Technical history of discrete logarithms in small characteristic finite fields

Antoine Joux

Fondation UPMC, Sorbonne Universités/UPMC/LIP6/Almasty

September 20th, 2016
Workshop on Maths of Information Theoretic Cryptography

- Multiplicative group G generated by g : solving the discrete logarithm problem in G, is inverting the map $x \mapsto g^{x}$
- A hard problem in general, and used as such in cryptography.
- Several groups in practice:
- Two algorithmic approaches:
- Generic algorithms (Pollard's Rho, Pohlig-Hellman...)
- Specific algorithms (Index Calculus *)

Generic algorithms

Generic algorithms: Pohlig-Hellman

- Given a multiplicative group G with generator g
- Given $|G|=\prod_{i=1}^{k} p_{i}^{e_{i}}$
- To compute dlogs in G, it suffices to compute dlogs in:

$$
\left.G_{i}=\left\langle g^{|G| / p_{i}}\right\rangle \quad \text { (Group of order } p_{i}\right)
$$

Generic algorithms: $|G|=p$

- There exist algorithms with complexity $O(\sqrt{p})$ to solve:

$$
y=g^{n}
$$

- Baby-step giant-step (let $R=\lceil\sqrt{p}\rceil$):
- Create list $y, y / g, \cdots, y / g^{R-1}$
- Create list $1, h, h^{2}, \cdots, h^{R-1}$, where $h=g^{R}$
- Find collision
- Can be improved to memoryless algorithms using cycle finding techniques

Index Calculus Algorithms

To compute Discrete Logs in G :
(1) Collection of Relations
\rightarrow Create a lot of sparse multiplicative relations between some (small) specific elements $=$ the factor base

$$
\prod g_{i}^{e_{i}}=\prod g_{i}^{e_{i}^{\prime}} \Rightarrow \quad \sum\left(e_{i}-e_{i}^{\prime}\right) \log \left(g_{i}\right)=0
$$

\rightarrow So a lot of sparse linear equations
(2) Linear Algebra
\rightarrow Recover the Discrete Logs of the factor base
(3) Extension Phase (for small characteristic finite fields) \rightarrow Recover the Discrete Logs of the extended factor base
(9) Individual Logarithm Phase
\rightarrow Recover the Discrete Log of an arbitrary element

Complexity of Index calculus algorithms (before 2013)

$$
L_{Q}(\beta, c)=\exp \left((c+o(1))(\log Q)^{\beta}(\log \log Q)^{1-\beta}\right) .
$$

Function field sieve (with polynomials)

Discrete Logarithms in the Medium prime case [JL06]

- Finite field of the form $\mathbb{F}_{p^{k}}$
- Choose two univariate polynomials f_{1} and f_{2}
- with degrees d_{1} and d_{2} and $d_{1} d_{2} \geq k$.
- Such that $x-f_{1}\left(f_{2}(x)\right)$ has:
- an irreducible factor of degree k (modulo p).
- This defines the finite field by the relations:
- $x=f_{1}(y)$ and $y=f_{2}(x)$

Discrete Logarithms in the Medium prime case [JL06]

- Optimal for $p=L_{1 / 3}\left(p^{k}\right)$
- Choose smoothness basis $x-\alpha$ and $y-\alpha$
- Consider elements:

$$
\begin{aligned}
x y+a y+b x+c & =x f_{2}(x)+a f_{2}(x)+b x+c \\
& =y f_{1}(y)+a y+b f_{1}(y)+c
\end{aligned}
$$

- When both sides split \Rightarrow Relation
- Classical approach, get relations by sieving:
- For each a, b and α, compute c such that $(x-\alpha) \mid x f_{2}(x)+a x+b f_{2}(x)+c$.
- Idem for y
- If c has enough hits \Rightarrow Relation
- Cost of finding relation is $(d+1)$! $\left(d^{\prime}+1\right)$!

Pinpointing

Linear change of variables [J13]

- Further restrict to $y=x^{d}$
- Then:

$$
x y+a y+b x+c=x^{d+1}+a x^{d}+b x+c
$$

- Perform change of variable: $x=a X$, we get:

$$
a^{d+1}\left(X^{d+1}+X^{d}+b \cdot a^{-d}(X+c /(a b))\right.
$$

- Change of variable does not affect splitting property
- One good left-hand side $\Rightarrow p$ good left-hand sides
- Amortized cost of relation reduced to

$$
\left(\frac{(d+1)!}{p-1}+1\right) \cdot\left(d^{\prime}+1\right)!
$$

Impact in the medium prime case

- In theory, complexity of function field sieve:
- Reduce in the best case from $L_{1 / 3}\left(3^{1 / 3}\right) \approx L_{1 / 3}(1.44)$ to $L_{1 / 3}\left(2 \cdot 3^{-2 / 3}\right) \approx L_{1 / 3}(0.96)$
- Regardless of Kummer extension or not
- In practice, new records:
- First 1175 -bit field $\mathbb{F}_{p^{47}}$ with p close to 2^{25}
- Then 1425 -bit field $\mathbb{F}_{p^{57}}$ with p close to 2^{25}
- Previous record was 923 bits
- Kummer extensions very useful for records

Contructed relations

Starting point

- We need a smooth polynomial to play with:

$$
X^{q}-X=\prod_{\alpha \in \mathbb{F}_{q}}(X-\alpha)
$$

- Linear transformations not enough, need more.
- Replace X by $A(X) / B(X)$:

$$
\frac{A(X)^{q}}{B(X)^{q}}-\frac{A(X)}{B(X)}=\prod_{\alpha \in \mathbb{F}_{q}}\left(\frac{A(X)}{B(X)}-\alpha\right)
$$

- Multiply by $B(X)^{q+1}$:

$$
A(X)^{q} B(X)-A(X) B(X)^{q}=B(X) \prod_{\alpha \in \mathbb{F}_{q}}(A(X)-\alpha B(X))
$$

- Rewrite as:

$$
\tilde{A}\left(X^{q}\right) B(X)-A(X) \tilde{B}\left(X^{q}\right)=\prod_{\alpha \in \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)}(A(X)-\alpha B(X)) .
$$

Dealing with the left side - Basic idea

- Consider $\tilde{A}\left(X^{q}\right) B(X)-A(X) \tilde{B}\left(X^{q}\right)$.
- What can we do to make it smooth (w. h. p.) ?
- Ask for low degree !
- How can we replace X^{q} by a low degree thing ?
- By choosing a polynomial defining the extension field as:

$$
X^{q}-h(X)
$$

Example

- Kummer case $X^{q}-a X$
- If a is good $X^{q-1}-a$ is irreducible
- Twisted Kummer case $X^{q}-a / X$
- If a is good $X^{q+1}-a$ is irreducible
- More generally consider

$$
X^{q}-\frac{h_{0}(X)}{h_{1}(X)} \quad \text { i.e. } \quad h_{1}(X) X^{q}-h_{0}(X)
$$

- And let θ be a root of its large irred. factor I_{k}

What happens to the left side ?

- Now $\tilde{A}\left(X^{q}\right) B(X)-A(X) \tilde{B}\left(X^{q}\right)$ becomes:

$$
\frac{[A, B]_{D}}{h_{1}(X)^{D}}
$$

- Where $[A, B]_{D}$ is defined as:

$$
[A, B]_{D}=\left(\tilde{A}\left(\frac{h_{0}(X)}{h_{1}(X)}\right) B(X)-A(X) \tilde{B}\left(\frac{h_{0}(X)}{h_{1}(X)}\right)\right) .
$$

- $[A, B]_{D}$ is a polynomial of degree at most $D(H+1)$
- If A and B have degree at most D

Constructed relation

- In the field $\mathbb{F}_{q^{k}}$ (defined as $\mathbb{F}_{q}[\theta]$):

$$
[A, B]_{D}(\theta)=h_{1}(\theta)^{D} \cdot \prod_{\alpha \in \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)}(A(\theta)-\alpha B(\theta))
$$

- Also works directly in any extension $\mathbb{F}_{q^{t k}}$ with $\operatorname{gcd}(t, k)=1$.
- Good equation if $[A, B]_{D}$ factors below degree D

A variant

- What happens with a finite field given by:

$$
X-\frac{h_{0}\left(X^{q}\right)}{h_{1}\left(X^{q}\right)} \quad \text { i.e. } \quad h_{1}\left(X^{q}\right) X-h_{0}\left(X^{q}\right) ?
$$

- In particular, nothing changes for degree $H=1$

Properties of $[A, B]_{D}$

- For A and B polynomials of degree D over $\mathbb{F}_{q^{t}}$.
- $[A, B]_{D}=-[B, A]_{D}$.
- $[A, A]_{D}=0$.
- For $\lambda \in \mathbb{F}_{q}:[\lambda A, B]_{D}=[A, \lambda B]_{D}=\lambda[A, B]_{D}$.
- For $\Lambda \in \mathbb{F}_{q^{t}}:[\Lambda A, \Lambda B]_{D}=\Lambda^{q+1}[A, B]_{D}$.
- $\left[A, B_{1}+B_{2}\right]_{D}=\left[A, B_{1}\right]_{D}+\left[A, B_{2}\right]_{D}$.

Counting the candidate equations over \mathbb{F}_{q}

- For A and B polynomials of degree D over \mathbb{F}_{q} ?
- Tricky, because some equations are identicals (or even trivial).
- A and B may be supposed monic.
- $[A, B]_{D}=[A, B-A]_{D}$.
- Restrict to A of degree D, B of degree $D-1$.
- $[A, B]_{D}=[A-\lambda B, B]_{D}$.
- Assume coeff of X^{D-1} in A is zero
- $q^{2 D-2}$ choices:

$$
A=X^{D}+a_{D-2}(X) \quad \text { and } \quad B=X^{D-1}+b_{D-2}(X)
$$

Counting the candidate equations over $\mathbb{F}_{q^{t}}$

- More complex!
- A may still be supposed monic.
- Only one dimension of coefficient in B is zero.
- Then one other dimension of coefficient in B is one.
- With a corresponding zero in A
- $q^{(2 D+1) t-3}$ choices.

Analyzing the parameters

- Smoothness basis : pols of degree D over $\mathbb{F}_{q^{t}}$.
- Number of unknowns $\approx q^{t D} / D$.
- Number of candidate equations: $\approx q^{(2 D+1) t-3}$
- If H is fixed, a constant fraction is kept.
- Asymptotically we want:

$$
(2 D+1) t-3>t D \text { i.e. } t(D+1)>3
$$

- Note, this only suffices for the initial computation.
- Smallest options: $D=1, t=2$ or $D=3, t=1$

The descent

General principle

- Given target $z(x)$ in finite field, write:

$$
z(x)=\prod_{i} z_{i}(x)^{e_{i}}, \quad \text { with smaller } z_{i} \mathrm{~s}
$$

Individual Logarithms (Descent strategies)

- Continued fractions (high degrees)
- Classical descent (for high to mid degrees, need subfield)
- Bilinear descent (for mid to low degrees)
- Quasi-polynomial descent (all degrees)
- ZigZag descent (all even degrees)

Continued fractions

- Given target $Z(x)$ find matrix:

$$
\begin{gathered}
\left(\begin{array}{ll}
A_{1}(x) & A_{2}(x) \\
B_{1}(x) & B_{2}(x)
\end{array}\right), \text { such that } \\
Z(x) \equiv \frac{A_{1}(x)}{B_{1}(x)} \equiv \frac{A_{2}(x)}{B_{2}(x)} \quad(\bmod I(x)) .
\end{gathered}
$$

- With continued fraction or half-Gcd algorithms.
- Reduce degree by factor ≈ 2. Many representations:

$$
Z(x) \equiv \frac{c_{1}(x) A_{1}(x)+c_{2}(x) A_{2}(x)}{c_{1}(x) B_{1}(x)+c_{2}(x) B_{2}(x)} \quad(\bmod I(x))
$$

Classical descent

- Need two variables x and y
- If $q=p^{\ell}$, let:

$$
\begin{aligned}
y & =x^{p^{\ell_{1}}} \quad \text { then } \\
y^{p^{\ell_{2}}} & =x^{p^{\ell}}=\frac{h_{0}(x)}{h_{1}(x)}
\end{aligned}
$$

- Let $F(x, y)$ be a (low degree) bivariate polynomial in $\mathbb{F}_{q}[x, y]$, then:

$$
F\left(x, x^{p^{\ell_{1}}}\right)^{p^{\ell_{2}}}=F\left(x^{p^{\ell_{2}}}, h_{0}(x) / h_{1}(x)\right) \text { in } \mathbb{F}_{q^{k}}
$$

- Force $z(x)$ as divisor of $F\left(x, x^{p^{\ell_{1}}}\right)$ or $F\left(x^{p^{\ell_{2}}}, h_{0}(x) / h_{1}(x)\right)$ (linear algebra)
- Low arity in descent but can't go very low

Modern descent strategies

- Remember basic Equation:

$$
[A, B]_{D}(\theta)=h_{1}(\theta)^{D} \cdot \prod_{\alpha \in \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)}(A(\theta)-\alpha B(\theta))
$$

- Make $z(\theta)$ appear on the right or left
- On the left: bilinear descent
- On the right: quasi-polynomial
- On the left (powers of two): ZigZag descent [GKZ14]

Bilinear descent

- Search for A and B of degree \mathcal{D} such that:

$$
z(x) \mid[A, B]_{\mathcal{D}}
$$

- Then $z(\theta)$ appears on the left.
- Arity $\approx q$ in descent

How to find A and B ?

- Algebraic approach : divisibility condition as a bilinear system
- In general, use Groebner bases
- For low-degree, it goes well.
- Open problem:

Is there a more direct/efficient general approach ?
Partial answer: Degree $2 \mathcal{D}$ to degree \mathcal{D} a.k.a ZigZag [GKZ14]

Quasi-polynomial descent

- Make $z(x)$ appear on the right in the term:

$$
\prod_{\alpha \in \mathbb{P}_{1}\left(\mathbb{F}_{q}\right)}(A(\theta)-\alpha B(\theta))
$$

- Choose $A(x)=z(x)+\alpha$ and $B(x)=x+\beta$
- Gives $\approx q^{2}$ equations.
- Simultaneous descent of all $z(x)+\lambda_{1} x+\lambda_{0}$
- Requires extra linear algebra step
- Arity q^{2} in descent

Descent Tree

- Continued fractions, at most one application
- Classical descent, many levels possible
- Bilinear descent (or [GKZ14]), in practice 4-5 levels max.
- Quasi-polynomial descent in practice 2 levels max.
- Is it possible to go all the way down to degree $\leq D$?
- In particular, descent should work for polys of deg $D+1$
- On the left. As before degree D over $\mathbb{F}_{q^{t}}$.
- Now we want:

$$
(2 D+1) t-3>t(D+1) \quad \text { i.e. } \quad t D>3
$$

- Small options become: $D=2, t=2$ or $D=4, t=1$
- Polynomial time part can be lowered to $O\left(q^{6}\right)$.

Main theoretic difficulty

- Heuristics can be removed (Granger, Kleinjung, Zumbragel, arxiv 2015)
- Except one, the existence of h_{0} and h_{1}

Optimizing the polynomial time part

Systematic factors of $[A, B]_{D}$ over \mathbb{F}_{q}

- Definition polynomial $h_{1}(X) X^{q}-h_{0}(X)$ with $h_{0}=r X+s$ and $h_{1}=X(X+t)$.
- For $D=2$, see that $[A, B]_{2}$ is a degree 6 polynomial.
- But systematic factor $X h_{1}(X)-h_{0}(X)$.
- Indeed:

$$
\begin{array}{rlr}
{\left[X^{2}, 1\right]_{2}} & = & h_{0}(X)^{2}-X^{2} h_{1}(X)^{2} \\
{[X, 1]_{2}} & = & h_{0}(X) h_{1}(X)-X h_{1}(X)^{2} \\
{\left[X^{2}, X\right]_{2}} & = & X h_{0}(X)^{2}-X^{2} h_{0}(X) h_{1}(X)
\end{array}
$$

- Remaining degree $=3$.
- Cost of linear algebra $O\left(q^{5}\right)$.

Descent bottleneck

- Can we get degree 3 polynomials ?
- From $[A, B]_{2}$, no! At most $O\left(q^{2}\right)$ of $\approx q^{3} / 3$.
- Direct approach would cost $O\left(q^{7}\right)$

Extend the Factor Base to Degree 3

Extend without performing linear algebra on a matrix of $\operatorname{dim} q^{3}$?
(1) Divide the deg. 3 monic polynomials into groups.

How? Group polynomials by their constant coefficient.
(2) Given q^{2}, generate equations involving only polys in q^{2} and degree 1 and 2 polys (Logs are already known).

Extend the Factor Base to Degree 3

- An example: let $c=\left\{\left(X^{3}+c\right)+\alpha X^{2}+\beta X \mid(\alpha, \beta) \in \mathbb{F}_{q}{ }^{2}\right\}$.

As for degree 2: set $A(X)=\left(X^{3}+c\right)+\alpha X^{2}$ and $B(X)=\left(X^{3}+c\right)+\beta X$ and create relations of the form: $h_{1}(X)^{3} \underbrace{B(X) \prod_{\alpha \in \mathbb{F}_{q}}(A(X)-\alpha B(X))}=\underbrace{[A, B]_{3}(X)}_{\text {with these } A}$ all belongs to © ! ! $\operatorname{deg} 8$ with these A and B + deg 3 systematic factor + divisible by X

Prob that $[A, B]_{3}$ factors into deg $\leqslant 2 \Rightarrow 41 \%$. Enough !

- Complexity to recover the Dlogs of all degree 3 polynomials:
$O((\#$ © $)(\# \text { factor base })^{2}(\underbrace{\# \text { of entries })})) \approx O\left(q^{6}\right)$ ops.

Descent bottleneck revisited

- Can we get degree 4 polynomials ?
- From $[A, B]_{3}$, may be ? At most $O\left(q^{4}\right)$ of $\approx q^{4} / 4$.
- Unfortunately, only half of them are accessible.

Extend the Factor Base to Degree 4

Final goal: extend the factor base to degree 4 by performing smaller linear algebra steps.
(1)

What is simple ? To consider that:
2 poly belongs to the same q^{3} if same constant coefficient. AND 2 poly belongs to the same $9^{\left(q^{2}\right.}$ if same coeff before X.
(2) Given ${ }^{\left(q^{2}\right)}$, generate equations involving only poly in it and degree 1, 2 and 3 polynomials.

Extend the Factor Base to Degree 4

- How ? Previous techniques (bilinear descent from 4 to 3) + additional equations + systematic factors of $[A, B]_{4}$.
- Complexity of BLogs computation of ONE q^{3} :

- Final complexity dominated by the first q^{3} computation:
\square Unknown

\Rightarrow Final complexity of extension to deg 4 in $O\left(q^{6}\right)$ operations.

End Result

Final asymptotic complexity of the polynomial phase:
$O\left(q^{6}\right)$ operations - to be compared with previous $O\left(q^{7}\right)$.

Conclusion

