Some small genuine representations of a nonlinear double cover and the model orbit

Wan-Yu Tsai

Institute of Mathematics, Academia Sinica, Taiwan

Institute of Mathematical Science, National University of Singapore, March 22, 2016

0	ut	line	
_			

Examples of the setting

Lifting

Outline

Examples of the setting

Lifting

Outline

 $G_{\mathbb{C}}$: simply connected, semisimple, simply laced, complex Lie group G: real form of $G_{\mathbb{C}}$ with $\pi_1(G) \neq 1$ \widetilde{G} : nonlinear two-fold cover of G

• Introduce a lifting operator $\text{Lift}_{G}^{\widetilde{G}}$, taking representations of G to genuine representations of \widetilde{G} or 0

Examples of the setting

Lifting

Outline

- Introduce a lifting operator Lift^G_G, taking representations of G to genuine representations of G or 0
- Describe $Lift(\mathbb{C})$ as a set of genuine small representations of \widetilde{G}

Examples of the setting

Lifting

Outline

- Introduce a lifting operator Lift^G_G, taking representations of G to genuine representations of G or 0
- Describe $Lift(\mathbb{C})$ as a set of genuine small representations of \widetilde{G}
- ► Characterize Lift(C) explicitly when G is split

Examples of the setting

Lifting

Outline

- Introduce a lifting operator Lift^G_G, taking representations of G to genuine representations of G or 0
- ▶ Describe Lift(\mathbb{C}) as a set of genuine small representations of \widetilde{G}
- Characterize Lift(C) explicitly when G is split
- Demonstrate that the K-types of Lift(C) match up with the K-structure of the regular functions on a model orbit of type D_{2m}

Examples of the setting

Some examples of G under this setting

Wan-Yu Tsai

Examples of the setting

Some examples of G under this setting

Wan-Yu Tsai

Examples of the setting

Some examples of G under this setting

▶ Type A_{n-1} : $G = SL(n, \mathbb{R})$, or SU(p, q), where p + q = n

Examples of the setting

Some examples of G under this setting

▶ Type A_{n-1} : $G = SL(n, \mathbb{R})$, or SU(p, q), where p + q = n

Examples of the setting

Some examples of G under this setting

- ▶ Type A_{n-1} : $G = SL(n, \mathbb{R})$, or SU(p, q), where p + q = n
- ▶ Type D_n : G = Spin(p, q), where $p + q = 2n, p, q \ge 2$

Examples of the setting

Some examples of G under this setting

- ▶ Type A_{n-1} : $G = SL(n, \mathbb{R})$, or SU(p, q), where p + q = n
- ▶ Type D_n : G = Spin(p, q), where $p + q = 2n, p, q \ge 2$

Examples of the setting

Some examples of G under this setting

- ▶ Type A_{n-1} : $G = SL(n, \mathbb{R})$, or SU(p, q), where p + q = n
- ▶ Type D_n : G = Spin(p, q), where $p + q = 2n, p, q \ge 2$
- Most real forms of type E

Examples of the setting

Some examples of G under this setting

- ▶ Type A_{n-1} : $G = SL(n, \mathbb{R})$, or SU(p, q), where p + q = n
- ▶ Type D_n : G = Spin(p, q), where $p + q = 2n, p, q \ge 2$
- Most real forms of type E

Some other examples which are more well-known (but not in the setting):

G = GL(n, ℝ)
G = Sp(2n, ℝ), G̃ = Mp(2n, ℝ), the metaplectic group

Outline	Examples of the setting	Lifting		
---------	-------------------------	---------	--	--

Ultimate Goal: Study genuine representations of \widetilde{G} . Identify the kernel of the covering map $p : \widetilde{G} \to G$ with $\{1, \epsilon\}$.

Ultimate Goal: Study genuine representations of \widetilde{G} . Identify the kernel of the covering map $p : \widetilde{G} \to G$ with $\{1, \epsilon\}$.

Definition

A representation $\tilde{\pi}$ of \tilde{G} is called genuine if $\tilde{\pi}$ does not factor through G. If $\tilde{\pi}$ is irreducible, then $\tilde{\pi}$ is genuine if and only if $\tilde{\pi}(\epsilon) = -1$.

Ultimate Goal: Study genuine representations of \widetilde{G} . Identify the kernel of the covering map $p : \widetilde{G} \to G$ with $\{1, \epsilon\}$.

Definition

A representation $\tilde{\pi}$ of \tilde{G} is called genuine if $\tilde{\pi}$ does not factor through G. If $\tilde{\pi}$ is irreducible, then $\tilde{\pi}$ is genuine if and only if $\tilde{\pi}(\epsilon) = -1$.

Key Tool: Lifting (Flicker-Kazhdan-Patterson) We expect Lifting is an operator taking representations of G to genuine representations of \widetilde{G} . Write Lift $\widetilde{G}_{G}(\pi)$.

Lifting

Definition

Let π be an admissible representation of G, Θ_{π} be the global character of π , (which is regarded as a function on G', set of regular s.s. elts of G). For $\tilde{g} \in \tilde{G'}$, define

$$\operatorname{Lift}_{G}^{\widetilde{G}}(\Theta_{\pi})(\widetilde{g}) = \sum_{\{h \in G \mid h^{2} = p(\widetilde{g})\}} \Delta(h, \widetilde{g}) \Theta_{\pi}(h),$$

where $\Delta(h,\widetilde{g})$ is called a transfer factor satisfying certain conditions.

Lifting

Definition

Let π be an admissible representation of G, Θ_{π} be the global character of π , (which is regarded as a function on G', set of regular s.s. elts of G). For $\tilde{g} \in \widetilde{G'}$, define

$$\operatorname{Lift}_{G}^{\widetilde{G}}(\Theta_{\pi})(\widetilde{g}) = \sum_{\{h \in G \mid h^{2} = p(\widetilde{g})\}} \Delta(h, \widetilde{g}) \Theta_{\pi}(h),$$

where $\Delta(h, \tilde{g})$ is called a transfer factor satisfying certain conditions.

Theorem (Adams-Herb)

Assume the setting in the beginning. Then there exists definition for $\Delta(h, \tilde{g})$ such that if π is a stable representation of G, then $\operatorname{Lift}_{G}^{\tilde{G}}(\pi)$ is 0 or a genuine virtual representation of \tilde{G} .

Write $\operatorname{Lift}_{G}^{\widetilde{G}}(\pi) = \sum_{\widetilde{\pi}} a_{\widetilde{\pi}} \widetilde{\pi}$, where $\widetilde{\pi}$ is irr., genuine, $a_{\widetilde{\pi}} \in \mathbb{Z}$.

Write $\operatorname{Lift}_{G}^{\widetilde{G}}(\pi) = \sum_{\widetilde{\pi}} a_{\widetilde{\pi}} \widetilde{\pi}$, where $\widetilde{\pi}$ is irr., genuine, $a_{\widetilde{\pi}} \in \mathbb{Z}$. Define $\operatorname{Lift}(\pi) = \{ \widetilde{\pi} \mid a_{\widetilde{\pi}} \neq 0 \}$ as a set.

Write
$$\operatorname{Lift}_{G}^{\widetilde{G}}(\pi) = \sum_{\widetilde{\pi}} a_{\widetilde{\pi}} \widetilde{\pi}$$
, where $\widetilde{\pi}$ is irr., genuine, $a_{\widetilde{\pi}} \in \mathbb{Z}$.
Define $\operatorname{Lift}(\pi) = \{ \widetilde{\pi} \mid a_{\widetilde{\pi}} \neq 0 \}$ as a set.

Example (Theorem by Adams-Huang) Let $G = GL(n, \mathbb{R})$. Then (1) If π is an irr. unitary representation of G, then Lift(π) is irr. unitary or 0. (2) $\operatorname{Lift}(\mathbb{C}) = \begin{cases} T_n & \text{if } n \text{ is even} \\ T_n(\chi) & \text{if } n \text{ is odd} \end{cases}$ $\text{Lift}(sgn) = \begin{cases} Speh(1/2) & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$

Write
$$\operatorname{Lift}_{G}^{\widetilde{G}}(\pi) = \sum_{\widetilde{\pi}} a_{\widetilde{\pi}} \widetilde{\pi}$$
, where $\widetilde{\pi}$ is irr., genuine, $a_{\widetilde{\pi}} \in \mathbb{Z}$.
Define $\operatorname{Lift}(\pi) = \{ \widetilde{\pi} \mid a_{\widetilde{\pi}} \neq 0 \}$ as a set.

Example (Theorem by Adams-Huang) Let $G = GL(n, \mathbb{R})$. Then (1) If π is an irr. unitary representation of G, then Lift(π) is irr. unitary or 0. (2) $\operatorname{Lift}(\mathbb{C}) = \begin{cases} T_n & \text{if } n \text{ is even} \\ T_n(\chi) & \text{if } n \text{ is odd} \end{cases}$ $\text{Lift}(sgn) = \begin{cases} Speh(1/2) & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$

	Examples of the setting	Lifting		
--	-------------------------	---------	--	--

Examples of the setting	Lifting	

* T_n is the irreducible quotient of the minimal principal series, with the Pin representation as its lowest *K*-type. (See Huang's thesis for a full description for T_n .) Goal: Describe Lift(\mathbb{C}) for various groups (as in the setting)

* T_n is the irreducible quotient of the minimal principal series, with the Pin representation as its lowest *K*-type. (See Huang's thesis for a full description for T_n .) Goal: Describe Lift(\mathbb{C}) for various groups (as in the setting) (In such setting, *G* is connected and hence has only one one-dimensional representation.)

Describe $\mathsf{Lift}(\mathbb{C})$ as a set of genuine small representations

Definition
Define
$$\prod_{\rho/2}^{s}(\widetilde{G}) = \{\widetilde{\pi} \mid \widetilde{\pi} \text{ is gen irr. with inf. char. } \rho/2$$

and maximal τ -invariant}

Describe $Lift(\mathbb{C})$ as a set of genuine small representations

Definition Define $\prod_{\rho/2}^{s}(\widetilde{G}) = \{\widetilde{\pi} \mid \widetilde{\pi} \text{ is gen irr. with inf. char. } \rho/2 \text{ and maximal } \tau\text{-invariant}\}$

* $\prod_{\rho/2}^{s}(\widetilde{G})$ is called a set of genuine small representations.

Describe $Lift(\mathbb{C})$ as a set of genuine small representations

Definition Define $\prod_{\rho/2}^{s}(\widetilde{G}) = \{\widetilde{\pi} \mid \widetilde{\pi} \text{ is gen irr. with inf. char. } \rho/2 \text{ and maximal } \tau\text{-invariant}\}$

* $\prod_{\rho/2}^{s}(\widetilde{G})$ is called a set of genuine small representations.

Lemma

There exists a unique complex nilpotent orbit \mathcal{O} such that $AV(I_{\widetilde{\pi}}) = \overline{\mathcal{O}}, \ \forall \widetilde{\pi} \in \prod_{\rho/2}^{s} (\widetilde{G})$. This \mathcal{O} can be computed explicitly.

Notation: $AV(I_{\tilde{\pi}}) = \overline{O}$ is the (complex) associated variety of $\tilde{\pi}$.

Wan-Yu Tsai

Туре	A_{n-1}	$(\mathfrak{g} = \mathfrak{sl}_n)$	$D_n (\mathfrak{g} = \mathfrak{so}_{2n})$		E ₆	E ₇	E ₈
n	2 <i>m</i>	2m + 1	2 <i>m</i>	2m + 1			
Ø	[2 ^m]	$[2^m 1]$	$[32^{n-2}1]$	$[32^{n-3}1^3]$	3A1	$4A_1$	$4A_{1}$

Туре	A_{n-1}	$(\mathfrak{g} = \mathfrak{sl}_n)$	$D_n (\mathfrak{g} = \mathfrak{so}_{2n})$		E ₆	E ₇	E ₈
n	2 <i>m</i>	2m + 1	2 <i>m</i>	2m + 1			
Ø	[2 ^m]	$[2^m 1]$	$[32^{n-2}1]$	$[32^{n-3}1^3]$	3A1	4 <i>A</i> ₁	$4A_{1}$

Definition Define $\prod_{\rho/2}^{\mathcal{O}}(\widetilde{G}) = \{\widetilde{\pi} \mid \widetilde{\pi} \text{ is gen irr. with inf. char } \rho/2 \text{ and}$ $AV(l_{\widetilde{\pi}}) = \overline{\mathcal{O}}\},$ where \mathcal{O} is as in the previous Lemma and table.

Туре	A_{n-1}	$(\mathfrak{g} = \mathfrak{sl}_n)$	$D_n (\mathfrak{g} = \mathfrak{so}_{2n})$		E ₆	E ₇	E ₈
n	2 <i>m</i>	2m + 1	2 <i>m</i>	2m + 1			
\mathcal{O}	[2 ^m]	$[2^m 1]$	$[32^{n-2}1]$	$[32^{n-3}1^3]$	3 <i>A</i> 1	$4A_{1}$	$4A_{1}$

Definition Define $\prod_{\rho/2}^{\mathcal{O}}(\widetilde{G}) = \{\widetilde{\pi} \mid \widetilde{\pi} \text{ is gen irr. with inf. char } \rho/2 \text{ and}$ $AV(l_{\widetilde{\pi}}) = \overline{\mathcal{O}}\},$ where \mathcal{O} is as in the previous Lemma and table.

$$\frac{\text{Theorem (T.)}}{\text{Lift }(\mathbb{C}) \subseteq \prod_{\rho/2}^{s} (\widetilde{G}) = \prod_{\rho/2}^{\mathcal{O}} (\widetilde{G})}$$

Wan-Yu Tsai

Туре	A_{n-1}	$(\mathfrak{g} = \mathfrak{sl}_n)$	$D_n (\mathfrak{g} = \mathfrak{so}_{2n})$		E_6	E ₇	E_8
n	2 <i>m</i>	2m + 1	2m $2m+1$				
\mathcal{O}	[2 ^m]	$[2^m 1]$	$[32^{n-2}1]$	$[32^{n-3}1^3]$	3 <i>A</i> 1	$4A_{1}$	$4A_{1}$

Definition Define $\prod_{\rho/2}^{\mathcal{O}}(\widetilde{G}) = \{\widetilde{\pi} \mid \widetilde{\pi} \text{ is gen irr. with inf. char } \rho/2 \text{ and}$ $AV(l_{\widetilde{\pi}}) = \overline{\mathcal{O}}\},$ where \mathcal{O} is as in the previous Lemma and table.

 $\frac{\text{Theorem (T.)}}{\text{Lift }(\mathbb{C}) \subseteq \prod_{\rho/2}^{s} (\widetilde{G}) = \prod_{\rho/2}^{\mathcal{O}} (\widetilde{G})}$

* The first containment is the generalization of the case of $GL(n, \mathbb{R})$ by Adams-Huang.

Wan-Yu Tsai

Some small genuine representations of a nonlinear double cover

Write $\mathcal{O} \cap \mathfrak{g}_{\mathbb{R}} = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_k$. These \mathcal{O}_i 's are called real forms of \mathcal{O} .

Write $\mathcal{O} \cap \mathfrak{g}_{\mathbb{R}} = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_k$. These \mathcal{O}_i 's are called real forms of \mathcal{O} .

Denote the set of real forms of \mathcal{O} by $\{\mathcal{O}_i\}$.
Write $\mathcal{O} \cap \mathfrak{g}_{\mathbb{R}} = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_k$. These \mathcal{O}_i 's are called real forms of \mathcal{O} .

Denote the set of real forms of \mathcal{O} by $\{\mathcal{O}_i\}$.

(For the parameterization of \mathcal{O} and its real forms \mathcal{O}_i 's, see the book of Collingwood-McGovern.)

Write $\mathcal{O} \cap \mathfrak{g}_{\mathbb{R}} = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_k$. These \mathcal{O}_i 's are called real forms of \mathcal{O} .

Denote the set of real forms of \mathcal{O} by $\{\mathcal{O}_i\}$.

(For the parameterization of \mathcal{O} and its real forms \mathcal{O}_i 's, see the book of Collingwood-McGovern.)

Notation:

 $AV(I_{\widetilde{\pi}}) = \overline{\mathcal{O}}$ is the (complex) associated variety of $\widetilde{\pi}$. $AV(\widetilde{\pi}) = \overline{\mathcal{O}}_i$ is the (real) associated variety of $\widetilde{\pi}$ (in our case), where \mathcal{O}_i is a real form of \mathcal{O} .

Model orbit

Type A_{n-1} , $\mathfrak{g} = \mathfrak{sl}_n$

n	G	$\{\mathcal{O}_i\}$	$\#\{\mathcal{O}_i\}$
2m	$SL(n,\mathbb{R})$ (split)		2
2m + 1	$SL(n,\mathbb{R})$ (split)		1
		+ -	
		+ -	
		+ -	
2 <i>m</i>	SU(m,m)(quasisplit)	+ -	m+1
		+ -	
		+ -	
		+ -	
2m + 1	SU(m+1,m) (quasisplit)	±	m+1

Wan-Yu Tsai

Some small genuine representations of a nonlinear double cover

Type D_n , $\mathfrak{g} = \mathfrak{so}_{2n}$

n	G	$\{\mathcal{O}_i\}$	$\#{\mathcal{O}_i}$
2 <i>m</i>	<i>Spin</i> (<i>n</i> , <i>n</i>) (split)	± ∓ ± + - + - ∓ (I, II)	4
2m + 1	<i>Spin</i> (<i>n</i> , <i>n</i>) (split)	土 王 土 - 土 - 土 - 王 - 王 -	2
2m	Spin(n+1, n-1) (quasisplit)	+ - + + - + - +	1

Type D_n , $\mathfrak{g} = \mathfrak{so}_{2n}$

п	G	$\{\mathcal{O}_i\}$	$\#\{\mathcal{O}_i\}$
$2m \pm 1$	Spin(n+1, n-1) (quasisplit)	+ - + + - + + + -	2
			2
2m + 1	Spin(n + 2, n - 2)		1

Outline

Model orbit

Type E

Туре	G	$\{\mathcal{O}_i\}$	$\#\{\mathcal{O}_i\}$
E_6	$E_6(A_1 imes A_5)$ (quasisplit)	#4,5	2
E ₆	$E_6(C_4)$ (split)	#3	1
E ₇	$E_7(A_7)$ (split)	#8,9	2
E ₈	$E_8(D_8)$ (split)	#6	1

Examples of the setting	Lifting	Lift(C)	

Remark

The groups listed in these tables are the only real simply laced groups such that $\mathcal{O} \cap \mathfrak{g}_{\mathbb{R}} \neq \phi$. (Most of them are quasisplit).

Examples of the setting	Lifting	Lift(C)	

Remark

The groups listed in these tables are the only real simply laced groups such that $\mathcal{O} \cap \mathfrak{g}_{\mathbb{R}} \neq \phi$. (Most of them are quasisplit).

Since $AV(\tilde{\pi}) = \overline{\mathcal{O}_i}$ for $\tilde{\pi} \in \prod_{\rho/2}^{s} (\tilde{G})$, \mathcal{O}_i is some real form of \mathcal{O} , we have

Examples of the setting	Lifting	Lift(C)	

Remark

The groups listed in these tables are the only real simply laced groups such that $\mathcal{O} \cap \mathfrak{g}_{\mathbb{R}} \neq \phi$. (Most of them are quasisplit).

Since $AV(\tilde{\pi}) = \overline{\mathcal{O}_i}$ for $\tilde{\pi} \in \prod_{\rho/2}^{s} (\tilde{G})$, \mathcal{O}_i is some real form of \mathcal{O} , we have

Corollary

For G not listed in the above tables, $Lift(\mathbb{C}) = 0$.

Construct Lift(\mathbb{C}) for G split

From a paper of Adams-Barbasch-Paul-Trapa-Vogan, there defines a set of genuine irreducible representations {Sh_i}, called Shimura representations, which are the irreducible quotients of genuine minimal principal series.

Construct Lift(\mathbb{C}) for G split

From a paper of Adams-Barbasch-Paul-Trapa-Vogan, there defines a set of genuine irreducible representations {Sh_i}, called Shimura representations, which are the irreducible quotients of genuine minimal principal series.

Туре	G	Ĩ	$\#{Sh_i}$	LKT of shi
A _{2<i>m</i>-1}	$SL(2m,\mathbb{R})$	Spin(2m)	2	Spin $_\pm$
A _{2m}	$SL(2m+1,\mathbb{R})$	Spin(2m+1)	1	Spin
D ₂ m	Spin(2m, 2m)	Spin(2m) imes Spin(2m)	4	$1\otimes \textit{Spin}_\pm$, $\textit{Spin}_\pm\otimes 1$
D _{2<i>m</i>+1}	Spin(2m+1, 2m+1)	Spin(2m+1) imes Spin(2m+1)	2	$1\otimes Spin$, $Spin\otimes 1$
E ₆	E ₆ (C ₄)	Sp(8)	1	C ⁸
E7	E7(A7)	<i>SU</i> (8)	2	$\mathbb{C}^{8}, (\mathbb{C}^{8})^{*}$
E ₈	E ₈ (D ₈)	Spin(16)	1	C ¹⁶

► ${Sh_i} \leftrightarrow {gen}$	uine central c	har. $\} \leftrightarrow \{\text{real forms o}$	$f \mathcal{O} \}$
$\{Sh_i\} \leftrightarrow$	$\{\chi_i\}$	$\leftrightarrow \{\mathcal{O}_i\}$	

 $Lift(\mathbb{C})$

Examples of the setting	Lifting	$Lift(\mathbb{C})$	

- ► { Sh_i } \leftrightarrow {genuine central char.} \leftrightarrow {real forms of \mathcal{O} } { Sh_i } \leftrightarrow { χ_i } \leftrightarrow { \mathcal{O}_i }
- ▶ Starting from Sh_i , we construct a set of representations, $\prod_{R_D}(\widetilde{G})$, by a series of Cayley transforms.

Examples of the setting	Lifting	Lift(C)	

- ► { Sh_i } \leftrightarrow {genuine central char.} \leftrightarrow {real forms of \mathcal{O} } { Sh_i } \leftrightarrow { χ_i } \leftrightarrow { \mathcal{O}_i }
- ▶ Starting from Sh_i , we construct a set of representations, $\prod_{R_D}(\widetilde{G})$, by a series of Cayley transforms.

Theorem

 $\prod_{R_D}(\widetilde{G}) \subseteq \prod_{\rho/2}^{\mathfrak{s}}(\widetilde{G}) \text{ and } \prod_{R_D}(\widetilde{G}) \leftrightarrow \{(\chi_i, \mathcal{O}_j)\}$ (The representation we constructed are small with inf. char. $\rho/2$.)

	Examples of the setting	Lifting	Lift(C)	
Example				

Type
$$D_n$$
, $n = 2m$
 $G = Spin(n, n)$, $\widetilde{K} = Spin(n) \times Spin(n)$

	Examples of the setting	Lifting	Lift(C)	
Example				

Type D_n , n = 2m G = Spin(n, n), $\widetilde{K} = Spin(n) \times Spin(n)$ $\#\{Sh_i\} = \#\{\chi_i\} = \#\{\mathcal{O}_i\} = 4$

	Examples of the setting	Lifting	Lift(C)	
Example				

Wan-Yu Tsai

Type D_n , n = 2m G = Spin(n, n), $\tilde{K} = Spin(n) \times Spin(n)$ $\# \{Sh_i\} = \# \{\chi_i\} = \# \{\mathcal{O}_i\} = 4$ $\prod_{R_D} (\tilde{G}) = \{Sh_i, \pi_i, \delta_i, \tau_i\}_{i=1}^4$

	Examples of the setting	Lifting	Lift(C)	
Example				

Type D_n , n = 2m G = Spin(n, n), $\widetilde{K} = Spin(n) \times Spin(n)$ $\#\{Sh_i\} = \#\{\chi_i\} = \#\{\mathcal{O}_i\} = 4$ $\prod_{R_D}(\widetilde{G}) = \{Sh_i, \pi_i, \delta_i, \tau_i\}_{i=1}^4$ Define some Spin(n)-types as follows.

	Lifting	Lift(C)	

Example

Type
$$D_n$$
, $n = 2m$
 $G = Spin(n, n)$, $\widetilde{K} = Spin(n) \times Spin(n)$
 $\#\{Sh_i\} = \#\{\chi_i\} = \#\{\mathcal{O}_i\} = 4$
 $\prod_{R_D}(\widetilde{G}) = \{Sh_i, \pi_i, \delta_i, \tau_i\}_{i=1}^4$
Define some $Spin(n)$ -types as follows.
 $\mathbb{C} = (0, \dots, 0)$

	Examples of the setting	Lifting	Lift(C)	
Example				

Wan-Yu Tsai

Type D_n , n = 2m G = Spin(n, n), $\widetilde{K} = Spin(n) \times Spin(n)$ $\#\{Sh_i\} = \#\{\chi_i\} = \#\{\mathcal{O}_i\} = 4$ $\prod_{R_D}(\widetilde{G}) = \{Sh_i, \pi_i, \delta_i, \tau_i\}_{i=1}^4$ Define some Spin(n)-types as follows. $\mathbb{C} = (0, \cdots, 0)$ $Spin_{\pm} = (\frac{1}{2}, \cdots, \pm \frac{1}{2})$

	Lifting	Lift(C)	

Example

Type
$$D_n$$
, $n = 2m$
 $G = Spin(n, n)$, $\widetilde{K} = Spin(n) \times Spin(n)$
 $\#\{Sh_i\} = \#\{\chi_i\} = \#\{\mathcal{O}_i\} = 4$
 $\prod_{R_D}(\widetilde{G}) = \{Sh_i, \pi_i, \delta_i, \tau_i\}_{i=1}^4$
Define some $Spin(n)$ -types as follows.
 $\mathbb{C} = (0, \cdots, 0)$
 $Spin_{\pm} = (\frac{1}{2}, \cdots, \pm \frac{1}{2})$
 $\Gamma_{\pm} = (\frac{3}{2}, \frac{1}{2}, \cdots, \pm \frac{1}{2}),$

	Lifting	Lift(C)	

Example

Type
$$D_n$$
, $n = 2m$
 $G = Spin(n, n)$, $\widetilde{K} = Spin(n) \times Spin(n)$
 $\#\{Sh_i\} = \#\{\chi_i\} = \#\{\mathcal{O}_i\} = 4$
 $\prod_{R_D}(\widetilde{G}) = \{Sh_i, \pi_i, \delta_i, \tau_i\}_{i=1}^4$
Define some $Spin(n)$ -types as follows.
 $\mathbb{C} = (0, \cdots, 0)$
 $Spin_{\pm} = (\frac{1}{2}, \cdots, \pm \frac{1}{2})$
 $\Gamma_{\pm} = (\frac{3}{2}, \frac{1}{2}, \cdots, \pm \frac{1}{2}),$
 $\mathbf{1}_{\pm} = (1, \cdots, \pm 1)$

 D_4

	\mathcal{O}_1	\mathcal{O}_2	\mathcal{O}_3	\mathcal{O}_4
χ1	Sh ₁	π_1	δ_1	$ au_1$
	$\mathit{Spin}_+ oxtimes \mathbb{C}$	$\Gamma_{-} \boxtimes \mathbb{C}$	$\mathit{Spin}_+ oxtimes 1_+$	$\mathit{Spin}_+ oxtimes 1$
χ2	<i>π</i> ₂	Sh ₂	$ au_2$	δ_2
	$\Gamma_+ oxtimes \mathbb{C}$	$\mathit{Spin}_{-} oxtimes \mathbb{C}$	$\mathit{Spin}_{-} oxtimes 1_{+}$	$\mathit{Spin}_{-} oxtimes 1_{-}$
χз	δ_3	$ au_3$	Sh ₃	<i>π</i> ₃
	$1_+oxtimes \mathit{Spin}_+$	$1_{-}oxtimes$ Spin $_+$	$\mathbb{C} oxtimes Spin_+$	$\mathbb{C} \boxtimes \Gamma_{-}$
χ4	$ au_4$	δ4	π_4	Sh ₄
	$1_+oxtimes \mathit{Spin}$	$1_{-}oxtimes$ Spin_	$\mathbb{C} \boxtimes \Gamma_+$	$\mathbb{C} oxtimes Spin_{-}$

	Lifting	Lift(C)	

$\begin{array}{l} \hline \textbf{Main Theorem} \\ \hline \textbf{For } \mathcal{G} \text{ split, we have} \\ \prod_{\mathcal{R}_{\mathcal{D}}} (\widetilde{\mathcal{G}}) = \textsf{Lift}(\mathbb{C}) = \prod_{\rho/2}^{s} (\widetilde{\mathcal{G}}) = \prod_{\rho/2}^{\mathcal{O}} (\widetilde{\mathcal{G}}) \leftrightarrow \{(\chi_{i}, \mathcal{O}_{j})\} \end{array}$

Sketch of proof. Recall that $\text{Lift}(\mathbb{C}) \subseteq \prod_{\rho/2}^{s} (\widetilde{G}) = \prod_{\rho/2}^{\mathcal{O}} (\widetilde{G})$ for G not necessarily split. The fact that $\prod_{R_D} (\widetilde{G}) = \prod_{\rho/2}^{s} (\widetilde{G})$ is obtained by counting the elements in $\prod_{\rho/2}^{s} (\widetilde{G})$ by a Weyl group calculation.

	Lifting	Lift(C)	Model orbit

Work in progress:

- Generalize the results in the paper of Adams-Barbasch-Paul-Trapa-Vogan to the quasisplit groups (i.e.
 - $G = SU(m, m), SU(m+1, m), Spin(n+1, n-1), E_6(A_1 \times A_5))$
- Study the structure of the double cover \widetilde{G} of these groups
- Study the small representations of \widetilde{G} attached to $\mathcal O$

	Lifting	Lift(C)	

Work in progress:

- Generalize the results in the paper of
 Adams-Barbasch-Paul-Trapa-Vogan to the quasisplit groups (i.e.
 - $G = SU(m, m), SU(m+1, m), Spin(n+1, n-1), E_6(A_1 \times A_5))$
- Study the structure of the double cover \widetilde{G} of these groups
- Study the small representations of \widetilde{G} attached to $\mathcal O$

Conjecture

The representations in Lift(\mathbb{C}) are unitary.

	Lifting	Lift(C)	

Work in progress:

- Generalize the results in the paper of
 Adams-Barbasch-Paul-Trapa-Vogan to the quasisplit groups (i.e.
 - $G = SU(m,m), SU(m+1,m), Spin(n+1,n-1), E_6(A_1 \times A_5))$
- Study the structure of the double cover G of these groups
- Study the small representations of \widetilde{G} attached to \mathcal{O}

Conjecture

The representations in $Lift(\mathbb{C})$ are unitary.

The conjecture is proved for split type A_{n-1} by Lucas in his thesis.

	Lifting	Lift(C)	Model orbit

We want to focus on the K-types of the small representations and the relation to the K-structure of the ring of the regular functions on their associated varieties.

	Lifting	$Lift(\mathbb{C})$	Model orbit

We want to focus on the K-types of the small representations and the relation to the K-structure of the ring of the regular functions on their associated varieties.

General setting:

```
G: a complex, semisimple algebraic group, \mathfrak{g} = \operatorname{Lie}(G),
```

```
K: max. cpt subgroup, e \in \mathfrak{g}: nilp. element
```

 $\mathcal{O} := G \cdot e$

 $R(\mathcal{O}) :=$ ring of regular functions on \mathcal{O}

* Fact. $R(\mathcal{O})$ carries a K-representation.

	Lifting	Lift(€)	Model orbit

Two stages

(A) Decompose $R(\mathcal{O}) = \sum_{\lambda \in K^{\wedge}} V(\lambda)$, where $V(\lambda)$ is an irreducible representation of K with highest weight λ . (B) Compute the K-types of π where $\pi \in G^{\wedge}$ with $AV(\pi) = \overline{\mathcal{O}}$.

For some reason, (A) = (B), so computing (A) predicts the *K*-types of π attached to the orbit.

	Lifting	Lift(C)	Model orbit

Two stages

(A) Decompose $R(\mathcal{O}) = \sum_{\lambda \in K^{\wedge}} V(\lambda)$, where $V(\lambda)$ is an irreducible representation of K with highest weight λ . (B) Compute the K-types of π where $\pi \in G^{\wedge}$ with $AV(\pi) = \overline{\mathcal{O}}$.

For some reason, (A) = (B), so computing (A) predicts the K-types of π attached to the orbit.

There are some orbits that we are mainly interested in.

Definition

A nilpotent orbit \mathcal{O} is called a model orbit if all K-multiplicities in $R(\mathcal{O})$ are 0 or 1.

	Lifting	Lift(C)	Model orbit

► For a complex s.c., s.s Lie group G, McGovern points out that O is a model orbit for O in the above table (in the simply laced cases), but in his paper he did not calculate the decomposition of R(O) explicitly.

	Lifting	$Lift(\mathbb{C})$	Model orbit

- ► For a complex s.c., s.s Lie group G, McGovern points out that O is a model orbit for O in the above table (in the simply laced cases), but in his paper he did not calculate the decomposition of R(O) explicitly.
- ► Adams-Huang-Vogan took G = E₈(C), O = 4A₁ with dimension 128. They proved that O is a model orbit and every K-type occurs in R(O) exactly once.

	Lifting	Lift(C)	Model orbit

- ► For a complex s.c., s.s Lie group G, McGovern points out that O is a model orbit for O in the above table (in the simply laced cases), but in his paper he did not calculate the decomposition of R(O) explicitly.
- ► Adams-Huang-Vogan took G = E₈(C), O = 4A₁ with dimension 128. They proved that O is a model orbit and every K-type occurs in R(O) exactly once.

Goal: Generalize this problem to some cases when G is real (joint work with Barbasch).

Type D_n , n = 2m

 $\mathfrak{g} = \mathfrak{so}(2n,\mathbb{C}), \ \mathcal{O} = [3\ 2\cdots 2\ 1], \ \widetilde{G} = \widetilde{Spin}(n,n),$ $K = Spin(n) \times Spin(n).$ $\mathcal{O} \cap \mathfrak{g}_0 = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_4$. (Each orbit \mathcal{O}_i has 4 representations attached to it.) Take \mathcal{O}_1 , say, $\mathcal{O}_1 = \widetilde{G} \cdot e$. where $e = X(e_1 + e_n) + X(e_1 - e_n) + X(e_2 - e_{n+1}) + \cdots + X(e_m - e_{n-1}).$ We calculate $R(G \cdot e, \chi)|_{\widetilde{K}} = Ind^{\mathfrak{k}}_{C_{\mathfrak{s}}(e)}(\chi)$, where χ is an algebraic character of $C_{\mathfrak{k}}(e)$. Let $V(\lambda)$ be a genuine K-type, i.e. $\lambda = (a_1, \ldots, a_m \mid b_1, \ldots, b_m)$, $a_1 \geq \ldots \mid a_m \mid, b_1 \geq \cdots \geq \mid b_m \mid$ and $a_i - b_i \in \mathbb{Z} + \frac{1}{2}$. It turns out that

$$[V(\lambda):R(\mathcal{O}_1)|_{\widetilde{K}}]\neq 0 \iff a_1 \ge b_1 + \frac{1}{2} \ge a_2 \ge b_2 + \frac{1}{2} \ge \cdots \ge |b_m| + \frac{1}{2}$$

and

$$R(\mathcal{O}_1,\frac{1}{2}) = Sh_1|_{\widetilde{K}} + \pi_2|_{\widetilde{K}} + \delta_3|_{\widetilde{K}} + \tau_4|_{\widetilde{K}}$$

(This decomposition is multiplicity free, so \mathcal{O}_1 is a model orbit.)

Wan-Yu Tsai

Some small genuine representations of a nonlinear double cover

			Lift(C)	Model orbit
--	--	--	---------	-------------

Thank you!