Construction of MDS codes with complementary dual

Lingfei Jin

Fudan University @IMS Workshop, Singapore

2016.9.28

Lingfei Jin (Fudan)

Construction of MDS codes with complement

2016.9.28 1 / 28

Outline

- Background
- Results on generalized Reed-Solomon codes
- Dual codes of GRS codes
- Our construction

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Background

- Linear codes with complementary dual(LCD codes) were introduced by Massey in 1992. The author showed there exists asymptotically good LCD codes.
- In 2004, Sendrier showed that LCD codes meet the asymptotic Gilbert-Varshamov bound.
- Tzeng and Hartmann proved that the minimum distance of a class of reversible cyclic codes is greater than the BCH bound .

Background

- Linear codes with complementary dual(LCD codes) were introduced by Massey in 1992. The author showed there exists asymptotically good LCD codes.
- In 2004, Sendrier showed that LCD codes meet the asymptotic Gilbert-Varshamov bound.
- Tzeng and Hartmann proved that the minimum distance of a class of reversible cyclic codes is greater than the BCH bound .

Known results on LCD

- In 1994, Yang and Massey gave a necessary and sufficient condition under which a cyclic code to have a complementary dual;
- In 2009, Esmaeili and Yari analysed LCD codes that are quasi-cyclic;
- In 2016, Dougherty et al developed a linear programming bound on the largest size of an LCD code of given length and minimum distance.

< ロ > < 同 > < 回 > < 回 >

Known results on LCD

- In 1994, Yang and Massey gave a necessary and sufficient condition under which a cyclic code to have a complementary dual;
- In 2009, Esmaeili and Yari analysed LCD codes that are quasi-cyclic;
- In 2016, Dougherty et al developed a linear programming bound on the largest size of an LCD code of given length and minimum distance.

Motivation

LCD codes have application against Side-Channel Attack(SCA).

SCA: attack based on information gained from the physical implementation of a cryptosystem, such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system.

< ロ > < 同 > < 回 > < 回 >

SCA includes:

- Timing attack-attacks based on measuring how much time various computations take to perform.
- Power-monitoring attack–attacks that make use of varying power consumption by the hardware during computation.
- Electromagnetic attack–attacks based on leaked electromagnetic radiation, which can directly provide plaintexts and other information.

A D N A B N A B N

LCD for countermeasure to SCA

SCA rely on the relationship between information leaked through a side channel and the secret data, there are two main countermeasures:

(1) eliminate or reduce the release of such information

(2) eliminate the relationship between the leaked information and the secret data.

A typical technique for (2) is known as masking. The actual operation is carried on a randomized version of the (masked)data.

イロト イポト イラト イラ

LCD for countermeasure to SCA

SCA rely on the relationship between information leaked through a side channel and the secret data, there are two main countermeasures:

- (1) eliminate or reduce the release of such information
- (2) eliminate the relationship between the leaked information and the secret data.

A typical technique for (2) is known as masking. The actual operation is carried on a randomized version of the (masked)data.

< ロ > < 同 > < 回 > < 回 >

LCD for countermeasure to SCA

SCA rely on the relationship between information leaked through a side channel and the secret data, there are two main countermeasures:

- (1) eliminate or reduce the release of such information
- (2) eliminate the relationship between the leaked information and the secret data.

A typical technique for (2) is known as masking. The actual operation is carried on a randomized version of the (masked)data.

A D N A B N A B N

Motivation

- LCD codes can be used in the method called Orthogonal Direct Sum Masking.
- Having C be LCD of greatest possible minimum distance simultaneously improves the resistance against SCA (FIA).

Other applications: data storage, communication systems.

- **Purpose:** Study of linear codes that are both MDS and LCD. These codes are called LCD MDS codes.
- LCD MDS codes are of both theoretical and practical importance.

SECTION 2: Some results on GRS codes

Lingfei Jin (Fudan)

Construction of MDS codes with complement

2016.9.28 10 / 28

- \mathbb{F}_q : finite field of q elements.
- $[n, k]_q$ linear code: a k-dimensional subspace of \mathbb{F}_q^n .
- Minimum distace d : can correct at most $\lfloor \frac{d-1}{2} \rfloor$ errors.
- Define $C^{\perp} = \{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot \mathbf{c} = \mathbf{0}, \forall \mathbf{c} \in C \}$
- If C ⊆ C[⊥], then it is called self-orthogonal. It is called self-dual when the equality holds.
- LCD code: $C \cap C^{\perp} = \{\mathbf{0}\}.$

- \mathbb{F}_q : finite field of q elements.
- $[n,k]_q$ linear code: a k-dimensional subspace of \mathbb{F}_q^n .
- Minimum distace d : can correct at most $\lfloor \frac{d-1}{2} \rfloor$ errors.
- Define $C^{\perp} = \{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot \mathbf{c} = \mathbf{0}, \forall \mathbf{c} \in C \}$
- If C ⊆ C[⊥], then it is called self-orthogonal. It is called self-dual when the equality holds.
- LCD code: $C \cap C^{\perp} = \{\mathbf{0}\}.$

MDS codes

- Singleton Bound: $d \le n k + 1$.
- If the equality holds, then it is called an MDS code.
- MDS conjecture: $n \le q + 1$ expect when q is even and k = 3 or k = q 1 in which case $n \le q + 2$
- MDS codes with certain properties have been well studied for many applications (self-dual, self-orthogonal).

MDS codes

- Singleton Bound: $d \le n k + 1$.
- If the equality holds, then it is called an MDS code.
- MDS conjecture: $n \le q + 1$ expect when q is even and k = 3 or k = q 1 in which case $n \le q + 2$
- MDS codes with certain properties have been well studied for many applications (self-dual, self-orthogonal).

Backgrounds on GRS codes

• Generalized Reed-Solomon code $GRS(\mathbf{a}, (k-1)\infty, \mathbf{v})$:

 $\{(v_1f(\alpha_1),\ldots,v_nf(\alpha_n)): f(x)\in\mathbb{F}_q[x], \deg(f(x))\leq k-1\}.$ (1)

where $\mathbf{v} = (v_1, v_2, ..., v_n)$ and $\mathbf{a} = (\alpha_1, \alpha_2, ..., \alpha_n)$, $\alpha_i, i = 1, ..., n$ are *n* distinct elements in \mathbb{F}_q .

• It is an $[n, k]_q$ MDS code.

Another definition

For a polynomial $P(x) \in \mathbb{F}_q[x]$ with $gcd(P(x), \prod_{i=1}^n (x - \alpha_i)) = 1$, define the code

$$GRS(\mathbf{a}, P(x), \mathbf{v}) := \left\{ \left(\frac{v_1 f(\alpha_1)}{P(\alpha_1)}, \dots, \frac{v_n f(\alpha_n)}{P(\alpha_n)} \right) : f \in \mathbb{F}_q[x]; \deg(f) < \deg(P) \right\}.$$
(2)

• If deg(P) = $k(0 \le k \le n)$, then

 $GRS(\mathbf{a}, P(x), \mathbf{v}) = GRS(\mathbf{a}, (k-1)\infty, \mathbf{u})$

where $\mathbf{u} = (u_1, \ldots, u_n)$ with $u_i = \frac{v_i}{P(\alpha_i)}$.

イロト 不得 トイヨト イヨト 二日

Another definition

For a polynomial $P(x) \in \mathbb{F}_q[x]$ with $gcd(P(x), \prod_{i=1}^n (x - \alpha_i)) = 1$, define the code

$$GRS(\mathbf{a}, P(x), \mathbf{v}) := \left\{ \left(\frac{v_1 f(\alpha_1)}{P(\alpha_1)}, \dots, \frac{v_n f(\alpha_n)}{P(\alpha_n)} \right) : f \in \mathbb{F}_q[x]; \deg(f) < \deg(P) \right\}.$$
(2)

• If deg(
$$P$$
) = $k(0 \le k \le n)$, then

$$GRS(\mathbf{a}, P(x), \mathbf{v}) = GRS(\mathbf{a}, (k-1)\infty, \mathbf{u})$$

where
$$\mathbf{u} = (u_1, \ldots, u_n)$$
 with $u_i = \frac{v_i}{P(\alpha_i)}$.

Now we are going to show that two GRS codes are disjoint under following condition.

Lemma

Let P(x), Q(x) be two polynomials satisfying

- (i) gcd(P, Q) = 1;
- (ii) $gcd(P(x)Q(x), \prod_{i=1}^{n} (x \alpha_i)) = 1;$
- (iii) $\deg(P) + \deg(Q) \le n$,

Then $GRS(\mathbf{a}, P(x), \mathbf{v}) \cap GRS(\mathbf{a}, Q(x), \mathbf{v}) = \{\mathbf{0}\}.$

SECTION 3: Duals of GRS codes

Lingfei Jin (Fudan)

Construction of MDS codes with complement

(4) (5) (4) (5)

The dual GRS($\mathbf{a}, (k-1)\infty, \mathbf{v}$)^{\perp} = GRS($\mathbf{a}, (n-k-1)\infty, \mathbf{u}$), where \mathbf{u} is a nonzero (with all elements nonzero) solution of the system

$$\begin{pmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \dots & \mathbf{v}_{n} \\ \mathbf{v}_{1}\alpha_{1} & \mathbf{v}_{2}\alpha_{2} & \dots & \mathbf{v}_{n}\alpha_{n} \\ \mathbf{v}_{1}\alpha_{1}^{2} & \mathbf{v}_{2}\alpha_{2}^{2} & \dots & \mathbf{v}_{n}\alpha_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_{1}\alpha_{1}^{n-2} & \mathbf{v}_{2}\alpha_{2}^{n-2} & \dots & \mathbf{v}_{n}\alpha_{n}^{n-2} \end{pmatrix} \mathbf{x}^{T} = \mathbf{0}.$$
(3)

•
$$U_i = V_i^{-1} \prod_{1 \le j \le n, j \ne i} (\alpha_i - \alpha_j)^{-1}$$
.

2016.9.28 17 / 28

The dual GRS($\mathbf{a}, (k-1)\infty, \mathbf{v}$)^{\perp} = GRS($\mathbf{a}, (n-k-1)\infty, \mathbf{u}$), where \mathbf{u} is a nonzero (with all elements nonzero) solution of the system

$$\begin{pmatrix} v_{1} & v_{2} & \dots & v_{n} \\ v_{1}\alpha_{1} & v_{2}\alpha_{2} & \dots & v_{n}\alpha_{n} \\ v_{1}\alpha_{1}^{2} & v_{2}\alpha_{2}^{2} & \dots & v_{n}\alpha_{n}^{2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ v_{1}\alpha_{1}^{n-2} & v_{2}\alpha_{2}^{n-2} & \dots & v_{n}\alpha_{n}^{n-2} \end{pmatrix} \mathbf{x}^{T} = \mathbf{0}.$$
(3)

•
$$U_i = V_i^{-1} \prod_{1 \le j \le n, j \ne i} (\alpha_i - \alpha_j)^{-1}$$
.

2016.9.28 17 / 28

Lemma

For $0 \le k \le n$, GRS($\mathbf{a}, (k-1)\infty, \mathbf{1}$)^{\perp} = GRS($\mathbf{a}, (n-k-1)\infty, \mathbf{u}$), where $\mathbf{1}$ stands for the all-one vector and $\mathbf{u} = (u_1, \dots, u_n)$ with $u_j = \frac{1}{\prod_{1 \le i \le n, i \ne j} (\alpha_j - \alpha_i)}$ for $j = 1, 2, \dots, n$.

Recall that

$$GRS(\mathbf{a}, P(x), \mathbf{v}) = \left\{ \left(\frac{v_1}{P(\alpha_1)} c_1, \dots, \frac{v_n}{P(\alpha_n)} c_n \right) : (c_1, \dots, c_n) \in GRS(\mathbf{a}, (k-1)\infty, \mathbf{1}) \right\}$$

Corollary

Let
$$k = \deg(P)$$
 with $0 \le k \le n$. Then
 $GRS(\mathbf{a}, P(x), \mathbf{v})^{\perp} = GRS(\mathbf{a}, (n - k - 1)\infty, \mathbf{u})$, where $\mathbf{u} = (u_1, \dots, u_n)$
with $u_j = \frac{P(\alpha_j)}{v_j} \times \frac{1}{\prod_{1 \le i \le n, i \ne j} (\alpha_j - \alpha_i)}$ for $j = 1, 2, \dots, n$.

Lingfei Jin (Fudan)

Construction of MDS codes with complement

(日) (四) (日) (日) (日)

•

SECTION 4: Our Construction

Lingfei Jin (Fudan)

Construction of MDS codes with complement

< • • • **•**

< ≣ ► ≣ ৩৭৫ 2016.9.28 20/28

(4) (5) (4) (5)

Now we give some sufficient condition under which the codes $GRS(\mathbf{a}, P(x), \mathbf{v})$ are LCD MDS codes. i.e.,

 $GRS(\mathbf{a}, P(x), \mathbf{v}) \cap GRS(\mathbf{a}, P(x), \mathbf{v})^{\perp} = \{\mathbf{0}\}$

It is shown that under certain conditions

 $GRS(\mathbf{a}, P(x), \mathbf{v}) \cap GRS(\mathbf{a}, Q(x), \mathbf{v}) = \{\mathbf{0}\}$

Lingfei Jin (Fudan)

Construction of MDS codes with complement

2016.9.28 21 / 28

イロト イポト イヨト イヨト 二日

We know that

 $GRS(\mathbf{a}, Q(x), \mathbf{v}) = GRS(\mathbf{a}, (n-k-1)\infty, \mathbf{w})$

with
$$\mathbf{w} = (w_1, \ldots, w_n)$$
 and $w_i = \frac{v_i}{Q(\alpha_i)}$ for all $i = 1, 2, \ldots, n$.

 $GRS(\mathbf{a}, P(x), \mathbf{v})^{\perp} = GRS(\mathbf{a}, (n-k-1)\infty, \mathbf{u})$

with
$$\mathbf{u} = (u_1, \dots, u_n)$$
 and $u_j = \frac{P(\alpha_j)}{v_j} \times \frac{1}{\prod_{1 \le i \le n, i \ne j} (\alpha_j - \alpha_i)}$ for all $j = 1, 2, \dots, n$.

2016.9.28 22 / 28

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem

Let $\{\alpha_1, \ldots, \alpha_n\}$ be n distinct elements. Let P(x), Q(x) be two polynomials satisfying:

(i)
$$gcd(P,Q) = 1$$
 and $gcd(PQ, \prod_{i=1}^{n} (x - \alpha_i)) = 1$;

(ii)
$$\deg(P) + \deg(Q) = n$$
;
(iii) $\frac{P(\alpha_j)Q(\alpha_j)}{\prod_{1 \le i \le n, i \ne j} (\alpha_j - \alpha_i)} = v_j^2$, for every $1 \le j \le n$.
Then GRS($\mathbf{a}, P(x), \mathbf{v}$) is an $[n, k]_q$ -LCD MDS code, where $k = \deg(P)$.
Furthermore, GRS($\mathbf{a}, Q(x), \mathbf{v}$) is the dual code of GRS($\mathbf{a}, P(x), \mathbf{v}$).

 The above idea also works for GRS codes of length q + 1 by adding a point at infinity.

イロト イポト イヨト イヨト

Theorem

Let $\{\alpha_1, \ldots, \alpha_n\}$ be n distinct elements. Let P(x), Q(x) be two polynomials satisfying:

(i)
$$gcd(P,Q) = 1$$
 and $gcd(PQ, \prod_{i=1}^{n} (x - \alpha_i)) = 1$;

(ii)
$$\deg(P) + \deg(Q) = n$$
;
(iii) $\frac{P(\alpha_j)Q(\alpha_j)}{\prod_{1 \le i \le n, i \ne j} (\alpha_j - \alpha_i)} = v_j^2$, for every $1 \le j \le n$.
Then GRS($\mathbf{a}, P(x), \mathbf{v}$) is an $[n, k]_q$ -LCD MDS code, where $k = \deg(P)$.
Furthermore, GRS($\mathbf{a}, Q(x), \mathbf{v}$) is the dual code of GRS($\mathbf{a}, P(x), \mathbf{v}$).

 The above idea also works for GRS codes of length q + 1 by adding a point at infinity.

イロト イポト イヨト イヨト

For even *q*

If *q* is even then every element of \mathbb{F}_q is a square.

Theorem

If q is even and $n \le q$, then for any k with $0 \le k \le n$ there exists a q-ary [n, k] LCD MDS code.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For odd *q*

Next we consider the case where *q* is odd.

Theorem

If q is an odd square and $n \le \sqrt{q}$, then for any k with $0 \le k \le n$, there exists a q-ary [n, k] LCD MDS code.

Lingfei Jin (Fudan)

Construction of MDS codes with complement

2016.9.28 25 / 28

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For sufficiently large q

- For any given 2n and prime power q, if q ≥ 4²ⁿ × 2n², then there exists a subset S = {α₁, α₂,..., α_{2n}} of F_q such that α_j − α_i are nonzero square elements for all 1 ≤ i < j ≤ m.
- $q \equiv 1 \mod 4$, -1 is a square. Then $\alpha_i \alpha_j$ are nonzero square elements

Put $P(x) = \prod_{i=1}^{k} (x - \alpha_{n+i}), Q(x) = \prod_{i=1}^{n-k} (x - \alpha_{n+k+i})$. Then $P(\alpha_j)Q(\alpha_j)$ is a square in \mathbb{F}_q for every $1 \le j \le n$.

Theorem

If n and q satisfy that q is odd, $q \equiv 1 \mod 4$, and $q \ge 4^{2n} \times (2n)^2$, then for any $0 \le k \le n$ there exists a q-ary [n, k] LCD MDS.

For sufficiently large q

- For any given 2n and prime power q, if q ≥ 4²ⁿ × 2n², then there exists a subset S = {α₁, α₂,..., α_{2n}} of F_q such that α_j − α_i are nonzero square elements for all 1 ≤ i < j ≤ m.
- $q \equiv 1 \mod 4$, -1 is a square. Then $\alpha_i \alpha_j$ are nonzero square elements

Put
$$P(x) = \prod_{i=1}^{k} (x - \alpha_{n+i}), Q(x) = \prod_{i=1}^{n-k} (x - \alpha_{n+k+i})$$
. Then $P(\alpha_j)Q(\alpha_j)$ is a square in \mathbb{F}_q for every $1 \le j \le n$.

Theorem

If *n* and *q* satisfy that *q* is odd, $q \equiv 1 \mod 4$, and $q \ge 4^{2n} \times (2n)^2$, then for any $0 \le k \le n$ there exists a *q*-ary [*n*, *k*] LCD MDS.

Main Result

Theorem (Main Result)

Let q be a prime power and let $k \ge 0$ and $n \ge 1$ be two integers. Then there exists a q-ary [n, k] LCD MDS code whenever one of the following conditions is satisfied.

(i) q is even,
$$n \le q + 1$$
 and $0 \le k \le n$;

(ii) q is an odd square, $n \le \sqrt{q} + 1$ and $0 \le k \le n$;

(iii) q is odd, n = q + 1 and even k with $4 \le k \le n - 4$;

(iv) *q* is odd, $q \equiv 1 \mod 4$, and $q \ge 4^{2n} \times (2n)^2$, $0 \le k \le n$.

イロト 不得 トイヨト イヨト ニヨー

Thank you !

2016.9.28 28 / 28

∃ > < ∃</p>