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Langlands correspondences: Classical

Basic definitions:

G a reductive group over k , e.g., GL(n),Sp(2n)

G∨ the complex dual group, e.g., GL(n,C),SO(2n + 1,C)

Wk ⊂ Gal(k̄/k) the absolute Weil group of k
LG = Ĝ o Wk the L-group

Lk � Wk ‘the’ Langlands group

The arithmetic Langlands correspondence is, roughly,

k a local field of characteristic 0, there is a finite to 1 map:

Irr(G (k)) −→ {ψ : Lk × SL2(C)→ LG}/G∨-conj,

giving a partition Πunit(G (k)) = tψΠψ with maps Πψ → Irr(Sψ).

k a global field of characteristic 0, we have

L2
disc(G (k)\G (Ak) =

⊕
ψ disc

⊕
π∈Πψ

πm(π),ψ

where Πψ = ⊗′Πψv , the restricted direct product over all places v .
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Langlands correspondences: Covering groups

The theory of automorphic forms has involved the representation theory
of covers of reductive groups, which are often not algebraic. Examples:

Weil representation and theta correspondence on metaplectic groups;

Shimura lifts on covers of general/special linear groups

Weissman’s L-group for Brylinski-Deligne extensions

Theorem (Gan-Savin, 2012)

Let ψ be a nontrivial additive character of k, µ the roots of unity in k
with an embedding ε : µ ↪→ C×. Then there is a bijection

Irrε(Mp2n)↔ Irr(SO2n+1(k)) t Irr(SO2n+1(k))

where the LHS denotes representations π such that π|µ = ε.

Question: How do covering groups fit into the Langlands
correspondence?
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Langlands correspondences: n-dimensional

A nonarchimedean local field is a complete discrete valued field with
finite residue field, e.g., Qp or Fp((t)). Define an n-dimensional local
field inductively to be one whose residue field is an (n − 1)-dimensional
local field, e.g., Qp((t)),Fp((t1))((t2)).

Theorem (Kapranov, 1992)

The Langlands correspondence is a stack on the Waldhausen space—a
bisimplicial category—associated to the category of (pure) motives.

dim n n-categories objects
0 k subsets of k
1 Vect/k V /k
2 2-Vect/k Vect-modules/k
...

...
...

For the n = 2, Parshin’s version (2013) of Kapranov’s proposed
correspondence reads:
{d-dim reps of Gal(k̄/k)} ↔ {Irred. 2-reps of GL(2d , k)}
Problem: n-categories are not well-developed. (But ∞-categories are!)
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This talk: Motives most naturally live in an (∞, 1)-category. How should
the automorphic side reflect this structure?
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Stacks for geometers

Why stacks? They (1) solve moduli problems, (2) keep track of nontrivial
automorphisms in quotient groups.

F Gpd

↓ p ↑ p−1

C C

Definition: A stack (in groupoids) over a category C is a category k
fibred in groupoids such that

isomorphisms are a sheaf and
descent datum is effective

In other words, p−1 is a sheaf of groupoids on C . (Really a 2-sheaf.)
We call a stack algebraic (or Artin) if

the diagonal F → F × F is representable, quasi-compact, and
separated,
There is a smooth surjective morphism from a scheme X → F

Example: C = Spec Z, F =Mg smooth curves of fixed genus g ≥ 2 is
an algebraic stack.
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Stacks for representation theorists

Example: Let X be an S-scheme with an action of an algebraic group G,
with k points G =: G(k). The quotient stack is the contravariant functor

[X/G] : (Sch/S)op → Gpd

associating to an S-scheme Y the category of principle G -bundles over Y
with a G -equivariant morphism to X .

Example If X = Spec(k) = ∗, then [∗/G] is the moduli stack of principle
G -bundles over S , called the classifying stack BG. It is known that

Rep(G ) ' QC(BG ),

where Rep denotes the category of smooth, finite-dimensional complex
representations and QC the category of quasicoherent sheaves.

Theorem (Bernstein, 2014)

Let Gi be the pure inner forms of G over a nonarchimedean local field k.
Then

Irr(QC(BG(k)) =
∐

Irr(Gi )

where Irr(C) denotes isomorphism classes of simple objects in C .
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Stacks for topologists

Definition: Let ∆ be the category whose objects are the relations
0→ 1→ · · · → n for n ≥ 0, and the morphisms are order-preserving set
functions. Then a simplicial set is a contravariant functor

∆op → Sets

and a simplicial presheaf over C is a contravariant functor

C op → sSets.

i.e., a simplicial object in Pre/C .
Definition: A simplicial presheaf k is a stack if for any hypercovering H
of any X ∈ C the natural morphism

F (X )→ holim∆F (Hn)

is an equivalence of simplicial sets. Inductively, a stack is 0-algebraic if k
is a scheme, and n-algebraic if there is a scheme X → F with a smooth
(n − 1) algebraic epimorphism to k (we’ll not define this here). Finally,
an algebraic stack is a stack that is n-algebraic for some n.
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Stacks for us: What

A closed model structure on a category is a specified class of maps
(fibrations, cofibrations, weak equivalences) satisfying certain axioms. By
Lurie, one may assign an (∞, 1)-category to a given model category.

Our construction is now straightforward: Consider simplicial sheaves of
sets on BG, then:

Proposition (W.)

The category sShv(BG(k)) has a closed model structure with the model
structure of Joyal, in which

Cofibrations are the monomorphisms,

Fibrations are the maps with the appropriate lifting property,

The weak equivalences are maps which induce weak equivalences on
stalks.

Thus there exists an (∞, 1)-category underlying this model category.
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Stacks for us: Why

The Langlands correspondence can be formulated using motives. (Indeed,
Lk was inspired by Grothendieck’s pure motives.) Morel and Voevodsky
developed a homotopy theory of schemes, whose construction goes like
this:
Starting with the category of smooth schemes over a field k, form

Sm/k → sShv(Sm/k)→ sShv(Sm/k)A1

the final term being localization with respect to projections X ×A1 → X ,
we call this the (unstable) motivic homotopy category of schemes.

Theorem (Dugger, 2000)

There is a Quillen equivalence of model categories

sShv(Sm/k)A1
∼−→ sPre(Sm/k)A1

where sPre(Sm/k) is the universal model category associated to Sm/k.

In other words, our construction mimics that of Morel and Voevodsky for
motives, before localizing at A1.
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Stacks for others

We mention in passing where stacks have arisen in relation to the
Langlands correspondence:

Nash stacks as a setting for the relative trace formula, global version
of Bernstein (Sakellaridis)

Moduli stack of Higgs bundles in proof of the fundamental lemma
(Ngô)

Moduli stacks of mod p and p-adic Galois representations
(Emerton-Gee)

(Derived) stacks in the Geometric Langlands (Gaitsgory,
Rozenbylum, Arinkin, ..)
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Stacks for us: Questions

What should reflect A1-localization of the representation theory side?

Can this construction work for covering groups, i.e., does the
following hold:

Irr(QC(BG̃(k))
?
=

∐
Irr(G̃i )

Do we get Irr(QC(BMp2n(k)) = Irrε(Mp2n)? (Probably not exactly.)

Bernstein’s construction covers pure inner forms of G. What about
Kaletha’s rigidified/extended pure inner forms, for when G is not
quasiplit over k?

How does this relate to Schneider’s equivalence of derived categories
over p-adic fields:

D(Rep(G ))
∼−→ D(H(G , I (1))−Mod)

where I (1) is a torsion-free maximal pro-p-Iwahori subgroup?

Thank you!
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