n* is a prime.

However, for special family of supercuspidal representations, the upper bound may be lower.

C. Bushnell and G. Henniart found: for simple supercuspidal representations(i.e. supercuspidal representations with minimal positive depth), the upper bound may be lowered to 1.

イロト 不得下 イヨト イヨト

Bessel functions for $GL_n(\mathbb{F}_q)$

Proposition

Let π be an irreducible generic representation of $GL_n(\mathbb{F}_q)$ and χ_{π} its character. Define

$$\mathcal{B}(g) = |\mathrm{U}_n(\mathbb{F}_q)|^{-1} \sum_{u \in \mathrm{U}_n} \psi_n(u^{-1})\chi_\pi(gu), \text{ for } g \in \mathrm{GL}_n(\mathbb{F}_q)$$

Then

The unique function given in the above theorem is called the Bessel functions for π .

Proposition ([Ro])

Let π be an irreducible cuspidal representation of $GL_n(\mathbb{F}_q)$ and τ be an irreducible generic representation of $GL_r(\mathbb{F}_q)$, r < n. Then

$$\gamma(\pi \times \tau, \ \psi) = \sum_{\mathbf{U}_r \setminus \mathrm{GL}_r} \mathcal{B}_{\pi,\psi_n} \begin{pmatrix} 0 & \mathbf{I}_{n-r} \\ m & 0 \end{pmatrix} \mathcal{B}_{\tau,\psi_r^{-1}}(m).$$
(3.1)

Chufeng Nien Department of Mathematics, NCKU Local gamma factor, Converse Theorem and Related

・ロト ・回ト ・ヨト

 $\overline{\mathbb{F}_q}$: the algebraic closure of \mathbb{F}_q .

 \mathbb{F}_{q^d} : the unique field extension of \mathbb{F}_q with index d such that $\mathbb{F}_q \subset \mathbb{F}_{q^d} \subset \overline{\mathbb{F}_q}$. Let η be a character of $\mathbb{F}_{q^n}^{\times}$ satisfying the following properties:

$$\eta^{q^m-1} \neq 1$$
, for all positive $m < n$. (4.1)

Such a character η is called **regular** and it defines an irreducible cuspidal representation $\pi = \pi_{\eta}$ of $\operatorname{GL}_{n}(\mathbb{F}_{q})$.

Moreover, any irreducible cuspidal representation corresponds to some regular character.

Regular characters η_1 and η_2 corresponds to the same supercuspidal π if and only if

$$\eta_1(\sigma) = \eta_2(\sigma^{q^t}) \text{ for some } t \ge 1.$$
 (4.2)

イロト イポト イヨト イヨト

$n \times 1$ gamma factor for $\operatorname{GL}_n(\mathbb{F}_q)$

Let $\operatorname{tr} : \mathbb{F}_{q^n} \mapsto \mathbb{F}_q$ be the reduced trace map and $N : \mathbb{F}_{q^n} \times \mapsto \mathbb{F}_{q^n}$ be the reduced norm map.

Theorem

Let π be an irreducible cuspidal representation of $GL_n(\mathbb{F}_q)$, $n \ge 2$ and $\chi \in \widehat{\mathbb{F}}_q^*$. Then

$$\gamma(\pi \times \chi, \ \psi) = (-q^{-1}\chi(-1))^{n-1} \sum_{\sigma \in \mathbb{F}_{q^n}^*} \psi_n(\mathrm{tr}\sigma^{-1})\eta_{\pi}(\sigma)\chi^{-1}(N(\sigma)),$$

where η_{π} is the regular character of $\mathbb{F}_{q^n}^*$ corresponding to π in Green's construction.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let $\operatorname{tr} : \mathbb{F}_{q^n} \mapsto \mathbb{F}_q$ be the reduced trace map and $N : \mathbb{F}_{q^n} \times \mapsto \mathbb{F}_{q^n}$ be the reduced norm map.

Theorem

Let π be an irreducible cuspidal representation of $GL_n(\mathbb{F}_q)$, $n \ge 2$ and $\chi \in \widehat{\mathbb{F}}_q^*$. Then

$$\gamma(\pi \times \chi, \ \psi) = (-q^{-1}\chi(-1))^{n-1} \sum_{\sigma \in \mathbb{F}_{q^n}^*} \psi_n(\mathrm{tr}\sigma^{-1})\eta_{\pi}(\sigma)\chi^{-1}(N(\sigma)),$$

where η_{π} is the regular character of $\mathbb{F}_{q^n}^*$ corresponding to π in Green's construction.

The theorem shows gamma factors for $\operatorname{GL}_n(\mathbb{F}_q)$ defined by Roditty coincide with the ones given by Braverman, A. and Kazhdan, D..

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

4×1 LCT for $GL_4(\mathbb{F}_3)$

By computing Gauss sums for regular characters of some small rank cases, Zhang, Lei found:

Theorem

Let π_1 and π_2 be irreducible cuspidal representations of $GL_4(\mathbb{F}_3)$, with the same central character. If

$$\gamma(\pi_1 \times \chi, \ \psi) = \gamma(\pi_2 \times \chi, \ \psi)$$

for all $\chi \in \widehat{\mathbb{F}}_3^*$, then $\pi_1 \cong \pi_2$.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

4×1 LCT for $GL_4(\mathbb{F}_3)$

By computing Gauss sums for regular characters of some small rank cases, Zhang, Lei found:

Theorem

Let π_1 and π_2 be irreducible cuspidal representations of $GL_4(\mathbb{F}_3)$, with the same central character. If

$$\gamma(\pi_1 \times \chi, \ \psi) = \gamma(\pi_2 \times \chi, \ \psi)$$

for all
$$\chi \in \widehat{\mathbb{F}}_3^*$$
, then $\pi_1 \cong \pi_2$.

Theorem

Let π_1 and π_2 be irreducible cuspidal representations of $GL_5(\mathbb{F}_2)$, with the same central character. If

$$\gamma(\pi_1 \times \chi, \psi) = \gamma(\pi_2 \times \chi, \psi)$$

for all $\chi \in \widehat{\mathbb{F}}_2^*$, then $\pi_1 \cong \pi_2$.

Let $\mathcal{U} \subset \mathcal{M} \subset \mathcal{K}$ be compact open subgroups of \mathcal{K} .

Let τ be an irreducible smooth representation of ${\cal K}$ and let Ψ be a linear character of ${\cal U}.$

Take an open normal subgroup \mathcal{N} of \mathcal{K} , which is contained in $\operatorname{Ker}(\tau) \cap \mathcal{U}$.

Let χ_{τ} be the (trace) character of τ .

Paškūnas, V., Stevens, S. defined Bessel function $\mathcal{J} : \mathcal{K} \to \mathbb{C}$ of τ by

$$\mathcal{J}(g) := [\mathcal{U}:\mathcal{N}]^{-1} \sum_{u \in \mathcal{U}/\mathcal{N}} \Psi(u^{-1}) \chi_{\tau}(gu).$$
(5.1)

This is independent of the choice of \mathcal{N} .

Proposition ([PS08])

Assume that the data introduced above satisfy the following:

- $\tau|_{\mathcal{M}}$ is an irreducible representation of \mathcal{M} ; and
- $\tau|_{\mathcal{M}} \cong \operatorname{Ind}_{\mathcal{U}}^{\mathcal{M}}(\Psi).$

Then the Bessel function $\mathcal J$ of τ enjoys the following properties:

1
$$\mathcal{J}(1) = 1;$$

- $\ \ \, {\mathcal J}(hg)={\mathcal J}(gh)=\Psi(h){\mathcal J}(g) \ \, \text{for all} \ h\in {\mathcal U} \ \, \text{and} \ g\in {\mathcal K};$
- if J(g) ≠ 0, then g intertwines Ψ; in particular, if m ∈ M, then J(m) ≠ 0 if and only if m ∈ U;

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let π be an irreducible *unitary* supercuspidal representation of $GL_n(F)$. By [BH98], there is an extended maximal simple type (\mathbb{J}, Λ) in π such that

$$\operatorname{Hom}_{\operatorname{U}_n\cap \mathbb{J}}(\Phi_n,\Lambda)\neq 0.$$

Since Λ restricts to a multiple of some simple character $\theta \in \mathcal{C}(\mathfrak{A}, \beta, \psi)$, one obtains that $\theta(u) = \Phi_n(u)$ for all $u \in U_n \cap H^1$. As in [PS08, Definition 4.2], one defines a character $\Psi_n : (J \cap U_n)H^1 \to \mathbb{C}^{\times}$ by

$$\Psi_n(uh) := \Phi_n(u)\theta(h), \tag{5.2}$$

for all $u \in J \cap U_n$ and $h \in H^1$. By [PS08, Theorem 4.4], the data

 $\mathcal{K} = \mathbb{J}, \ \tau = \Lambda, \ \mathcal{M} = (J \cap P_n)J^1, \ \mathcal{U} = (J \cap U_n)H^1, \ \text{and} \ \Psi = \Psi_n$

satisfy the conditions in Proposition 5.3 and hence define a Bessel function \mathcal{J} .

Define a function $B_{\pi} : GL_n(F) \to \mathbb{C}$ by

$$B_{\pi}(g) := \begin{cases} \Phi_n(u)\mathcal{J}(j) & \text{if } g = uj \text{ with } u \in U_n, \ j \in \mathbb{J}, \\ 0 & \text{otherwise,} \end{cases}$$
(5.3)

which is well-defined by Proposition 5.3(ii). Then, by [PS08], B_{π} is a Whittaker function for π . By Proposition 5.3, the restriction of B_{π} to P_n has a particularly simple description: for $g \in P_n$,

$$B_{\pi}(g) = \begin{cases} \Psi_n(g) & \text{if } g \in (J \cap U_n)H^1; \\ 0 & \text{otherwise.} \end{cases}$$
(5.4)

Gamma Factors for Level Zero Cuspidals

In the level zero case, $J = K_n$, $\mathbb{J} = Z_n K_n$, $J^1 = H^1 = \mathfrak{P}_n$, $\theta = 1$, and $\mathcal{N} = \mathfrak{P}_n$ and

$$\omega \tau_i = \Lambda, \ \mathcal{M} = (\mathbf{K}_n \cap \mathbf{P}_n) \mathfrak{P}_n, \ \mathcal{U} = (\mathbf{K}_n \cap \mathbf{U}_n) \mathfrak{P}_n$$

 $\pi_i \cong c - \operatorname{Ind}_{Z_n(F)K_n(F)}^{\operatorname{GL}_n(F)} \omega \tau_i$, for i = 1, 2, where $\tau_1(\text{resp. } \tau_2)$ is an irreducible cuspidal representation of $\operatorname{GL}_n(\mathbb{F}_q)(\text{resp. } \operatorname{GL}_t(\mathbb{F}_q))$, and q is the cardinality of the residue field of F.

Theorem

For $n \ge 2$, let π_1 (resp. π_2) be an irreducible, level zero supercuspidal, unitary representations of $GL_n(F)$ (resp. $GL_t(F)$), t < n. Then

$$\omega_{\pi_2}(-1)^{n-1}\Gamma(s,\pi_1\times\pi_2,\psi_F) = q^{\frac{t(n-t-1)}{2}}\gamma(\tau_1\times\tau_2,\psi).$$

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

By Corollary 2.4, π and π_2 possess the same central character ω .

By the construction of supercuspidal representation of $\operatorname{GL}_n(F)$, we may assume that

$$\pi_i \cong \mathbf{c} - \operatorname{Ind}_{\mathbf{Z}_n(F)K_n(F)}^{\operatorname{GL}_n(F)} \omega \tau_i,$$

for i = 1, 2, where $\tau_1(\text{resp. } \tau_2)$ is an irreducible cuspidal representation of $\operatorname{GL}_n(\mathbb{F}_q)(\text{resp. } \operatorname{GL}_t(\mathbb{F}_q))$, and q is the cardinality of the residue field of F.

Since $\mathcal{U}/\mathcal{N} \cong U_n(\mathbb{F}_q)$, the Bessel function for τ_i is given by

$$\begin{split} \mathcal{J}_i(g) &= [\mathcal{U}:\mathcal{N}]^{-1} \sum_{u \in \mathcal{U}/\mathcal{N}} \Psi(u^{-1}) \chi_{\tau_i}(gu) \\ &= \frac{1}{|\mathcal{U}_n(\mathbb{F}_q)|} \sum_{u \in \mathcal{U}/\mathcal{N}} \Psi(u^{-1}) \chi_{\tau_i}(gu), \text{ for } i = 1, \ 2. \end{split}$$

The Whittaker function B_{π_i} , defined in Eq. (5.3), are supported in $U_n K_n Z_n$. For element $g \in K_n$, define by $\bar{g} \in \mathbb{F}_q$ its reduction modulo \mathfrak{p} . Note that for $u \in U_n \cap K_n$, $k \in K_n$, $\mathcal{J}_i(ku) = \Phi_n(u)\mathcal{J}_i(k)$, so

$$\mathcal{J}_i(k) = \mathcal{B}_{\tau_i}(\bar{k}), \text{ for } k \in \mathcal{K}_n,$$
(6.1)

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

where \mathcal{B}_{τ_i} is the Bessel function of τ_i in terms of ψ_n . Then ψ_n is the standard Whittaker character for $U_n(\mathbb{F}_q)$.

Theorem

Let π be an an irreducible, level zero supercuspidal, unitary representations of $GL_4(F)$, where the residue field of F has 3 elements. Then π is uniquely determined by the set of twisted gamma factors $\{\Gamma(s, \pi_i \times \chi, \psi_F) \mid \chi \in \widehat{F}^{\times}\}$.

4 🗆 k 4 🗐 k 4

Theorem

Let π be an an irreducible, level zero supercuspidal, unitary representations of $\operatorname{GL}_4(F)$, where the residue field of F has 3 elements. Then π is uniquely determined by the set of twisted gamma factors $\{\Gamma(s, \pi_i \times \chi, \psi_F) \mid \chi \in \widehat{F}^{\times}\}$.

Theorem

Let π be an an irreducible, level zero supercuspidal, unitary representations of $\operatorname{GL}_5(F)$, where the residue field of F has 2 elements. Then π is uniquely determined by the set of twisted gamma factors $\{\Gamma(s, \pi_i \times \chi, \psi_F) \mid \chi \in \widehat{F}^{\times}\}$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let E be a quadratic extension of a p-adic field F such that the characteristic of the residue field of F is odd. Let ψ_E be a non trivial character of E such that its restriction to F is trivial.

Definition

A representation (π, V) of $GL_n(E)$ is called $GL_n(F)$ -distinguished if there exists a non-zero linear form

 $T: V \mapsto \mathbb{C}$ such that $T(\pi(g)v) = T(v), v \in V, g \in GL_n(F).$

Let $H_n = \operatorname{GL}_n(F)$.

A B A B A B A

Hakim studied distinction with special values of Gamma factor for $GL_2(F)$ and Ok generalized his result to supercuspidal representations of $GL_n(F)$.

Theorem ([Ha91])

Let π be an irreducible unitary generic representation of $GL_2(E)$ with central character whose restriction to F is trivial. Then

$$\Gamma(\frac{1}{2}, \pi \times \tau, \psi_E) = 1$$

for all F^{\times} -distinguished character τ of E^{\times} , if and only if π is H_2 -distinguished.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem ([Ok97])

Let π be an irreducible, unitary, supercuspidal representation of $GL_n(E)$ with central character whose restriction to F is trivial. Then the following are equivalent:

1
$$\pi$$
 is H_n -distinguished.

2

$$\Gamma(\frac{1}{2}, \pi \times \tau, \psi_E) = 1$$

for any $\operatorname{GL}_{n-1}(F)$ -distinguished unitary generic representation τ of $\operatorname{GL}_{n-1}(E)$.

< ロ > < 同 > < 三 > < 三

Distinction and Special Value of Gamma Factors

Theorem ([Of11])

Let π (resp. τ) be a smooth, irreducible generic and H_n -distinguished (resp. $\operatorname{GL}_t(F)$ -distinguished) representation of $\operatorname{GL}_n(E)$ (resp. $\operatorname{GL}_t(E)$. Then

$$\epsilon(\frac{1}{2}, \pi \times \tau, \psi_E) = \Gamma(\frac{1}{2}, \pi \times \tau, \psi_E) = 1.$$

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Distinction and Special Value of Gamma Factors

Theorem ([Of11])

Let π (resp. τ) be a smooth, irreducible generic and H_n -distinguished (resp. $\operatorname{GL}_t(F)$ -distinguished) representation of $\operatorname{GL}_n(E)$ (resp. $\operatorname{GL}_t(E)$. Then

$$\epsilon(\frac{1}{2}, \pi \times \tau, \psi_E) = \Gamma(\frac{1}{2}, \pi \times \tau, \psi_E) = 1.$$

Theorem $(n \times (n-2)$ -distinction, [HO15])

Let π be a supercuspidal representation of $GL_n(E)$, $n \ge 3$. Then π is H_n -distinguished if and only if

$$\Gamma(\frac{1}{2}, \pi \times \tau, \psi_E) = 1$$

for all irreducible generic H_r -distinguished representations τ of $GL_r(E)$, for $r = 1, \dots, n-2$.

The End!!

Chufeng Nien Department of Mathematics, NCKU Local gamma factor, Converse Theorem and Related

イロト イヨト イヨト イヨ

- Adrian, M.; Liu, B.; Stevens, S. and Xu, P.: *On the Jacquet Conjecture on the local converse problem for p-adic* GL(*n*). To appear in Represent. Theory. 2015.
- Adrian, M.; Liu, B.; Stevens, S. and Tam, K.-F.: *On sharpness of the bound for Jacquets Conjecture on the local converse problem for* GL(*n*). In preparation, 2015.
- Bushnell, C. J., Henniart, G.: Supercuspidal representations of GL_n : explicit Whittaker functions. J. Algebra 209, 270-287 (1998)
- Bushnell, Colin J. and Henniart, Guy: *The local Langlands conjecture for* GL(2). Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 335. Springer-Verlag, Berlin, 2006.
 - Braverman, A.; Kazhdan, D. : γ -functions of representations and lifting. With an appendix by V. Vologodsky. GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. (2000), Special Volume, Part I, 237V278
 - Bollobas, Bela: *Linear Analysis: An Introductory Course*. Cambridge Mathematical Textbook, 2nd edition, 1999

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Chen, Jiang-Ping Jeff: Local Factors, Central Characters, and Representations of the General Linear Group over Non-Archimedean Local Fields. Thesis, Yale University, May (1996).
- Chen, Jiang-Ping Jeff: The $n \times (n-2)$ Local Converse Theorem for GL(n) over a *p*-adic field. Journal of Number Theory Volume 120, Issue 2, (2006) 193-205.
- Cogdell, J. and Piatetski-Shapiro, I.: Converse theorems for GL_n.
 Publications Mathématiques de l'IHÉS (79), (1994) 157V214,
- Cogdell, J. and Piatetski-Shapiro, I.: Converse theorems for GL_n, II. J. reine angew. Math. 507(1999), 165-188
- Gelfand, S.I.: *Representation of the full linear group over a finite field*. Math. USSR Sbornik, Vol. 12, No. 1, (1970) 13-39.
- Gelfand, S.I.: *Representation of the general linear group over a finite field.* Proc. Summer School of the Bolya-Janos Math. Soc., Budapest, (1971) Halsted New York, (1975).

A B A B A B A

- Gelfand, I.M. and Kazhdan, D.: Representations of the group GL(n, K), where K is a local field, Lie groups and their representations. Proc. Summer School, Bolyai Janos Math. Soc., Budapest, (1971), 95-118. Halsted, New York (1975).
- Gelfand, I.M. and Graev, M.I.: Construction of irreducible representations of simple algebraic groups over a finite field. (Russian) Dokl. Akad. Nauk SSSR, 147 (1962), 529-532.
- Green, J. A.: *The characters of the finite general linear groups*. Trans. Amer. Math. Soc. 80 (1955), 402-447.
- Hakim, Jeffrey: *Distinguished p-adic representations*.Duke Math. J. 62 (1991), no. 1, 1V22.
- Henniart, G.: Characterization of the local Langlands correspondence by ε-factors of pairs. Invent. Math. 113, no. 2 (1993) 339-350.
- Hakim, Jeffrey; Offen, Omer: *Distinguished representations of* GL(*n*) *and local converse theorems.* Manuscripta Math. 148 (2015), no. 1-2, 1-27.

A B A B A B A

- Jacquet, H. and Liu, Baiying: On the local converse theorem for p-adic GL_n. http://arxiv.org/pdf/1601.03656.pdf
- Jacquet, H., Piatetski-Shapiro, I. and Shalika, J.: *Rankin-Selberg* convolutions. Amer. J. Math. 105. (1983), 367-464.
- Jiang, Dihua, Nien Chufeng and Stevend, Shaun: *Towards the Jacquet Conjecture on the Local Converse Problem for* p-adic GL_n . Journal of the European Mathematical Society, Volume 17, Issue 4, 2015, 991-1007
- Jacquet, H., Shalika, J.: A lemma on highly ramified ε-factors, Math. Ann.
 271, 319–332 (1985)
- Nien, Chufeng: A proof of finite field analogue of Jacquet's conjecture. Amer J. Math. Volume 136, Number 3, (2014), 653-674
- Nien, Chufeng: n imes 1 Local Gamma factors and Gauss Sum. submitted, 2015
- Offen, Omer: On local root numbers and distinction. J. Reine Angew. Math. 652 (2011), 165V205.

Ok, Youngbin: Distinction and gamma factors at ¹/₂ :supercuspidal case. PhD Thesis, Columbia University (1997) Paškūnas, V., Stevens, S.: On the realization of maximal simple types and epsilon factors of pairs. Amer. J. Math. 130, 1211-1261 (2008)

Roditty, Edva-Aida: On Gamma factors and Bessel functions for representations of general linear groups over finite field. M.s.c. Thesis, Tel-Aviv University.

- ∢ 🗇 ▶ ∢