Construction of MDS codes with complementary dual

Lingfei Jin

Fudan University
@IMS Workshop, Singapore

2016.9.28

Outline

- Background
- Results on generalized Reed-Solomon codes
- Dual codes of GRS codes
- Our construction

Background

- Linear codes with complementary dual(LCD codes) were introduced by Massey in 1992. The author showed there exists asymptotically good LCD codes.
- In 2004, Sendrier showed that LCD codes meet the asymptotic Gilbert-Varshamov bound.
- Tzeng and Hartmann proved that the minimum distance of a class of reversible cyclic codes is areater than the BCH bound

Background

- Linear codes with complementary dual(LCD codes) were introduced by Massey in 1992. The author showed there exists asymptotically good LCD codes.
- In 2004, Sendrier showed that LCD codes meet the asymptotic Gilbert-Varshamov bound.
- Tzeng and Hartmann proved that the minimum distance of a class of reversible cyclic codes is greater than the BCH bound .

Known results on LCD

- In 1994, Yang and Massey gave a necessary and sufficient condition under which a cyclic code to have a complementary dual;
- In 2009, Esmaeili and Yari analysed LCD codes that are quasi-cyclic;
- In 2016, Dougherty et al developed a linear programming bound on the largest size of an LCD code of given length and minimum
distance.

Known results on LCD

- In 1994, Yang and Massey gave a necessary and sufficient condition under which a cyclic code to have a complementary dual;
- In 2009, Esmaeili and Yari analysed LCD codes that are quasi-cyclic;
- In 2016, Dougherty et al developed a linear programming bound on the largest size of an LCD code of given length and minimum distance.

Motivation

LCD codes have application against Side-Channel Attack(SCA).
SCA: attack based on information gained from the physical implementation of a cryptosystem, such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system.

SCA includes:

- Timing attack-attacks based on measuring how much time various computations take to perform.
- Power-monitoring attack-attacks that make use of varying power consumption by the hardware during computation.
- Electromagnetic attack-attacks based on leaked electromagnetic radiation, which can directly provide plaintexts and other information.

LCD for countermeasure to SCA

SCA rely on the relationship between information leaked through a side channel and the secret data, there are two main countermeasures:
(1) eliminate or reduce the release of such information
(2) eliminate the relationship between the leaked information and the secret data.

A typical technique for (2) is known as masking. The actual operation is carried on a randomized version of the (masked)data.

LCD for countermeasure to SCA

SCA rely on the relationship between information leaked through a side channel and the secret data, there are two main countermeasures:
(1) eliminate or reduce the release of such information
(2) eliminate the relationship between the leaked information and the secret data.

A typical technique for (2) is known as masking. The actual operation is carried on a randomized version of the (masked)data.

LCD for countermeasure to SCA

SCA rely on the relationship between information leaked through a side channel and the secret data, there are two main countermeasures:
(1) eliminate or reduce the release of such information
(2) eliminate the relationship between the leaked information and the secret data.

A typical technique for (2) is known as masking. The actual operation is carried on a randomized version of the (masked)data.

Motivation

- LCD codes can be used in the method called Orthogonal Direct Sum Masking.
- Having C be LCD of greatest possible minimum distance simultaneously improves the resistance against SCA (FIA).

Other applications: data storage, communication systems.

- Purpose: Study of linear codes that are both MDS and LCD. These codes are called LCD MDS codes.
- LCD MDS codes are of both theoretical and practical importance.

SECTION 2: Some results on GRS codes

- \mathbb{F}_{q} : finite field of q elements.
- $[n, k]_{q}$ linear code: a k-dimensional subspace of \mathbb{F}_{q}^{n}.
- Minimum distace d : can correct at most $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.

- If $C \subseteq C^{\perp}$, then it is called self-orthogonal. It is called self-dual when the equality holds.

- \mathbb{F}_{q} : finite field of q elements.
- $[n, k]_{q}$ linear code: a k-dimensional subspace of \mathbb{F}_{q}^{n}.
- Minimum distace d : can correct at most $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.
- Define $C^{\perp}=\left\{\mathbf{x} \in \mathbb{F}_{q}^{n}: \quad \mathbf{x} \cdot \mathbf{c}=0, \forall \mathbf{c} \in C\right\}$
- If $C \subseteq C^{\perp}$, then it is called self-orthogonal. It is called self-dual when the equality holds.
- LCD code: $\boldsymbol{C} \cap \boldsymbol{C}^{\perp}=\{\mathbf{0}\}$.

MDS codes

- Singleton Bound: $d \leq n-k+1$.
- If the equality holds, then it is called an MDS code.
- MDS conjecture: $n \leq q+1$ expect when q is even and $k=3$ or $k=q-1$ in which case $n \leq q+2$
- MDS codes with certain properties have been well studied for many applications (self-dual, self-orthogonal).

MDS codes

- Singleton Bound: $d \leq n-k+1$.
- If the equality holds, then it is called an MDS code.
- MDS conjecture: $n \leq q+1$ expect when q is even and $k=3$ or $k=q-1$ in which case $n \leq q+2$
- MDS codes with certain properties have been well studied for many applications (self-dual, self-orthogonal).

Backgrounds on GRS codes

- Generalized Reed-Solomon code GRS $(\mathbf{a},(k-1) \infty, \mathbf{v})$:

$$
\begin{equation*}
\left\{\left(v_{1} f\left(\alpha_{1}\right), \ldots, v_{n} f\left(\alpha_{n}\right)\right): f(x) \in \mathbb{F}_{q}[x], \operatorname{deg}(f(x)) \leq k-1\right\} \tag{1}
\end{equation*}
$$

where $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\mathbf{a}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \alpha_{i}, i=1, \cdots, n$ are n distinct elements in \mathbb{F}_{q}.

- It is an $[n, k]_{q}$ MDS code.

Another definition

For a polynomial $P(x) \in \mathbb{F}_{q}[x]$ with $\operatorname{gcd}\left(P(x), \prod_{i=1}^{n}\left(x-\alpha_{i}\right)\right)=1$, define the code
$\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v}):=\left\{\left(\frac{v_{1} f\left(\alpha_{1}\right)}{P\left(\alpha_{1}\right)}, \ldots, \frac{v_{n} f\left(\alpha_{n}\right)}{P\left(\alpha_{n}\right)}\right): f \in \mathbb{F}_{q}[x] ; \operatorname{deg}(f)<\operatorname{deg}(P)\right\}$.

- If $\operatorname{deg}(P)=k(0 \leq k \leq n)$, then

$$
\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v})=\operatorname{GRS}(\mathbf{a},(k-1) \infty, \mathbf{u})
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ with $u_{i}=\frac{v_{i}}{P\left(\alpha_{i}\right)}$.

Another definition

For a polynomial $P(x) \in \mathbb{F}_{q}[x]$ with $\operatorname{gcd}\left(P(x), \prod_{i=1}^{n}\left(x-\alpha_{i}\right)\right)=1$, define the code
$\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v}):=\left\{\left(\frac{v_{1} f\left(\alpha_{1}\right)}{P\left(\alpha_{1}\right)}, \ldots, \frac{v_{n} f\left(\alpha_{n}\right)}{P\left(\alpha_{n}\right)}\right): f \in \mathbb{F}_{q}[x] ; \operatorname{deg}(f)<\operatorname{deg}(P)\right\}$.

- If $\operatorname{deg}(P)=k(0 \leq k \leq n)$, then

$$
\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v})=\operatorname{GRS}(\mathbf{a},(k-1) \infty, \mathbf{u})
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ with $u_{i}=\frac{v_{i}}{P\left(\alpha_{i}\right)}$.

Now we are going to show that two GRS codes are disjoint under following condition.

Lemma

Let $P(x), Q(x)$ be two polynomials satisfying
(i) $\operatorname{gcd}(P, Q)=1$;
(ii) $\operatorname{gcd}\left(P(x) Q(x), \prod_{i=1}^{n}\left(x-\alpha_{i}\right)\right)=1$;
(iii) $\operatorname{deg}(P)+\operatorname{deg}(Q) \leq n$,

Then $\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v}) \cap \operatorname{GRS}(\mathbf{a}, Q(x), \mathbf{v})=\{\mathbf{0}\}$.

SECTION 3: Duals of GRS codes

The dual $\operatorname{GRS}(\mathbf{a},(k-1) \infty, \mathbf{v})^{\perp}=\operatorname{GRS}(\mathbf{a},(n-k-1) \infty, \mathbf{u})$, where \mathbf{u} is a nonzero (with all elements nonzero) solution of the system

$$
\left(\begin{array}{cccc}
v_{1} & v_{2} & \cdots & v_{n} \tag{3}\\
v_{1} \alpha_{1} & v_{2} \alpha_{2} & \cdots & v_{n} \alpha_{n} \\
v_{1} \alpha_{1}^{2} & v_{2} \alpha_{2}^{2} & \cdots & v_{n} \alpha_{n}^{2} \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
v_{1} \alpha_{1}^{n-2} & v_{2} \alpha_{2}^{n-2} & \cdots & v_{n} \alpha_{n}^{n-2}
\end{array}\right) \mathbf{x}^{T}=\mathbf{0} .
$$

The dual $\operatorname{GRS}(\mathbf{a},(k-1) \infty, \mathbf{v})^{\perp}=\operatorname{GRS}(\mathbf{a},(n-k-1) \infty, \mathbf{u})$, where \mathbf{u} is a nonzero (with all elements nonzero) solution of the system

$$
\begin{align*}
& \left(\begin{array}{cccc}
v_{1} & v_{2} & \cdots & v_{n} \\
v_{1} \alpha_{1} & v_{2} \alpha_{2} & \cdots & v_{n} \alpha_{n} \\
v_{1} \alpha_{1}^{2} & v_{2} \alpha_{2}^{2} & \cdots & v_{n} \alpha_{n}^{2} \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
v_{1} \alpha_{1}^{n-2} & v_{2} \alpha_{2}^{n-2} & \cdots & v_{n} \alpha_{n}^{n-2}
\end{array}\right) \mathbf{x}^{T}=\mathbf{0} . \tag{3}\\
& \bullet u_{i}=v_{i}^{-1} \prod_{1 \leq j \leq n, j \neq i}\left(\alpha_{i}-\alpha_{j}\right)^{-1}
\end{align*}
$$

Lemma

For $0 \leq k \leq n, \operatorname{GRS}(\mathbf{a},(k-1) \infty, \mathbf{1})^{\perp}=\operatorname{GRS}(\mathbf{a},(n-k-1) \infty, \mathbf{u})$, where $\mathbf{1}$ stands for the all-one vector and $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ with $u_{j}=\frac{1}{\prod_{1 \leq i \leq n, i j j}\left(\alpha_{j}-\alpha_{i}\right)}$ for $j=1,2, \ldots, n$.

Recall that

$\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v})=$

$$
\left\{\left(\frac{v_{1}}{P\left(\alpha_{1}\right)} c_{1}, \ldots, \frac{v_{n}}{P\left(\alpha_{n}\right)} c_{n}\right):\left(c_{1}, \ldots, c_{n}\right) \in \operatorname{GRS}(\mathbf{a},(k-1) \infty, \mathbf{1})\right\} .
$$

Corollary

Let $k=\operatorname{deg}(P)$ with $0 \leq k \leq n$. Then $\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v})^{\perp}=\operatorname{GRS}(\mathbf{a},(n-k-1) \infty, \mathbf{u})$, where $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ with $u_{j}=\frac{P\left(\alpha_{j}\right)}{v_{j}} \times \frac{1}{\Pi_{1 \leq i \leq n, \neq j}\left(\alpha_{j}-\alpha_{i}\right)}$ for $j=1,2, \ldots, n$.

SECTION 4: Our Construction

Now we give some sufficient condition under which the codes GRS $(\mathbf{a}, P(x), \mathbf{v})$ are LCD MDS codes. i.e.,

$$
\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v}) \cap \operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v})^{\perp}=\{\mathbf{0}\}
$$

It is shown that under certain conditions

$$
\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v}) \cap \operatorname{GRS}(\mathbf{a}, Q(x), \mathbf{v})=\{\mathbf{0}\}
$$

We know that

$$
\operatorname{GRS}(\mathbf{a}, Q(x), \mathbf{v})=\operatorname{GRS}(\mathbf{a},(n-k-1) \infty, \mathbf{w})
$$

with $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ and $w_{i}=\frac{v_{i}}{Q\left(\alpha_{i}\right)}$ for all $i=1,2, \ldots, n$.

$$
\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v})^{\perp}=\operatorname{GRS}(\mathbf{a},(n-k-1) \infty, \mathbf{u})
$$

with $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $u_{j}=\frac{P\left(\alpha_{j}\right)}{v_{j}} \times \frac{1}{\prod_{1 \leq i \leq n, i \neq j}\left(\alpha_{j}-\alpha_{i}\right)}$ for all $j=1,2, \ldots, n$.

Theorem

Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be n distinct elements. Let $P(x), Q(x)$ be two polynomials satisfying:
(i) $\operatorname{gcd}(P, Q)=1$ and $\operatorname{gcd}\left(P Q, \prod_{i=1}^{n}\left(x-\alpha_{i}\right)\right)=1$;
(ii) $\operatorname{deg}(P)+\operatorname{deg}(Q)=n$;
(iii) $\frac{P\left(\alpha_{j}\right) Q\left(\alpha_{j}\right)}{\prod_{1 \leq i \leq n, i \neq j}\left(\alpha_{j}-\alpha_{i}\right)}=v_{j}^{2}$, for every $1 \leq j \leq n$.

Then GRS $(\mathbf{a}, P(x), \mathbf{v})$ is an $[n, k]_{q}-L C D M D S$ code, where $k=\operatorname{deg}(P)$.
Furthermore, $\operatorname{GRS}(\mathbf{a}, Q(x), \mathbf{v})$ is the dual code of $\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v})$.

Theorem

Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be n distinct elements. Let $P(x), Q(x)$ be two polynomials satisfying:
(i) $\operatorname{gcd}(P, Q)=1$ and $\operatorname{gcd}\left(P Q, \prod_{i=1}^{n}\left(x-\alpha_{i}\right)\right)=1$;
(ii) $\operatorname{deg}(P)+\operatorname{deg}(Q)=n$;
(iii) $\frac{P\left(\alpha_{j}\right) Q\left(\alpha_{j}\right)}{\Pi_{1 \leq i \leq n, i \neq j}\left(\alpha_{j}-\alpha_{i}\right)}=v_{j}^{2}$, for every $1 \leq j \leq n$.

Then $\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v})$ is an $[n, k]_{q}-L C D$ MDS code, where $k=\operatorname{deg}(P)$.
Furthermore, $\operatorname{GRS}(\mathbf{a}, Q(x), \mathbf{v})$ is the dual code of $\operatorname{GRS}(\mathbf{a}, P(x), \mathbf{v})$.

- The above idea also works for GRS codes of length $q+1$ by adding a point at infinity.

For even q

If q is even then every element of \mathbb{F}_{q} is a square.

Theorem

If q is even and $n \leq q$, then for any k with $0 \leq k \leq n$ there exists a q-ary [n, k L LCD MDS code.

For odd q

Next we consider the case where q is odd.
Theorem
If q is an odd square and $n \leq \sqrt{q}$, then for any k with $0 \leq k \leq n$, there exists a q-ary [n, k] LCD MDS code.

For sufficiently large q

- For any given $2 n$ and prime power q, if $q \geq 4^{2 n} \times 2 n^{2}$, then there exists a subset $S=\left\{\alpha_{1}, \alpha_{2}, \ldots, \ldots, \alpha_{2 n}\right\}$ of \mathbb{F}_{q} such that $\alpha_{j}-\alpha_{i}$ are nonzero square elements for all $1 \leq i<j \leq m$.
- $q \equiv 1 \bmod 4,-1$ is a square. Then $\alpha_{i}-\alpha_{j}$ are nonzero square elements

> Put $P(x)=\prod_{i=1}^{k}\left(x-\alpha_{n+i}\right), Q(x)=\prod_{i=1}^{n-k}\left(x-\alpha_{n+k+i}\right)$. Then $P\left(\alpha_{j}\right) Q\left(\alpha_{j}\right)$ is a square in \mathbb{F}_{q} for every $1 \leq j \leq n$. Theorem

> If n and q satisfy that q is odd, $q \equiv 1 \bmod 4$, and $q \geq 4^{2 n} \times(2 n)^{2}$, then for anv $0<k<n$ there exists a a-arv $[n . k]$ LCD MDS.

For sufficiently large q

- For any given $2 n$ and prime power q, if $q \geq 4^{2 n} \times 2 n^{2}$, then there exists a subset $S=\left\{\alpha_{1}, \alpha_{2}, \ldots, \ldots, \alpha_{2 n}\right\}$ of \mathbb{F}_{q} such that $\alpha_{j}-\alpha_{i}$ are nonzero square elements for all $1 \leq i<j \leq m$.
- $q \equiv 1 \bmod 4,-1$ is a square. Then $\alpha_{i}-\alpha_{j}$ are nonzero square elements

Put $P(x)=\prod_{i=1}^{k}\left(x-\alpha_{n+i}\right), Q(x)=\prod_{i=1}^{n-k}\left(x-\alpha_{n+k+i}\right)$. Then $P\left(\alpha_{j}\right) Q\left(\alpha_{j}\right)$ is a square in \mathbb{F}_{q} for every $1 \leq j \leq n$.

Theorem

If n and q satisfy that q is odd, $q \equiv 1 \bmod 4$, and $q \geq 4^{2 n} \times(2 n)^{2}$, then for any $0 \leq k \leq n$ there exists a q-ary $[n, k] L C D M D S$.

Main Result

Theorem (Main Result)

Let q be a prime power and let $k \geq 0$ and $n \geq 1$ be two integers. Then there exists a q-ary $[n, k] \operatorname{LCD}$ MDS code whenever one of the following conditions is satisfied.
(i) q is even, $n \leq q+1$ and $0 \leq k \leq n$;
(ii) q is an odd square, $n \leq \sqrt{q}+1$ and $0 \leq k \leq n$;
(iii) q is odd, $n=q+1$ and even k with $4 \leq k \leq n-4$;
(iv) q is odd, $q \equiv 1 \bmod 4$, and $q \geq 4^{2 n} \times(2 n)^{2}, 0 \leq k \leq n$.

Thank you!

