Group Operation on Nodal Curves

Enver Ozdemir
Istanbul Technical University

September 28, 2016

Hyperelliptic Curves

- H: $y^{2}=f(x)$ over a field $K, f(x)$ is a square-free polynomial of degree $2 g+1$.

Hyperelliptic Curves

- H: $y^{2}=f(x)$ over a field $K, f(x)$ is a square-free polynomial of degree $2 g+1$.
- Jacobian group: Ideal class group.

Hyperelliptic Curves

- H: $y^{2}=f(x)$ over a field $K, f(x)$ is a square-free polynomial of degree $2 g+1$.
- Jacobian group: Ideal class group.
- Computing in $\mathrm{Jac}(H)$, composition of binary quadratic forms.[M1980][C1988]

Computing in Jacobians: $y^{2}=f(x)$

$D=[(u(x), v(x)] \in \operatorname{Jac}(H)$.

- $u(x)$ is a monic polynomial.
- $\operatorname{deg}(v(x))<\operatorname{deg}(u(x))$.
- $v(x)^{2}-f(x)$ is divisible by $u(x)$.

Cantor's Algorithm [C1988]

$$
D_{1}=\left(u_{1}, v_{1}\right), D_{2}=\left(u_{2}, v_{2}\right) \text { and } D=D_{1}+D_{2}=(u, v)
$$

- $h=\operatorname{gcd}\left(u_{1}, u_{2}, v_{1}+v_{2}\right)$ with polynomials h_{1}, h_{2}, h_{3} such that $h=h_{1} u_{1}+h_{2} u_{2}+h_{3}\left(v_{1}+v_{2}\right)$
- $u=\frac{u_{1} u_{2}}{h^{2}}$ and $v \equiv \frac{h_{1} u_{1} v_{2}+h_{2} u_{2} v_{1}+h_{3}\left(v_{1} v_{2}+f\right)}{h}(\bmod u)$ repeat:
- $\widetilde{u}=\frac{v^{2}-f}{u}$ and $\widetilde{v} \equiv v(\bmod \widetilde{u})$
- $u=\widetilde{u}$ and $v=-\widetilde{v}$ until deg $(u) \leq g$
- Multiply u by a constant to make u monic.

Polynomial Factorization

Consider $H: y^{2}=f(x)$.

- $(u(x), 0)$.
- Mumford Representation says $0^{2}-f(x)=f(x)$ is a multiple of $u(x)$. It means $u(x)$ is a factor.

Singular Curves

A singular curve $H: y^{2}=f(x)$ and $f(x)$ can have a multiple roots.

- Generalized Jacobian group Jac(H). [Ros52,Ros54]
- $(u(x), v(x))$
- For a multiple root a of $f(x)$ if both $u(x)$ and $v(x)$ are divisible by $x-a$ then $v^{2}(x)-f(x) / u(x)$ is not divisible by $x-a$.

Nodal Curves

$N: y^{2}=x f^{2}(x)$ over finite field $\mathbb{F}_{q} . f(x)$ is irreducible of degree n.

- $\operatorname{Jac}(N) \simeq$ a subgroup of $\mathbb{F}_{q^{2 n}}^{\times}[\operatorname{Ros} 52]$.
- $q^{n}+1$ or $q^{n}-1$.

Nodal Curves

$$
N: y^{2}=x f^{2}(x) .
$$

- Any polynomial $h(x)$ such that $\operatorname{gcd}\left(h^{2}(x)-x, f(x)\right)=1$
- Any $D \in \operatorname{Jac}(N)$ uniquely represented by $h(x)$ with $\operatorname{deg} h(x) \leq n$.

Nodal Curves

$N: y^{2}=x f^{2}(x)$.

- Any polynomial $h(x)$ such that $\operatorname{gcd}\left(h^{2}(x)-x, f(x)\right)=1$
- Any $D \in \operatorname{Jac}(N)$ uniquely represented by $h(x)$ with $\operatorname{deg} h(x) \leq n$.
- $(u(x), v(x))$ such that $\operatorname{deg} v(x)<\operatorname{deg} u(x)$ and $v(x)^{2}-x f^{2}(x)$ is divisible by $u(x)$
- If both $u(x)$ and $v(x)$ are divisible by $f(x)$ then

$$
\frac{v(x)^{2}-f(x)}{u(x)}
$$

is not divisible by $f(x)$.

- Consider $\left[f^{2}(x), h(x) f(x)\right]$

$$
\frac{h(x)^{2} f(x)^{2}-x f(x)^{2}}{f^{2}(x)}=h^{2}(x)-x
$$

Computing Jacobian of N

$$
\begin{aligned}
& D_{1}=h_{1}(x) \text { and } D_{2}=h_{2}(x) \\
& D_{3}=D_{1}+D_{2}=h_{3}(x)
\end{aligned}
$$

- Find two polynomials $g_{1}(x), g_{2}(x)$ such that

$$
g_{1}(x) f(x)+g_{2}(x)\left(h_{1}(x)+h_{2}(x)\right)=1
$$

- Compute

$$
h_{3}(x) \equiv f(x) h_{1}(x) g_{1}(x)+g_{2}(x)\left(h_{1}(x) h_{2}(x)+x\right) \quad \bmod f(x)
$$

with $\operatorname{deg}\left(h_{3}(x)\right)<d$

Illustration

- $N: y^{2}=x(x+a)^{2}$
- $f(x)=x+a$ so any $h(x)$ of degree less than 1 represents an element in $\operatorname{Jac}(N)$.
- Any constant $h(x)=t$ as long as $x-t^{2} \neq x+a$.
- $h_{1}=t$ and $h_{2}=r$ then $h_{1}+h_{2}=\frac{t r-a}{t+r}=h_{3}$

Summary

- Group structure of $\operatorname{Jac}(N)$ [D2006, D2008].
- Each element is a polynomial and each polynomial represents an element.

Thank you very much!

