Towards homotopy methods in representation theory

Tian An Wong

MPIM/CUNY Graduate Center

21 March 2016

Basic definitions:

- G a reductive group over k, e.g., GL(n), Sp(2n)
- G^{\vee} the complex dual group, e.g., $GL(n,\mathbb{C}), SO(2n+1,\mathbb{C})$
- $W_k \subset \operatorname{Gal}(\bar{k}/k)$ the absolute Weil group of k
- ${}^{L}G = \hat{G} \rtimes W_k$ the *L*-group
- $L_k \rightarrow W_k$ 'the' Langlands group

The arithmetic Langlands correspondence is, roughly,

• k a local field of characteristic 0, there is a finite to 1 map:

 $\operatorname{Irr}(G(k)) \longrightarrow \{\psi : L_k \times SL_2(\mathbb{C}) \to {}^LG\}/G^{\vee}\operatorname{-conj},$

giving a partition $\Pi_{unit}(G(k)) = \sqcup_{\psi} \Pi_{\psi}$ with maps $\Pi_{\psi} \to Irr(S_{\psi})$.

• k a global field of characteristic 0, we have

$$L^2_{\operatorname{disc}}(G(k)ackslash G(\mathbb{A}_k) = igoplus_{\psi} \bigoplus_{\operatorname{disc}} \prod_{\pi\in\Pi_{\psi}} \pi^{m(\pi),\psi}$$

where $\Pi_{\psi} = \otimes' \Pi_{\psi_v}$, the restricted direct product over all places v

Basic definitions:

- G a reductive group over k, e.g., GL(n), Sp(2n)
- G^{\vee} the complex dual group, e.g., $GL(n,\mathbb{C}), SO(2n+1,\mathbb{C})$
- $W_k \subset \operatorname{Gal}(\bar{k}/k)$ the absolute Weil group of k
- ${}^{L}G = \hat{G} \rtimes W_k$ the *L*-group
- $L_k \twoheadrightarrow W_k$ 'the' Langlands group

The arithmetic Langlands correspondence is, roughly,

• k a local field of characteristic 0, there is a finite to 1 map:

 $\operatorname{Irr}(G(k)) \longrightarrow \{\psi : L_k \times SL_2(\mathbb{C}) \to {}^LG\}/G^{\vee}\operatorname{-conj},$

giving a partition $\Pi_{unit}(G(k)) = \sqcup_{\psi} \Pi_{\psi}$ with maps $\Pi_{\psi} \to Irr(S_{\psi})$.

• k a global field of characteristic 0, we have

$$L^2_{ ext{disc}}(G(k)ackslash G(\mathbb{A}_k) = igoplus_{\psi} \bigoplus_{ ext{disc}} \pi^{m(\pi),\psi} \pi^{m(\pi),\psi}$$

where $\Pi_{\psi} = \otimes' \Pi_{\psi_v}$, the restricted direct product over all places v

Basic definitions:

- G a reductive group over k, e.g., GL(n), Sp(2n)
- G^{\vee} the complex dual group, e.g., $GL(n,\mathbb{C}), SO(2n+1,\mathbb{C})$
- $W_k \subset \operatorname{Gal}(\bar{k}/k)$ the absolute Weil group of k
- ${}^LG = \hat{G}
 times W_k$ the *L*-group
- $L_k \twoheadrightarrow W_k$ 'the' Langlands group

The arithmetic Langlands correspondence is, roughly,

• k a local field of characteristic 0, there is a finite to 1 map:

$$\operatorname{Irr}(G(k)) \longrightarrow \{\psi : L_k \times SL_2(\mathbb{C}) \to {}^LG\}/G^{\vee}\operatorname{-conj},$$

giving a partition $\Pi_{unit}(G(k)) = \sqcup_{\psi} \Pi_{\psi}$ with maps $\Pi_{\psi} \to Irr(S_{\psi})$.

• *k* a global field of characteristic 0, we have

$$L^2_{\operatorname{disc}}(G(k)ackslash G(\mathbb{A}_k) = igoplus_{\psi} igoplus_{\pi\in\Pi_\psi} \pi^{m(\pi),\psi}$$

where $\Pi_{\psi} = \otimes' \Pi_{\psi_v}$, the restricted direct product over all places v.

Basic definitions:

- G a reductive group over k, e.g., GL(n), Sp(2n)
- G^{\vee} the complex dual group, e.g., $GL(n,\mathbb{C}), SO(2n+1,\mathbb{C})$
- $W_k \subset \operatorname{Gal}(\bar{k}/k)$ the absolute Weil group of k
- ${}^LG = \hat{G}
 times W_k$ the *L*-group
- $L_k \twoheadrightarrow W_k$ 'the' Langlands group

The arithmetic Langlands correspondence is, roughly,

• k a local field of characteristic 0, there is a finite to 1 map:

$$\operatorname{Irr}(G(k)) \longrightarrow \{\psi : L_k \times SL_2(\mathbb{C}) \to {}^LG\}/G^{\vee}\operatorname{-conj},$$

giving a partition $\Pi_{unit}(G(k)) = \sqcup_{\psi} \Pi_{\psi}$ with maps $\Pi_{\psi} \to Irr(S_{\psi})$.

• k a global field of characteristic 0, we have

$$L^2_{\operatorname{disc}}(G(k)ackslash G(\mathbb{A}_k) = igoplus_{\psi} \bigoplus_{\operatorname{disc}} igoplus_{\in \Pi_\psi} \pi^{m(\pi),\psi}$$

where $\Pi_{\psi} = \otimes' \Pi_{\psi_v}$, the restricted direct product over all places v.

Langlands correspondences: Covering groups

The theory of automorphic forms has involved the representation theory of *covers* of reductive groups, which are often not algebraic. Examples:

- Weil representation and theta correspondence on metaplectic groups;
- Shimura lifts on covers of general/special linear groups
- Weissman's L-group for Brylinski-Deligne extensions

Theorem (Gan-Savin, 2012)

Let ψ be a nontrivial additive character of k, μ the roots of unity in k with an embedding $\epsilon : \mu \hookrightarrow \mathbb{C}^{\times}$. Then there is a bijection

 $Irr_{\epsilon}(Mp_{2n}) \leftrightarrow Irr(SO_{2n+1}(k)) \sqcup Irr(SO_{2n+1}(k))$

where the LHS denotes representations π such that $\pi|_{\mu} = \epsilon$.

Question: How do covering groups fit into the Langlands correspondence?

Langlands correspondences: Covering groups

The theory of automorphic forms has involved the representation theory of *covers* of reductive groups, which are often not algebraic. Examples:

- Weil representation and theta correspondence on metaplectic groups;
- Shimura lifts on covers of general/special linear groups
- Weissman's L-group for Brylinski-Deligne extensions

Theorem (Gan-Savin, 2012)

Let ψ be a nontrivial additive character of k, μ the roots of unity in k with an embedding $\epsilon : \mu \hookrightarrow \mathbb{C}^{\times}$. Then there is a bijection

 $Irr_{\epsilon}(Mp_{2n}) \leftrightarrow Irr(SO_{2n+1}(k)) \sqcup Irr(SO_{2n+1}(k))$

where the LHS denotes representations π such that $\pi|_{\mu} = \epsilon$.

Question: How do covering groups fit into the Langlands correspondence?

2/11

The theory of automorphic forms has involved the representation theory of *covers* of reductive groups, which are often not algebraic. Examples:

- Weil representation and theta correspondence on metaplectic groups;
- Shimura lifts on covers of general/special linear groups
- Weissman's L-group for Brylinski-Deligne extensions

Theorem (Gan-Savin, 2012)

Let ψ be a nontrivial additive character of k, μ the roots of unity in k with an embedding $\epsilon : \mu \hookrightarrow \mathbb{C}^{\times}$. Then there is a bijection

 $Irr_{\epsilon}(Mp_{2n}) \leftrightarrow Irr(SO_{2n+1}(k)) \sqcup Irr(SO_{2n+1}(k))$

where the LHS denotes representations π such that $\pi|_{\mu} = \epsilon$.

Question: How do covering groups fit into the Langlands correspondence?

2/11

The theory of automorphic forms has involved the representation theory of *covers* of reductive groups, which are often not algebraic. Examples:

- Weil representation and theta correspondence on metaplectic groups;
- Shimura lifts on covers of general/special linear groups
- Weissman's L-group for Brylinski-Deligne extensions

Theorem (Gan-Savin, 2012)

Let ψ be a nontrivial additive character of k, μ the roots of unity in k with an embedding $\epsilon : \mu \hookrightarrow \mathbb{C}^{\times}$. Then there is a bijection

$$Irr_{\epsilon}(Mp_{2n}) \leftrightarrow Irr(SO_{2n+1}(k)) \sqcup Irr(SO_{2n+1}(k))$$

where the LHS denotes representations π such that $\pi|_{\mu} = \epsilon$.

Question: How do covering groups fit into the Langlands correspondence?

The theory of automorphic forms has involved the representation theory of *covers* of reductive groups, which are often not algebraic. Examples:

- Weil representation and theta correspondence on metaplectic groups;
- Shimura lifts on covers of general/special linear groups
- Weissman's L-group for Brylinski-Deligne extensions

Theorem (Gan-Savin, 2012)

Let ψ be a nontrivial additive character of k, μ the roots of unity in k with an embedding $\epsilon : \mu \hookrightarrow \mathbb{C}^{\times}$. Then there is a bijection

$$Irr_{\epsilon}(Mp_{2n}) \leftrightarrow Irr(SO_{2n+1}(k)) \sqcup Irr(SO_{2n+1}(k))$$

where the LHS denotes representations π such that $\pi|_{\mu} = \epsilon$.

Question: How do covering groups fit into the Langlands correspondence?

2/11

A nonarchimedean local field is a complete discrete valued field with finite residue field, e.g., \mathbb{Q}_p or $\mathbb{F}_p((t))$. Define an *n*-dimensional local field inductively to be one whose residue field is an (n-1)-dimensional local field, e.g., $\mathbb{Q}_p((t)), \mathbb{F}_p((t_1))((t_2))$.

Theorem (Kapranov, 1992)

The Langlands correspondence is a stack on the Waldhausen space—a bisimplicial category—associated to the category of (pure) motives.

For the n = 2, Parshin's version (2013) of Kapranov's proposed correspondence reads: {d-dim reps of Gal (\overline{k}/k) } \leftrightarrow {Irred. 2-reps of GL(2d, k)} **Problem:** *n*-categories are not well-developed. (But ∞-categories a

A nonarchimedean local field is a complete discrete valued field with finite residue field, e.g., \mathbb{Q}_p or $\mathbb{F}_p((t))$. Define an *n*-dimensional local field inductively to be one whose residue field is an (n-1)-dimensional local field, e.g., $\mathbb{Q}_p((t)), \mathbb{F}_p((t_1))((t_2))$.

Theorem (Kapranov, 1992)

The Langlands correspondence is a stack on the Waldhausen space—a bisimplicial category—associated to the category of (pure) motives.

For the n = 2, Parshin's version (2013) of Kapranov's proposed correspondence reads: {d-dim reps of Gal (\overline{k}/k) } \leftrightarrow {Irred. 2-reps of GL(2d, k)} **Problem:** *n*-categories are not well-developed. (But ∞-categories a

A nonarchimedean local field is a complete discrete valued field with finite residue field, e.g., \mathbb{Q}_p or $\mathbb{F}_p((t))$. Define an *n*-dimensional local field inductively to be one whose residue field is an (n-1)-dimensional local field, e.g., $\mathbb{Q}_p((t)), \mathbb{F}_p((t_1))((t_2))$.

Theorem (Kapranov, 1992)

The Langlands correspondence is a stack on the Waldhausen space—a bisimplicial category—associated to the category of (pure) motives.

For the n = 2, Parshin's version (2013) of Kapranov's proposed correspondence reads: $\{d$ -dim reps of $Gal(\bar{k}/k)\} \leftrightarrow \{Irred. 2\text{-reps of } GL(2d, k)\}$ **Problem:** n-categories are not well-developed. (But ∞ -categories are

A nonarchimedean local field is a complete discrete valued field with finite residue field, e.g., \mathbb{Q}_p or $\mathbb{F}_p((t))$. Define an *n*-dimensional local field inductively to be one whose residue field is an (n-1)-dimensional local field, e.g., $\mathbb{Q}_p((t)), \mathbb{F}_p((t_1))((t_2))$.

Theorem (Kapranov, 1992)

The Langlands correspondence is a stack on the Waldhausen space—a bisimplicial category—associated to the category of (pure) motives.

dim <i>n</i>	<i>n</i> -categories	objects
0	k	subsets of <i>k</i>
1	Vect/k	V/k
2	2-Vect/ <i>k</i>	Vect-modules/k
:	:	:
•	· ·	•

For the n = 2, Parshin's version (2013) of Kapranov's proposed correspondence reads: $\{d$ -dim reps of $Gal(\bar{k}/k)\} \leftrightarrow \{Irred. 2\text{-reps of } GL(2d, k)\}$ **Problem:** n-categories are not well-developed. (But ∞ -categories ar

A nonarchimedean local field is a complete discrete valued field with finite residue field, e.g., \mathbb{Q}_p or $\mathbb{F}_p((t))$. Define an *n*-dimensional local field inductively to be one whose residue field is an (n-1)-dimensional local field, e.g., $\mathbb{Q}_p((t)), \mathbb{F}_p((t_1))((t_2))$.

Theorem (Kapranov, 1992)

The Langlands correspondence is a stack on the Waldhausen space—a bisimplicial category—associated to the category of (pure) motives.

dim <i>n</i>	n-categories	objects
0	k	subsets of <i>k</i>
1	Vect/k	V/k
2	2-Vect/ <i>k</i>	Vect-modules/k
:	-	

For the n = 2, Parshin's version (2013) of Kapranov's proposed correspondence reads: {d-dim reps of Gal(\overline{k}/k)} \leftrightarrow {Irred. 2-reps of GL(2d, k)} **Problem:** n-categories are not well-developed. (But ∞ -categories

A nonarchimedean local field is a complete discrete valued field with finite residue field, e.g., \mathbb{Q}_p or $\mathbb{F}_p((t))$. Define an *n*-dimensional local field inductively to be one whose residue field is an (n-1)-dimensional local field, e.g., $\mathbb{Q}_p((t)), \mathbb{F}_p((t_1))((t_2))$.

Theorem (Kapranov, 1992)

The Langlands correspondence is a stack on the Waldhausen space—a bisimplicial category—associated to the category of (pure) motives.

dim <i>n</i>	<i>n</i> -categories	objects
0	k	subsets of <i>k</i>
1	Vect/k	V/k
2	2-Vect/k	Vect-modules/ k
:	÷	÷

For the n = 2, Parshin's version (2013) of Kapranov's proposed correspondence reads: $\{d\text{-dim reps of Gal}(\overline{k}/k)\} \leftrightarrow \{\text{Irred. 2-reps of } GL(2d, k)\}$ **Problem:** $n\text{-categories are not well-developed. (But <math>\infty$ -categories are!) This talk: Motives most naturally live in an $(\infty, 1)$ -category. How should the automorphic side reflect this structure?

Why stacks? They (1) solve moduli problems, (2) keep track of nontrivial automorphisms in quotient groups.

Definition: A *stack* (in groupoids) over a category C is a category k fibred in groupoids such that

- isomorphisms are a sheaf and
- descent datum is effective

In other words, p^{-1} is a sheaf of groupoids on *C*. (Really a 2-sheaf.) We call a stack *algebraic* (or Artin) if

• the diagonal $F \rightarrow F \times F$ is representable, quasi-compact, and separated,

Why stacks? They (1) solve moduli problems, (2) keep track of nontrivial automorphisms in quotient groups.

Definition: A *stack* (in groupoids) over a category C is a category k fibred in groupoids such that

- isomorphisms are a sheaf and
- descent datum is effective

In other words, p^{-1} is a sheaf of groupoids on *C*. (Really a 2-sheaf.) We call a stack *algebraic* (or Artin) if

• the diagonal $F \rightarrow F \times F$ is representable, quasi-compact, and separated,

Why stacks? They (1) solve moduli problems, (2) keep track of nontrivial automorphisms in quotient groups.

$$\begin{array}{ccc} F & & \mathsf{Gpd} \\ \downarrow_{p} & & \uparrow_{p^{-1}} \\ C & & C \end{array}$$

Definition: A *stack* (in groupoids) over a category C is a category k fibred in groupoids such that

- isomorphisms are a sheaf and
- descent datum is effective

In other words, p^{-1} is a sheaf of groupoids on *C*. (Really a 2-sheaf.) We call a stack *algebraic* (or Artin) if

• the diagonal $F \rightarrow F \times F$ is representable, quasi-compact, and separated,

Why stacks? They (1) solve moduli problems, (2) keep track of nontrivial automorphisms in quotient groups.

$$\begin{array}{ccc} F & & \mathsf{Gpd} \\ \downarrow_{p} & & \uparrow_{p^{-1}} \\ C & & C \end{array}$$

Definition: A *stack* (in groupoids) over a category C is a category k fibred in groupoids such that

- isomorphisms are a sheaf and
- descent datum is effective

In other words, p^{-1} is a sheaf of groupoids on *C*. (Really a 2-sheaf.) We call a stack *algebraic* (or Artin) if

• the diagonal $F \to F \times F$ is representable, quasi-compact, and separated,

Why stacks? They (1) solve moduli problems, (2) keep track of nontrivial automorphisms in quotient groups.

$$\begin{array}{ccc} F & & \mathsf{Gpd} \\ \downarrow_{p} & & \uparrow_{p^{-1}} \\ C & & C \end{array}$$

Definition: A *stack* (in groupoids) over a category C is a category k fibred in groupoids such that

- isomorphisms are a sheaf and
- descent datum is effective

In other words, p^{-1} is a sheaf of groupoids on *C*. (Really a 2-sheaf.) We call a stack *algebraic* (or Artin) if

- the diagonal $F \to F \times F$ is representable, quasi-compact, and separated,
- There is a smooth surjective morphism from a scheme $X \to F$

Example: $C = \text{Spec } \mathbb{Z}$, $F = \mathcal{M}_g$ smooth curves of fixed genus $g \ge 2$ is an algebraic stack.

Example: Let X be an S-scheme with an action of an algebraic group **G**, with k points $G =: \mathbf{G}(k)$. The *quotient stack* is the contravariant functor $[X/\mathbf{G}] : (\operatorname{Sch}/S)^{\operatorname{op}} \to \operatorname{Gpd}$

associating to an S-scheme Y the category of principle G-bundles over Y with a G-equivariant morphism to X.

Example If X = Spec(k) = *, then $[*/\mathbf{G}]$ is the moduli stack of principle *G*-bundles over *S*, called the *classifying stack B***G**. It is known that

 $\operatorname{Rep}(G) \simeq \operatorname{QC}(BG),$

where Rep denotes the category of smooth, finite-dimensional complex representations and QC the category of quasicoherent sheaves.

Theorem (Bernstein, 2014)

Let ${\bf G}_i$ be the pure inner forms of ${\bf G}$ over a nonarchimedean local field k. Then

 $\operatorname{Irr}(\operatorname{QC}(B\mathbf{G}(k)) = \prod \operatorname{Irr}(G_i)$

where Irr(C) denotes isomorphism classes of simple objects in C.

Example: Let X be an S-scheme with an action of an algebraic group **G**, with k points $G =: \mathbf{G}(k)$. The *quotient stack* is the contravariant functor $[X/\mathbf{G}] : (\operatorname{Sch}/S)^{\operatorname{op}} \to \operatorname{Gpd}$

associating to an S-scheme Y the category of principle G-bundles over Y with a G-equivariant morphism to X.

Example If X = Spec(k) = *, then $[*/\mathbf{G}]$ is the moduli stack of principle *G*-bundles over *S*, called the *classifying stack B***G**. It is known that

 $\mathsf{Rep}(G) \simeq \mathsf{QC}(BG),$

where Rep denotes the category of smooth, finite-dimensional complex representations and QC the category of quasicoherent sheaves.

Theorem (Bernstein, 2014)

Let ${\bf G}_i$ be the pure inner forms of ${\bf G}$ over a nonarchimedean local field k. Then

 $\operatorname{Irr}(\operatorname{QC}(B\mathbf{G}(k)) = \prod \operatorname{Irr}(G_i)$

where Irr(C) denotes isomorphism classes of simple objects in C.

Example: Let X be an S-scheme with an action of an algebraic group **G**, with k points $G =: \mathbf{G}(k)$. The *quotient stack* is the contravariant functor

 $[X/\mathbf{G}]: (\mathrm{Sch}/S)^{\mathrm{op}} \to \mathrm{Gpd}$

associating to an S-scheme Y the category of principle G-bundles over Y with a G-equivariant morphism to X.

Example If X = Spec(k) = *, then $[*/\mathbf{G}]$ is the moduli stack of principle *G*-bundles over *S*, called the *classifying stack* $B\mathbf{G}$. It is known that

 $\operatorname{Rep}(G) \simeq \operatorname{QC}(BG),$

where Rep denotes the category of smooth, finite-dimensional complex representations and QC the category of quasicoherent sheaves.

Theorem (Bernstein, 2014)

Let \mathbf{G}_i be the pure inner forms of \mathbf{G} over a nonarchimedean local field k. Then

 $\operatorname{Irr}(\operatorname{QC}(B\mathbf{G}(k)) = \prod \operatorname{Irr}(G_i)$

where lrr(C) denotes isomorphism classes of simple objects in C.

Example: Let X be an S-scheme with an action of an algebraic group **G**, with k points $G =: \mathbf{G}(k)$. The *quotient stack* is the contravariant functor

 $[X/\mathbf{G}]: (\mathrm{Sch}/S)^{\mathrm{op}} \to \mathrm{Gpd}$

associating to an S-scheme Y the category of principle G-bundles over Y with a G-equivariant morphism to X.

Example If X = Spec(k) = *, then $[*/\mathbf{G}]$ is the moduli stack of principle *G*-bundles over *S*, called the *classifying stack* $B\mathbf{G}$. It is known that

 $\operatorname{Rep}(G) \simeq \operatorname{QC}(BG),$

where Rep denotes the category of smooth, finite-dimensional complex representations and QC the category of quasicoherent sheaves.

Theorem (Bernstein, 2014)

Let G_i be the pure inner forms of G over a nonarchimedean local field k. Then

$$\operatorname{Irr}(\operatorname{QC}(B\mathbf{G}(k)) = \prod \operatorname{Irr}(G_i)$$

where Irr(C) denotes isomorphism classes of simple objects in C.

Definition: Let Δ be the category whose objects are the relations $0 \rightarrow 1 \rightarrow \cdots \rightarrow n$ for $n \ge 0$, and the morphisms are order-preserving set functions. Then a *simplicial set* is a contravariant functor

 $\Delta^{\mathsf{op}} o \mathsf{Sets}$

and a simplicial presheaf over C is a contravariant functor

 $C^{\mathsf{op}} \to \mathsf{sSets}.$

i.e., a simplicial object in Pre/C.

Definition: A simplicial presheaf k is a *stack* if for any hypercovering H of any $X \in C$ the natural morphism

 $F(X) \rightarrow \operatorname{holim}_{\Delta}F(H_n)$

Definition: Let Δ be the category whose objects are the relations $0 \rightarrow 1 \rightarrow \cdots \rightarrow n$ for $n \ge 0$, and the morphisms are order-preserving set functions. Then a *simplicial set* is a contravariant functor

$\Delta^{\mathsf{op}} \to \mathsf{Sets}$

and a simplicial presheaf over C is a contravariant functor

 $C^{\mathsf{op}} \to \mathsf{sSets}.$

i.e., a simplicial object in Pre/C.

Definition: A simplicial presheaf k is a *stack* if for any hypercovering H of any $X \in C$ the natural morphism

 $F(X) \rightarrow \operatorname{holim}_{\Delta}F(H_n)$

Definition: Let Δ be the category whose objects are the relations $0 \rightarrow 1 \rightarrow \cdots \rightarrow n$ for $n \ge 0$, and the morphisms are order-preserving set functions. Then a *simplicial set* is a contravariant functor

 $\Delta^{\mathsf{op}} \to \mathsf{Sets}$

and a simplicial presheaf over C is a contravariant functor

 $C^{\mathsf{op}} \to \mathsf{sSets}.$

i.e., a simplicial object in Pre/C.

Definition: A simplicial presheaf k is a *stack* if for any hypercovering H of any $X \in C$ the natural morphism

 $F(X) \rightarrow \operatorname{holim}_{\Delta}F(H_n)$

Definition: Let Δ be the category whose objects are the relations $0 \rightarrow 1 \rightarrow \cdots \rightarrow n$ for $n \ge 0$, and the morphisms are order-preserving set functions. Then a *simplicial set* is a contravariant functor

$$\Delta^{\mathsf{op}} o \mathsf{Sets}$$

and a simplicial presheaf over C is a contravariant functor

$$C^{\mathsf{op}} \to \mathsf{sSets}.$$

i.e., a simplicial object in Pre/C.

Definition: A simplicial presheaf k is a *stack* if for any hypercovering H of any $X \in C$ the natural morphism

 $F(X) \rightarrow \operatorname{holim}_{\Delta}F(H_n)$

Definition: Let Δ be the category whose objects are the relations $0 \rightarrow 1 \rightarrow \cdots \rightarrow n$ for $n \ge 0$, and the morphisms are order-preserving set functions. Then a *simplicial set* is a contravariant functor

$$\Delta^{\mathsf{op}} o \mathsf{Sets}$$

and a simplicial presheaf over C is a contravariant functor

$$C^{\mathsf{op}} \to \mathsf{sSets}.$$

i.e., a simplicial object in Pre/C.

Definition: A simplicial presheaf k is a *stack* if for any hypercovering H of any $X \in C$ the natural morphism

$$F(X) \rightarrow \operatorname{holim}_{\Delta}F(H_n)$$

A closed model structure on a category is a specified class of maps (fibrations, cofibrations, weak equivalences) satisfying certain axioms. By Lurie, one may assign an $(\infty, 1)$ -category to a given model category. Our construction is now straightforward: Consider simplicial sheaves of sets on $B\mathbf{G}$, then:

Proposition (W.)

The category sShv(BG(k)) has a closed model structure with the model structure of Joyal, in which

- Cofibrations are the monomorphisms,
- Fibrations are the maps with the appropriate lifting property,
- The weak equivalences are maps which induce weak equivalences on stalks.

A closed model structure on a category is a specified class of maps (fibrations, cofibrations, weak equivalences) satisfying certain axioms. By Lurie, one may assign an $(\infty, 1)$ -category to a given model category.

Our construction is now straightforward: Consider simplicial sheaves of sets on $B\mathbf{G}$, then:

Proposition (W.)

The category sShv(BG(k)) has a closed model structure with the model structure of Joyal, in which

- Cofibrations are the monomorphisms,
- Fibrations are the maps with the appropriate lifting property,
- The weak equivalences are maps which induce weak equivalences on stalks.

A closed model structure on a category is a specified class of maps (fibrations, cofibrations, weak equivalences) satisfying certain axioms. By Lurie, one may assign an $(\infty, 1)$ -category to a given model category. Our construction is now straightforward: Consider simplicial sheaves of sets on $B\mathbf{G}$, then:

Proposition (W.)

The category sShv(BG(k)) has a closed model structure with the model structure of Joyal, in which

- Cofibrations are the monomorphisms,
- Fibrations are the maps with the appropriate lifting property,
- The weak equivalences are maps which induce weak equivalences on stalks.

A closed model structure on a category is a specified class of maps (fibrations, cofibrations, weak equivalences) satisfying certain axioms. By Lurie, one may assign an $(\infty, 1)$ -category to a given model category. Our construction is now straightforward: Consider simplicial sheaves of sets on $B\mathbf{G}$, then:

Proposition (W.)

The category $sShv(B{f G}(k))$ has a closed model structure with the model structure of Joyal, in which

- Cofibrations are the monomorphisms,
- Fibrations are the maps with the appropriate lifting property,
- The weak equivalences are maps which induce weak equivalences on stalks.

Stacks for us: Why

The Langlands correspondence can be formulated using motives. (Indeed, L_k was inspired by Grothendieck's pure motives.) Morel and Voevodsky developed a homotopy theory of schemes, whose construction goes like this:

Starting with the category of smooth schemes over a field k, form

 $\operatorname{Sm}/k \to \operatorname{sShv}(\operatorname{Sm}/k) \to \operatorname{sShv}(\operatorname{Sm}/k)_{\mathbb{A}^1}$

the final term being localization with respect to projections $X \times \mathbb{A}^1 \to X$, we call this the (unstable) motivic homotopy category of schemes.

Theorem (Dugger, 2000)

There is a Quillen equivalence of model categories

 $\mathrm{sShv}(\mathrm{Sm}/k)_{\mathbb{A}^1} \xrightarrow{\sim} \mathrm{sPre}(\mathrm{Sm}/k)_{\mathbb{A}^1}$

where sPre(Sm/k) is the universal model category associated to Sm/k.

In other words, our construction mimics that of Morel and Voevodsky for motives, *before* localizing at \mathbb{A}^1 .

The Langlands correspondence can be formulated using motives. (Indeed, L_k was inspired by Grothendieck's pure motives.) Morel and Voevodsky developed a homotopy theory of schemes, whose construction goes like this:

Starting with the category of smooth schemes over a field k, form

 $\operatorname{Sm}/k \to \operatorname{sShv}(\operatorname{Sm}/k) \to \operatorname{sShv}(\operatorname{Sm}/k)_{\mathbb{A}^1}$

the final term being localization with respect to projections $X \times \mathbb{A}^1 \to X$, we call this the (unstable) motivic homotopy category of schemes.

Theorem (Dugger, 2000)

There is a Quillen equivalence of model categories

 $\mathsf{sShv}(\mathsf{Sm}/k)_{\mathbb{A}^1} \overset{\sim}{\longrightarrow} \mathsf{sPre}(\mathsf{Sm}/k)_{\mathbb{A}^1}$

where sPre(Sm/k) is the universal model category associated to Sm/k.

The Langlands correspondence can be formulated using motives. (Indeed, L_k was inspired by Grothendieck's pure motives.) Morel and Voevodsky developed a homotopy theory of schemes, whose construction goes like this:

Starting with the category of smooth schemes over a field k, form

 $\mathrm{Sm}/k \to \mathrm{sShv}(\mathrm{Sm}/k) \to \mathrm{sShv}(\mathrm{Sm}/k)_{\mathbb{A}^1}$

the final term being localization with respect to projections $X \times \mathbb{A}^1 \to X$, we call this the (unstable) motivic homotopy category of schemes.

Theorem (Dugger, 2000)

There is a Quillen equivalence of model categories

 $\mathsf{sShv}(\mathsf{Sm}/k)_{\mathbb{A}^1} \overset{\sim}{\longrightarrow} \mathsf{sPre}(\mathsf{Sm}/k)_{\mathbb{A}^1}$

where sPre(Sm/k) is the universal model category associated to Sm/k.

The Langlands correspondence can be formulated using motives. (Indeed, L_k was inspired by Grothendieck's pure motives.) Morel and Voevodsky developed a homotopy theory of schemes, whose construction goes like this:

Starting with the category of smooth schemes over a field k, form

 $\mathrm{Sm}/k \to \mathrm{sShv}(\mathrm{Sm}/k) \to \mathrm{sShv}(\mathrm{Sm}/k)_{\mathbb{A}^1}$

the final term being localization with respect to projections $X \times \mathbb{A}^1 \to X$, we call this the (unstable) motivic homotopy category of schemes.

Theorem (Dugger, 2000)

There is a Quillen equivalence of model categories

 $\mathrm{sShv}(\mathrm{Sm}/k)_{\mathbb{A}^1} \xrightarrow{\sim} \mathrm{sPre}(\mathrm{Sm}/k)_{\mathbb{A}^1}$

where sPre(Sm/k) is the universal model category associated to Sm/k.

The Langlands correspondence can be formulated using motives. (Indeed, L_k was inspired by Grothendieck's pure motives.) Morel and Voevodsky developed a homotopy theory of schemes, whose construction goes like this:

Starting with the category of smooth schemes over a field k, form

 $\mathrm{Sm}/k \to \mathrm{sShv}(\mathrm{Sm}/k) \to \mathrm{sShv}(\mathrm{Sm}/k)_{\mathbb{A}^1}$

the final term being localization with respect to projections $X \times \mathbb{A}^1 \to X$, we call this the (unstable) motivic homotopy category of schemes.

Theorem (Dugger, 2000)

There is a Quillen equivalence of model categories

$$\mathrm{sShv}(\mathrm{Sm}/k)_{\mathbb{A}^1} \xrightarrow{\sim} \mathrm{sPre}(\mathrm{Sm}/k)_{\mathbb{A}^1}$$

where sPre(Sm/k) is the universal model category associated to Sm/k.

- Nash stacks as a setting for the relative trace formula, global version of Bernstein (Sakellaridis)
- Moduli stack of Higgs bundles in proof of the fundamental lemma (Ngô)
- Moduli stacks of mod *p* and *p*-adic Galois representations (Emerton-Gee)
- (Derived) stacks in the Geometric Langlands (Gaitsgory, Rozenbylum, Arinkin, ..)

10/11

- Nash stacks as a setting for the relative trace formula, global version of Bernstein (Sakellaridis)
- Moduli stack of Higgs bundles in proof of the fundamental lemma (Ngô)
- Moduli stacks of mod *p* and *p*-adic Galois representations (Emerton-Gee)
- (Derived) stacks in the Geometric Langlands (Gaitsgory, Rozenbylum, Arinkin, ..)

10/11

- Nash stacks as a setting for the relative trace formula, global version of Bernstein (Sakellaridis)
- Moduli stack of Higgs bundles in proof of the fundamental lemma (Ngô)
- Moduli stacks of mod *p* and *p*-adic Galois representations (Emerton-Gee)
- (Derived) stacks in the Geometric Langlands (Gaitsgory, Rozenbylum, Arinkin, ..)

10/11

- Nash stacks as a setting for the relative trace formula, global version of Bernstein (Sakellaridis)
- Moduli stack of Higgs bundles in proof of the fundamental lemma (Ngô)
- Moduli stacks of mod *p* and *p*-adic Galois representations (Emerton-Gee)
- (Derived) stacks in the Geometric Langlands (Gaitsgory, Rozenbylum, Arinkin, ..)

- Nash stacks as a setting for the relative trace formula, global version of Bernstein (Sakellaridis)
- Moduli stack of Higgs bundles in proof of the fundamental lemma (Ngô)
- Moduli stacks of mod *p* and *p*-adic Galois representations (Emerton-Gee)
- (Derived) stacks in the Geometric Langlands (Gaitsgory, Rozenbylum, Arinkin, ..)

- Nash stacks as a setting for the relative trace formula, global version of Bernstein (Sakellaridis)
- Moduli stack of Higgs bundles in proof of the fundamental lemma (Ngô)
- Moduli stacks of mod *p* and *p*-adic Galois representations (Emerton-Gee)
- (Derived) stacks in the Geometric Langlands (Gaitsgory, Rozenbylum, Arinkin, ..)

- What should reflect \mathbb{A}^1 -localization of the representation theory side?
- Can this construction work for covering groups, i.e., does the following hold:

 $\operatorname{Irr}(\operatorname{QC}(B\widetilde{\mathbf{G}}(k)) \stackrel{?}{=} \prod \operatorname{Irr}(\widetilde{G}_i)$

Do we get $Irr(QC(BMp_2n(k)) = Irr_{\epsilon}(Mp_{2n})?$ (Probably not exactly.)

- Bernstein's construction covers pure inner forms of **G**. What about Kaletha's rigidified/extended pure inner forms, for when **G** is not quasiplit over *k*?
- How does this relate to Schneider's equivalence of derived categories over *p*-adic fields:

$$D(\operatorname{Rep}(G)) \xrightarrow{\sim} D(H(G, I(1)) - \operatorname{Mod})$$

where I(1) is a torsion-free maximal pro-*p*-lwahori subgroup?

- What should reflect \mathbb{A}^1 -localization of the representation theory side?
- Can this construction work for covering groups, i.e., does the following hold:

 $\operatorname{Irr}(\operatorname{QC}(B\tilde{\mathbf{G}}(k)) \stackrel{?}{=} \prod \operatorname{Irr}(\tilde{G}_i)$

Do we get $Irr(QC(BMp_2n(k)) = Irr_{\epsilon}(Mp_{2n})?$ (Probably not exactly.)

- Bernstein's construction covers pure inner forms of **G**. What about Kaletha's rigidified/extended pure inner forms, for when **G** is not quasiplit over *k*?
- How does this relate to Schneider's equivalence of derived categories over *p*-adic fields:

$$D(\operatorname{Rep}(G)) \xrightarrow{\sim} D(H(G, I(1)) - \operatorname{Mod})$$

where I(1) is a torsion-free maximal pro-*p*-lwahori subgroup?

- \bullet What should reflect $\mathbb{A}^1\mbox{-localization}$ of the representation theory side?
- Can this construction work for covering groups, i.e., does the following hold:

 $\operatorname{Irr}(\operatorname{QC}(B\tilde{\mathbf{G}}(k)) \stackrel{?}{=} \prod \operatorname{Irr}(\tilde{G}_i)$

Do we get $Irr(QC(BMp_2n(k)) = Irr_{\epsilon}(Mp_{2n})?$ (Probably not exactly.)

- Bernstein's construction covers pure inner forms of **G**. What about Kaletha's rigidified/extended pure inner forms, for when **G** is not quasiplit over *k*?
- How does this relate to Schneider's equivalence of derived categories over *p*-adic fields:

$$D(\operatorname{Rep}(G)) \xrightarrow{\sim} D(H(G, I(1)) - \operatorname{Mod})$$

where I(1) is a torsion-free maximal pro-*p*-lwahori subgroup?

- \bullet What should reflect $\mathbb{A}^1\mbox{-localization}$ of the representation theory side?
- Can this construction work for covering groups, i.e., does the following hold:

 $\operatorname{Irr}(\operatorname{QC}(B\tilde{\mathbf{G}}(k)) \stackrel{?}{=} \prod \operatorname{Irr}(\tilde{G}_i)$

Do we get $Irr(QC(BMp_2n(k)) = Irr_{\epsilon}(Mp_{2n}))$? (Probably not exactly.)

- Bernstein's construction covers pure inner forms of G. What about Kaletha's rigidified/extended pure inner forms, for when G is not quasiplit over k?
- How does this relate to Schneider's equivalence of derived categories over *p*-adic fields:

$$D(\operatorname{Rep}(G)) \xrightarrow{\sim} D(H(G, I(1)) - \operatorname{Mod})$$

where I(1) is a torsion-free maximal pro-*p*-lwahori subgroup?

- \bullet What should reflect $\mathbb{A}^1\mbox{-localization}$ of the representation theory side?
- Can this construction work for covering groups, i.e., does the following hold:

 $\operatorname{Irr}(\operatorname{QC}(B\widetilde{\mathbf{G}}(k)) \stackrel{?}{=} \prod \operatorname{Irr}(\widetilde{G}_i)$

Do we get $Irr(QC(BMp_2n(k)) = Irr_{\epsilon}(Mp_{2n})?$ (Probably not exactly.)

- Bernstein's construction covers pure inner forms of **G**. What about Kaletha's rigidified/extended pure inner forms, for when **G** is not quasiplit over *k*?
- How does this relate to Schneider's equivalence of derived categories over *p*-adic fields:

$$D(\operatorname{Rep}(G)) \xrightarrow{\sim} D(H(G, I(1)) - \operatorname{Mod})$$

where I(1) is a torsion-free maximal pro-*p*-lwahori subgroup?

- What should reflect \mathbb{A}^1 -localization of the representation theory side?
- Can this construction work for covering groups, i.e., does the following hold:

 $\operatorname{Irr}(\operatorname{QC}(B\widetilde{\mathbf{G}}(k)) \stackrel{?}{=} \prod \operatorname{Irr}(\widetilde{G}_i)$

Do we get $Irr(QC(BMp_2n(k)) = Irr_{\epsilon}(Mp_{2n})?$ (Probably not exactly.)

- Bernstein's construction covers pure inner forms of **G**. What about Kaletha's rigidified/extended pure inner forms, for when **G** is not quasiplit over *k*?
- How does this relate to Schneider's equivalence of derived categories over *p*-adic fields:

$$D(\operatorname{Rep}(G)) \xrightarrow{\sim} D(H(G, I(1)) - \operatorname{Mod})$$

where I(1) is a torsion-free maximal pro-*p*-lwahori subgroup?

- What should reflect \mathbb{A}^1 -localization of the representation theory side?
- Can this construction work for covering groups, i.e., does the following hold:

 $\operatorname{Irr}(\operatorname{QC}(B\widetilde{\mathbf{G}}(k)) \stackrel{?}{=} \prod \operatorname{Irr}(\widetilde{G}_i)$

Do we get $Irr(QC(BMp_2n(k)) = Irr_{\epsilon}(Mp_{2n})?$ (Probably not exactly.)

- Bernstein's construction covers pure inner forms of **G**. What about Kaletha's rigidified/extended pure inner forms, for when **G** is not quasiplit over *k*?
- How does this relate to Schneider's equivalence of derived categories over *p*-adic fields:

$$D(\operatorname{Rep}(G)) \xrightarrow{\sim} D(H(G, I(1)) - \operatorname{Mod})$$

where I(1) is a torsion-free maximal pro-*p*-lwahori subgroup?

Tian An Wong Towards homotopy methods in representation theory