
Technical history of discrete logarithms
in small characteristic finite fields

Antoine Joux

Fondation UPMC, Sorbonne Universités/UPMC/LIP6/Almasty

September 20th, 2016
Workshop on Maths of Information Theoretic Cryptography

Cécile Pierrot

The Discrete Logarithm Problem (DLP)

Co
m
pl
ex
ity

ex
po

ne
nt
ia
l

su
b-
ex
po

ne
nt
ia
l

qu
as
i p

ol
yn
om

ia
l

General group

Elliptic curve

Hyperelliptic
curve *

Medium chara
finite field *
High chara
finite field *

Factorisation *

Small chara
finite field *

Multiplicative group G generated by g :
solving the discrete logarithm problem
in G , is inverting the map x 7→ gx

A hard problem in general,
and used as such in cryptography.
Several groups in practice:
Two algorithmic approaches:

Generic algorithms
(Pollard’s Rho, Pohlig-Hellman...)
Specific algorithms (Index Calculus *)

Generic algorithms

Generic algorithms: Pohlig-Hellman

Given a multiplicative group G with generator g
Given |G | =

∏k
i=1 p

ei
i

To compute dlogs in G , it suffices to compute dlogs in:

Gi = 〈g |G|/pi 〉 (Group of order pi)

Generic algorithms: |G | = p

There exist algorithms with complexity O(√p) to solve:

y = gn

Baby-step giant-step (let R = d√pe):
Create list y , y/g , · · · , y/gR−1

Create list 1, h, h2, · · · , hR−1, where h = gR

Find collision
Can be improved to memoryless algorithms
using cycle finding techniques

Index Calculus Algorithms

To compute Discrete Logs in G :

1 Collection of Relations
G
small

→ Create a lot of sparse multiplicative relations
between some (small) specific elements = the factor base∏

gei
i =

∏
ge′

i
i ⇒

∑
(ei − e′i) log(gi) = 0

→ So a lot of sparse linear equations
2 Linear Algebra
→ Recover the Discrete Logs of the factor base

3 Extension Phase (for small characteristic finite fields)
→ Recover the Discrete Logs of the extended factor base

4 Individual Logarithm Phase
→ Recover the Discrete Log of an arbitrary element

Complexity of Index calculus algorithms (before 2013)

LQ(β, c) = exp((c + o(1))(logQ)β(log logQ)1−β).

0 1
3

2
3 1 lp

FFS NFS

LQ

(
1
3 ,
(
128
9

)1/3)
LQ

(
1
3 ,
(
64
9

)1/3)
LQ

(
1
3 ,
(
32
9

)1/3)
medium p high psmall p

Function field sieve (with polynomials)

Discrete Logarithms in the Medium prime case [JL06]

Finite field of the form Fpk

Choose two univariate polynomials f1 and f2
with degrees d1 and d2 and d1d2 ≥ k.
Such that x − f1(f2(x)) has:

an irreducible factor of degree k (modulo p).
This defines the finite field by the relations:

x = f1(y) and y = f2(x)

Discrete Logarithms in the Medium prime case [JL06]

Optimal for p = L1/3(pk)

Choose smoothness basis x − α and y − α
Consider elements:

xy + ay + bx + c = x f2(x) + af2(x) + bx + c
= y f1(y) + ay + bf1(y) + c

When both sides split ⇒ Relation
Classical approach, get relations by sieving:

For each a, b and α, compute c such that
(x − α) | x f2(x) + ax + bf2(x) + c.
Idem for y
If c has enough hits ⇒ Relation

Cost of finding relation is (d + 1)! (d ′ + 1)!

Pinpointing

Linear change of variables [J13]

Further restrict to y = xd

Then:

xy + ay + bx + c = xd+1 + axd + bx + c

Perform change of variable: x = aX , we get:

ad+1(Xd+1 + Xd + b · a−d (X + c/(ab)).

Change of variable does not affect splitting property
One good left-hand side ⇒ p good left-hand sides
Amortized cost of relation reduced to((d + 1)!

p − 1 + 1
)
· (d ′ + 1)!

Impact in the medium prime case

In theory, complexity of function field sieve:
Reduce in the best case from L1/3(31/3) ≈ L1/3(1.44) to
L1/3(2 · 3−2/3) ≈ L1/3(0.96)
Regardless of Kummer extension or not

In practice, new records:
First 1175-bit field Fp47 with p close to 225
Then 1425-bit field Fp57 with p close to 225
Previous record was 923 bits
Kummer extensions very useful for records

Contructed relations

Starting point

We need a smooth polynomial to play with:
Xq − X =

∏
α∈Fq

(X − α).

Linear transformations not enough, need more.
Replace X by A(X)/B(X):

A(X)q

B(X)q −
A(X)
B(X) =

∏
α∈Fq

(A(X)
B(X) − α

)
.

Multiply by B(X)q+1:
A(X)q B(X)− A(X)B(X)q = B(X)

∏
α∈Fq

(A(X)− αB(X)).

Rewrite as:
Ã(Xq)B(X)− A(X) B̃(Xq) =

∏
α∈P1(Fq)

(A(X)− αB(X)).

Dealing with the left side – Basic idea

Consider Ã(Xq)B(X)− A(X) B̃(Xq).
What can we do to make it smooth (w. h. p.) ?
Ask for low degree !
How can we replace Xq by a low degree thing ?
By choosing a polynomial defining the extension field as:

Xq − h(X).

Example

Kummer case Xq − a X
If a is good Xq−1 − a is irreducible
Twisted Kummer case Xq − a/X
If a is good Xq+1 − a is irreducible
More generally consider

Xq − h0(X)
h1(X) i.e. h1(X)Xq − h0(X).

And let θ be a root of its large irred. factor Ik

What happens to the left side ?

Now Ã(Xq)B(X)− A(X) B̃(Xq) becomes:

[A,B]D
h1(X)D .

Where [A,B]D is defined as:

[A,B]D =
(
Ã
(h0(X)
h1(X)

)
B(X)− A(X) B̃

(h0(X)
h1(X)

))
.

[A,B]D is a polynomial of degree at most D (H + 1)
If A and B have degree at most D

Constructed relation

In the field Fqk (defined as Fq[θ]):

[A,B]D(θ) = h1(θ)D ·
∏

α∈P1(Fq)
(A(θ)− αB(θ)).

Also works directly in any extension Fqtk with gcd(t, k) = 1.
Good equation if [A,B]D factors below degree D

A variant

What happens with a finite field given by:

X − h0(Xq)
h1(Xq) i.e. h1(Xq)X − h0(Xq)?

In particular, nothing changes for degree H = 1

Properties of [A, B]D

For A and B polynomials of degree D over Fqt .
[A,B]D = −[B,A]D.
[A,A]D = 0.
For λ ∈ Fq: [λA,B]D = [A, λB]D = λ [A,B]D.
For Λ ∈ Fqt : [ΛA,ΛB]D = Λq+1 [A,B]D.
[A,B1 + B2]D = [A,B1]D + [A,B2]D.

Counting the candidate equations over Fq

For A and B polynomials of degree D over Fq ?
Tricky, because some equations are identicals (or even trivial).
A and B may be supposed monic.
[A,B]D = [A,B − A]D.
Restrict to A of degree D, B of degree D − 1.
[A,B]D = [A− λB,B]D.
Assume coeff of XD−1 in A is zero
q2D−2 choices:

A = XD + aD−2(X) and B = XD−1 + bD−2(X).

Counting the candidate equations over Fqt

More complex !
A may still be supposed monic.
Only one dimension of coefficient in B is zero.
Then one other dimension of coefficient in B is one.
With a corresponding zero in A
q(2D+1)t−3 choices.

Analyzing the parameters

Smoothness basis : pols of degree D over Fqt .
Number of unknowns ≈ qtD/D.
Number of candidate equations: ≈ q(2D+1)t−3

If H is fixed, a constant fraction is kept.
Asymptotically we want:

(2D + 1)t − 3 > tD i.e. t(D + 1) > 3.

Note, this only suffices for the initial computation.
Smallest options: D = 1, t = 2 or D = 3, t = 1

The descent

General principle

Given target z(x) in finite field, write:

z(x) =
∏

i
zi (x)ei , with smaller zis

z(x)

z1(x) z2(x) · · · zr−1(x) zr (x)

Individual Logarithms (Descent strategies)

Continued fractions (high degrees)
Classical descent (for high to mid degrees, need subfield)
Bilinear descent (for mid to low degrees)
Quasi-polynomial descent (all degrees)
ZigZag descent (all even degrees)

Continued fractions

Given target Z (x) find matrix:(
A1(x) A2(x)
B1(x) B2(x)

)
, such that

Z (x) ≡ A1(x)
B1(x) ≡

A2(x)
B2(x) (mod I(x)).

With continued fraction or half-Gcd algorithms.
Reduce degree by factor ≈ 2. Many representations:

Z (x) ≡ c1(x)A1(x) + c2(x)A2(x)
c1(x)B1(x) + c2(x)B2(x) (mod I(x)).

Classical descent

Need two variables x and y
If q = p`, let:

y = xp`1 then

yp`2 = xp` = h0(x)
h1(x) .

Let F (x , y) be a (low degree) bivariate polynomial in Fq[x , y],
then:

F (x , xp`1)p`2 = F (xp`2 , h0(x)/h1(x)) in Fqk .

Force z(x) as divisor of F (x , xp`1) or F (xp`2 , h0(x)/h1(x))
(linear algebra)
Low arity in descent but can’t go very low

Modern descent strategies

Remember basic Equation:

[A,B]D(θ) = h1(θ)D ·
∏

α∈P1(Fq)
(A(θ)− αB(θ)).

Make z(θ) appear on the right or left
On the left: bilinear descent
On the right: quasi-polynomial
On the left (powers of two): ZigZag descent [GKZ14]

Bilinear descent

Search for A and B of degree D such that:

z(x)|[A,B]D.

Then z(θ) appears on the left.
Arity ≈ q in descent

How to find A and B ?

Algebraic approach : divisibility condition as a bilinear system
In general, use Groebner bases
For low-degree, it goes well.

Open problem:
Is there a more direct/efficient general approach ?
Partial answer: Degree 2D to degree D a.k.a ZigZag [GKZ14]

Quasi-polynomial descent

Make z(x) appear on the right in the term:∏
α∈P1(Fq)

(A(θ)− αB(θ))

Choose A(x) = z(x) + α and B(x) = x + β

Gives ≈ q2 equations.
Simultaneous descent of all z(x) + λ1 x + λ0

Requires extra linear algebra step
Arity q2 in descent

Descent Tree

Continued fractions, at most one application
Classical descent, many levels possible
Bilinear descent (or [GKZ14]), in practice 4-5 levels max.
Quasi-polynomial descent in practice 2 levels max.

Practical bottleneck

Is it possible to go all the way down to degree ≤ D ?
In particular, descent should work for polys of deg D + 1
On the left. As before degree D over Fqt .
Now we want:

(2D + 1)t − 3 > t(D + 1) i.e. tD > 3.

Small options become: D = 2, t = 2 or D = 4, t = 1
Polynomial time part can be lowered to O(q6).

Main theoretic difficulty

Heuristics can be removed
(Granger, Kleinjung, Zumbragel, arxiv 2015)

Except one, the existence of h0 and h1

Optimizing the polynomial time part

Systematic factors of [A, B]D over Fq

Definition polynomial
h1(X)Xq − h0(X) with h0 = rX + s and h1 = X (X + t).
For D = 2, see that [A,B]2 is a degree 6 polynomial.
But systematic factor Xh1(X)− h0(X).
Indeed:

[X 2, 1]2 = h0(X)2 − X 2h1(X)2

[X , 1]2 = h0(X)h1(X)− Xh1(X)2

[X 2,X]2 = Xh0(X)2 − X 2h0(X)h1(X)

Remaining degree = 3.
Cost of linear algebra O(q5).

Descent bottleneck

Can we get degree 3 polynomials ?
From [A,B]2, no ! At most O(q2) of ≈ q3/3.
Direct approach would cost O(q7)

Extend the Factor Base to Degree 3

Extend without performing linear algebra on a matrix of dim q3 ?
1 Divide the deg. 3 monic polynomials into groups.

q3 elts q2 elts q2 elts

q2 eltsq2 elts

q2 elts q2 elts

q grps

How? Group polynomials by their constant coefficient.

2 Given q2
, generate equations involving only polys in q2

and
degree 1 and 2 polys (Logs are already known).

Extend the Factor Base to Degree 3

An example: let c = {(X 3 + c) + αX 2 + β X |(α, β) ∈ Fq
2}.

c

Reducible Irreducible ⇒ new unknowns

As for degree 2: set A(X) = (X 3 + c) + αX 2 and
B(X) = (X 3 + c) + β X and create relations of the form:
h1(X)3 B(X)

∏
α∈Fq

(A(X)− αB(X))

︸ ︷︷ ︸
all belongs to c !!

= [A,B]3(X)︸ ︷︷ ︸
deg 8 with these A and B
+ deg 3 systematic factor
+ divisible by X

Prob that [A,B]3 factors into deg 6 2⇒ 41%. Enough !
Complexity to recover the Dlogs of all degree 3 polynomials:
O((# c︸ ︷︷ ︸

q

)(# factor base︸ ︷︷ ︸
q2

)2(# of entries︸ ︷︷ ︸
q

)) ≈ O(q6) ops.

Descent bottleneck revisited

Can we get degree 4 polynomials ?
From [A,B]3, may be ? At most O(q4) of ≈ q4/4.
Unfortunately, only half of them are accessible.

Extend the Factor Base to Degree 4

Final goal: extend the factor base to degree 4
by performing smaller linear algebra steps.

1

q4 elts q3 elts q3 elts

q3 eltsq3 elts

q3 elts q3 elts

q grps q2q2
q2q2

q2q2
q gr

What is simple ? To consider that:
2 poly belongs to the same q3

if same constant coefficient.
AND 2 poly belongs to the same q2 if same coeff before X .

2 Given q2 , generate equations involving only poly in it and
degree 1, 2 and 3 polynomials.

Extend the Factor Base to Degree 4

How ? Previous techniques (bilinear descent from 4 to 3) +
additional equations + systematic factors of [A,B]4.

Complexity of DLogs computation of ONE q3
:

O((# q2 in q3︸ ︷︷ ︸
q

) · (# q2︸ ︷︷ ︸
q2

)2 (#entries︸ ︷︷ ︸
q

)) = O(q6) ops.

Final complexity dominated by the first q3
computation:

Unknown
Reducible
Bili. desc.
4 → 3
Bili. desc.
4 → 4

⇒ Final complexity of extension to deg 4
in O(q6) operations.

End Result
Final asymptotic complexity of the polynomial phase:

O(q6) operations – to be compared with previous O(q7).
Fqk

Conclusion

