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Problems from Group Theory

Note: this note summarizes joint work with Shamgar Gurevich.

Several interesting problems in group theory can be approached by
using characters of irreducible representations.

I 1. Convergence of random walks:

Given a probability measure on a simple group G (i.e.,, an
element µ =

∑
g∈G cgg in the group algebra, with coefficients

cg satisfying cg ≥ 0 and
∑

g∈G cg = 1) at what rate do the
convolution powers of µ approach the constant measure?

In particular, if µ is a normalized conjugacy class C :
cg = 1

#(C) if g ∈ C , and cg = 0 otherwise?

I 2. Ore Conjecture: Is every element in a finite simple group
equal to a commutator?

I 3. Thompson Conjecture: In a finite simple group G , is there
a conjugacy class C such that C 2 = G?
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Given a finite group G , let

Ĝ = the set of equivalence classes of irreducible representations of
G (over C).

1 = trivial representation of G ,

Ĝ − {1} = non-trivial representations of G .

For a given representation ρ, the character χρ is the function

χρ(g) = trace(ρ(g)).

In particular, if eG is the identity element of G , then

χρ(eG ) = dim ρ

is the dimension of ρ.

With this terminology, the questions stated above can be
translated into statements about characters, as follows.
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Random Walks

In question 1, the rate of convergence is controlled by

max
16=ρ∈Ĝ

χρ(C )

dim ρ
,

over all non-trivial ρ in Ĝ .
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Counting Commutators

In question 2, the number of ways to express g as a commutator of
two other elements of G is

#(G )

∑
ρ∈Ĝ

χρ(g)

dim ρ

 .
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Squaring a Conjugacy Class

In question 3, the number of ways to express a given g in G as the
product of two elements in the conjugacy class C is

#(C )2

#(G )

∑
ρ∈Ĝ

χρ(C )2
χρ(g)

dim ρ

 .
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In the second and third expressions, there is always a positive term
coming from the trivial representation. Thus, one would like to
have some control on the sum over non-trivial characters to show
that the full sum is non-zero.

In particular, if one could show that the terms involving non-trivial
ρ were small enough (and in addition, perhaps, show that some
terms cancel each other, or nearly so), then one could conclude
that the sum was non-zero.
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Character Ratios

This leads to focus on the terms

χρ(C )

dim ρ
− the character ratios.

One would like to know that the character ratios are small.
The part that is making them small is the denominator dim ρ.
So one would like to know about the behavior of the dimensions of
the irreducible representations.
In particular:

Describe the representations of G with “small” dimensions.

Of course, “small” here is relative to some “typical” or “large”
dimension of representations of G .
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II. Example: symplectic groups

We will discuss the question from I for a particular case, the
symplectic groups over finite fields. Recall that

i) the symplectic groups are one class of (almost) simple algebraic
groups; and

I ii) the finite groups of Lie type, equivalently, the simple
algebraic groups over finite fields, constitute the large majority
of finite simple groups; and

I iii) the classical groups constitute the large majority of groups
of Lie type; and

I iv) the symplectic groups are one of four (or three, depending
how you count) series of classical groups.

I These facts together suggest that knowing the behavior of
symplectic groups with respect to this question is both
significant for the overall answer, and suggestive of behavior
for other classes.
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Symplectic groups

So, let Fq be the finite field with q elements, and let W = (Fq)2n

be equipped with the skew-symmetric, non-degenerate, bilinear
form (aka symplectic form)

< ~w , ~w ′ >=
n∑

j=1

wjw
′
n+j − wn+jw

′
j ,

where the wj are the entries of the element ~w ∈W , and similarly
for the w ′j . Then

Sp(W ) = Sp2n(Fq)

is the subgroup of GL(W ) consisting of elements that preserve the
pairing < , >.
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Lagrangian subspaces

The subspace X of W , consisting of ~x for which xj = 0 for j > n,
is totally isotropic for < , >; that is the restriction of < , > is
identically zero; and X is maximal with respect to being totally
isotropic. It is sometimes called a Lagrangian subspace.

The subgroup PX of Sp(W ) that preserves X is called the Siegel
parabolic.
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The Siegel Parabolic subgroup

PX has the form
PX ' GL(X ) · UX

Here the group UX is normal in PX and is abelian.
More precisely,

UX ' S2
n (Fq),

= the space of n × n symmetric matrices over Fq.

Likewise,
ÛX = Pontrjagin dual of UX ,

is isomorphic to S2
n , under the mapping

ψA(B) = χ(traceAB)

for symmetric matrices A, B, and a fixed character χ of Fq.

The action of GL(X ) on these groups is the standard action of GLn
on symmetric matrices.
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Restricting representations to the Siegel unipotent

Consider a representation ρ of Sp(W ), and look at the restriction
to UX . It will decompose as a sum of characters, with certain
multiplicities:

ρ|UX
'
∑
B∈S2

n

mBψB .

Since

ρ|UX
=
(
ρ|PX

)
|UX

,

that is,
the restriction of ρ in Ŝp to UX can be thought of as the
restriction to UX of the restriction of ρ to PX ,

the UX spectrum of ρ|UX
must be invariant under the action of

GL(X ). That is, mB = mB′ if B and B ′ define equivalent
symmetric bilinear forms on X .
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Isomorphism classes of symmetric bilinear forms

The first major invariant of a symmetric bilinear form is its rank.

It is well known that, over finite fields, there are just 2
isomorphism classes of bilinear forms of a given rank k .

We denote these classes by Ok+ and Ok−;
or we will denote the pair of them, or whichever one is relevant in
a given context as Ok±.
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Rank of characters of UX

If B is a form of rank k , we will also say that the associated
character ψB has rank k . We may also refer to the character as
being of type + or type −, according to the type of B.

With this notation, we can organize the description of ρ|UX

according to the ranks, and also according to the isomorphism
classes of the associated forms:

ρ|UX
'
∑
k

∑
±

mk±

 ∑
B∈Ok±

ψB

 .

This formula implies that the dimension of ρ must be a sum of the
cardinalities #(Ok±) of the isomorphism classes of symmetric
bilinear forms.

Roger Howe Small Representations of Finite Classical Groups



Sizes of isomorphism classes of bilinear forms

It is easy to give a formula for these cardinalities. We have

#(Ok±) = Γnk
#(GLk)

#(Ok±)
.

In this formula,
Γnk indicates the cardinality of the Grassmann variety
of k dimensional subspaces of (Fq)n; and

Ok± indicates the isometry group of a non-degenerate form
of type ± on (Fq)k .

From the formula,
#(Ok±) ' 1

2q
k(n− k−1

2
).

In particular, the smallest orbits are those of rank one forms.
These have size

qn − 1

2
.
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The smallest possible representation

It follows from this discussion that
the smallest possible dimension of a non-trivial representation of
Sp(W ) would be

qn − 1

2
.
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I Such a representation would contain each rank one character
of one type, and nothing else.

Since UX is such a small subgroup of Sp(W ), it is unclear
whether to expect such a representation to exist. In particular,
it would be irreducible already on PX , and it would be the
smallest possible faithful representation of PX .

I It turns out, however, that it does exist; in fact, there are two.

Proposition: There are two irreducible representations of
Sp(W ) of dimension qn−1

2 , one containing either one of the

two rank one GL(X ) orbits in ÛX
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The next smallest possible representation

What is the next largest possible dimension? Well, one more - the
UX spectrum could include a rank one orbit, and a trivial
representation. It turns out that these also exist.

Proposition: There are two irreducible representations of Sp(W )
of dimension qn−1

2 + 1 = qn+1
2 , one whose UX -spectrum contains

one of the rank one orbits in ÛX .
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Rank of representations of Sp

These results, plus considerations of tensor products, tell us that,
for any orbit Ok± in ÛX , there will be representations of Sp(W )
whose UX spectrum contains the given orbit, together with orbits
of smaller rank. Since the size of the orbits Ok± is increasing with
k , representations whose UX spectrum is concentrated on orbits of
smaller rank can be expected to have smaller dimensions. This
motivates the following definition.

Definition: a) A representation ρ in Ŝp(W ) is of rank k iff the
restriction ρ|UX

contains characters of rank k, but of no higher
rank.
b) If a representation ρ in Ŝp(W ) of rank k contains characters of
type Ok+, but not of type Ok−, then we say that ρ is of type Ok+;
and likewise with + and − switched.
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Heisenberg groups

III. The Heisenberg group and the Oscillator Representation

Where do the smallest representations of Sp(W ) come from?

They can be found by considering the Heisenberg group
associated to W . This is the group

H(W ) = W ⊕ Fq,

with group law defined by

(~w , z) · (~w ′, z ′) = (~w + ~w ′, z + z ′ +
1

2
< ~w , ~w ′ >).

This is a two-step nilpotent group.
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Center of H(W ) = commutator subgroup of H(W ) =

Z = {(0, z)}.

The commutator operation in H(W ) induces a skew-symmetric
bilinear form on H(W )/Z 'W , that coincides with the original
symplectic form.

The group H(W ) is the analog over a finite field of the Lie group
associated to the Canonical Commutation Relations (CCR)
of W. Heisenberg, of Uncertainty Relation fame.

When q = p is prime, Heisenberg groups are important in group
theory and were known as extra special p groups.
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The representation theory of Heisenberg groups is very simple. For

any representation ρ in Ĥ(W ), the center Z will act by scalars:

ρ((0, z)) = χρ(z)I ,

where I is the identity operator, and χρ = χ ∈ Ẑ is a character of
Z , called the central character of ρ.

If χρ = 1, then ρ factors to H(W )/Z 'W , which is abelian, so ρ
itself is a character of W .

The case of non-trivial χρ is described by
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Representations of H(W )

Stone-von Neumann-Mackey Theorem: Up to equivalence,
there is a unique irreducible representation ρχ with given
non-trivial central character χ in Ẑ − {1}.

Remarks: a) There are many ways to realize the presentation ρ
explicitly.
b) It particular, it can be constructed as an induced representation
from any character extending χ to any maximal abelian subgroup
of H(W ).

c) The inverse image in H(W ) of any maximal isotropic subspace
(e.g., X ) of W will be a maximal abelian subgroup of H(W ).
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Constructing the oscillator representation I

Definition of H(W ), ⇒

a) the action of Sp(W ) on W lifts to an action of H(W ) by
automorphisms,

b) leaving the center point wise fixed.

Hence
c) the induced action of Sp(W ) on Ĥ(W ) will leave each ρχ fixed,
for any character χ ∈ Ẑ − {1}.
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Constructing the oscillator representation II

Hence
d) for each g in Sp(W ), there is an operator ω(g) on ρχ (more
properly, on the vector space where ρχ is realized), such that

ω(g)ρχ(h)ω(g)−1 = ρχ(g(h).

The operator ω(g) is defined up to scalar multiples. This implies
that

ω(g)ω(g ′) = α(g , g ′)ω(gg ′),

where α(g , g ′) is an appropriate complex number, of absolute
value 1.
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Constructing the oscillator representation III

For finite fields, it is known that this mapping can be lifted to a
genuine representation.
That is, the operators ω(g) can be chosen so that α(g , g ′) ≡ 1 for
all g , g ′ in Sp(W ).

We call it the oscillator representation
(aka: Weil representation).

In fact, we should have used the notation ωχ, because the
oscillator representation depends on the character χ.

However, this dependence is weak.
There are only two possible oscillator representations.

We have ωχ ' ωχ′ if χ′((0, z)) = χ(0, s2z) for some s in (Fq)×.
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The structure of the representations ωχ is known explicitly. In
particular, each ωχ is of rank 1, and more precisely of type O1±,
for an appropriate choice of ±. That is, one of the ωχ is of type
O1+, and the other is of type O1−

Theorem: The representation ωχ decomposes into two irreducible

pieces, of dimensions qn±1
2 .

Thus, the pair of representations ωχ give concrete realizations of
the irreducible representations of Sp(W ) of smallest possible
dimensions.
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Forming dual pairs with Ok±

IV. Representations of Rank k

We can use the oscillator representation also to construct
representations of any rank k up to n. This is essentially by taking
tensor products. However, a slightly different point of view gives us
more insight into the nature of the rank k representations when
k < n.
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Let
U ' (Fq)k

be a vector space of dimension k over Fq,
Let β be an inner product (non-degenerate, symmetric bilinear
form) on U.

On the tensor product W ⊗ U , the tensor product

< , > ⊗β

of the forms < , > and β defines a symplectic form.

Roger Howe Small Representations of Finite Classical Groups



The isometry groups Sp(W ) and Oβ of the forms < , > and β
act on W ⊗ U
via their actions on the first and second factors respectively.
Both actions will preserve the form < , > ⊗β.
The action of Sp(W ) commutes with Oβ, and vice versa.

Thus, we get an embedding

Sp(W )× Oβ ↪→ Sp(W ⊗ U).

The two factors Sp(W ) and Oβ commute with each other.

In fact, each is the full centralizer of the other inside Sp(W ⊗ U).

Thus, the pair (Sp(W ),Oβ) form what has been called a dual pair
of subgroups of Sp(W ⊗ U).
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Consider the restriction of the oscillator representation ωW⊗U to
the product Sp(W )× Oβ.
(Note: we suppress the dependence of ω on the central character
χ, but we record which symplectic group it belongs to.)

We decompose this restriction into isotypic components for Oβ:

(ωW⊗U)|Sp(W )·Oβ
'
∑
τ∈Ôβ

Θ(τ)⊗ τ,

where Θ(τ) is a (not necessarily irreducible) representation of
Sp(W ).
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Although the factors Θ(τ) will in general not be irreducible, we
can say something about how they decompose.

I Theorem: a) As a representation of Sp(W ), ωW⊗U is of rank
k, and of type β.

I b) For each τ in Ôβ, the representation Θ(τ) contains a
unique irreducible constituent η(τ) of rank k ; all other
constituents have rank less than k .

I c) The mapping τ → η(τ) gives an embedding

η : Ôβ → Ŝp(W )kβ ⊂ Ŝp(W )k .

where
Ŝp(W )k = {irreducible representations of Sp(W ) of rank

k },
and

Ŝp(W )kβ ⊂ Ŝp(W )k of representations of type β.

I d) The multiplicity of the orbit Oβ in η(τ)|UW
is dim τ .
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where
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It also seems that this construction should produce all of Ŝp(W )k .

Conjecture: We have

Ŝp(W )k = η(Ôβ+) ∪ η(Ôβ−),

where β+ and β− represent the two isomorphism classes of inner
products of rank k .

We have a partial argument for this conjecture, and it is supported
by numerical calculations.
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Remark: Some instances of the Theorem were observed by
Aubert-Przebinda and by J. Epequin.
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Example: Sp6(F5)

Dimensions:

Rank 0: 1

Rank 1: 62, 62, 63, 63

Rank 2: 1240, 1302, 1302, 1365, 1890, 1953, 1953,
2015, 2604, 2604, 3906

Rank 3: 6501, . . .

Principal series: 3, 656,016
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Example: Sp6(F3)

Remarks/Questions:

I a) What does the map η look like in Lusztig parameters?

I bi) A similar result holds for local fields.

bii) How do these maps look in Langlands-Vogan parameters?

biii) Can “rank k” be characterized simply in terms of wave
front sets, or similar invariants?

I ci) Assuming the conjecture, one can define “rank k” also for
n ≤ k ≤ 2n.

cii) How to describe rank k representations intrinsically for
this range of k?
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