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What is Cryptography?
Traditionally: how to maintain secrecy in communication

Alice and Bob talk while Eve tries to listen

Alice Bob

Eve



Atbash  אתבש 
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History of Cryptography
• Very ancient occupation

Biblical times, Jeremiah-
 
א

;הָאָרֶץ-כּל תּהִלּת ותּתּפֵשׂ, שׁשׁךְֵ◌איךְ נלְִכּדָה 
. בּגּוֹיםִ, בּבֶללְשׁמּה  הָיתְָהאֵיךְ   

• Egyptian Hieroglyphs 
– Unusual ones 

...    
• Many interesting books and sources, 
especially about the Enigma (WW2)

Sheshakh has been captured,
the pride of the whole earth seized!
Bavel has become an object of horror
throughout the nations!

Atbash  אתבש 
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Modern Times
• Up to the mid 70’s - mostly classified military work

– Exceptions: Kerckhoffs, Shannon, Turing
• Since then  - explosive growth

– Commercial applications
– Scientific work: tight relationship with Computational Complexity 

Theory
– Major works: Diffie-Hellman, Rivest, Shamir and Adleman (RSA)

• Recently - more involved models for more diverse tasks.
How to maintain the secrecy, integrity and functionality in computer and 

communication  system.

Emphasis on cooperation: how can parties with only limited trust 
perform tasks to the benefit of all



Secret Sharing

• Protecting Bitcoin keys
– Print and destroy?
– What if the printout is lsot or corrupted (humidity..)

• Be able to retrieve even if some are lost 
Idea: split secret into several shares
Want:
• To be able to withdraw money
• But only if enough share owners cooperate!



unauthorized
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Secret SharingThe Characters
• Set of users P1, P2, …, Pn
• Dealer has secret S.
Dealer:
• Gives to users P1, P2, …, Pn shares Π1, Π2, …, Πn.

– The shares are a probabilistic function of S.
• A subset of users X is either authorized or unauthorized.

Goal:
• An authorized X can reconstruct S based on their shares.
• An unauthorized X cannot gain any knowledge about S.

• Introduced by Blakley and Shamir in the late 1970s.
– Threshold secret sharing

Source: Wikipedia

authorized

Π(X,S)
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Example: Threshold
• Shamir’s famous example - Threshold Secret Sharing 

– Authorized: any k out of the n parties.
– Unauthorized: any set of less than k parties.

Solution: 
• Fix prime (power) Q≥n+1
• Choose a random degree k-1 polynomial p over GF[Q] s.t.: 

– p(0) = S.
Let Пi = p(i)

• Reconstruction: 
– polynomial interpolation

Example k=3:
Source: Wikipedia

“How to share a secret”

Need to know n in advance!

Share size: 
log Q =log n

This is tight: even for single bit secrets
Kilian-Nisan 90,
CascudoCramerXing13



A Few Applications of Secret Sharing

• Protecting the keys of root DNS
• Anonymous petitions:

– Prove that many members of a group have signed a 
petition without telling who

• Foundations of Multi-Party Computation
• Electronic Voting
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Access Structures
Access Structure M:

– An indicator function of the authorized subsets.
• To make sense: M should be monotone:

if X’ ⊂ X and M(X’)=1 then M(X)=1

Perfect secret sharing scheme:
• For any two secrets S0, S1, subset X s.t. M(X)=0: 

Dist(П(X,S0)) = Dist(П(X,S1)).
Or equivalently: for any distinguisher  A:

|Pr[A(П(X,S0)) = 1] - Pr[A(П(X,S1)) = 1]|=0 

The complexity of the scheme: the size of the largest share.

unauthorized

authorized
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Example: undirected connectivity
• Parties correspond to edges in a graph G.
• Two special nodes: s and t.
• Authorized sets: those graphs containing a path from s to t.
• Solution:

– Give vertices random values r1,…,rn.
– Set rt = S  rs.
– For edge Пu,v = ru  rv.

• Reconstruction:
– XOR all shares.

S

t

u

w

v

rs  ru

What about directed connectivity?
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Known Results
Theorem [Ito, Saito and Nishizeki 1987] : All access structures.
For every M there exists a perfect secret sharing scheme
- might have exponential size shares in the number of parties.
- proportional to CNF / DNF size

Theorem [Benaloh-Leichter 1988] :
If M is a monotone formula : there is a perfect secret sharing scheme 

where the size of a share is proportional to ||.
Karchmer-Wigderson generalized this results to monotone span 

programs [1993]

Major question: can we prove a lower bound on the size of the shares 
for some access structure?
– Even a non constructive result is interesting

Exponential lower bounds!
Cook, Pitassi, Robere and Rossman,2016



This talk

Two new aspects of secret sharing:
• Evolving secret Sharing
• Secret Sharing  for NP



Evolving Secret Sharing

• Can we design scalable systems without suffering a 
great deal of efficiency costs? 

This talk: no fixed upper bound on the number of 
participants in the area of secret sharing.
Important even if there is an upper bound but 

do not want to waste the max if fewer people show up



Can we not assume upper bounds?

Examples
• Prefix codes of integers [Elias75,Dodis-Patrascu-Thorup10]
• Locally Labeling infinite graphs for adjacency 

[Kannan-Naor-Rudich92]
• Bloom filters of a growing set [Pagh-Segev-Wieder 13]
• Secret sharing [CsirmazTardos12,This Work]
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Secret Sharing for Evolving Access Structures

• Parties come one-by-one
• Qualified sets are revealed when all their members are present. 
• Upper bound on # of parties is unknown.
• Parties are only added and qualified sets remain qualified
• Shares are given only to joining parties
Goal:
• Qualified X can reconstruct S based on their shares.
• Unqualified X cannot distinguish S from random.

1. Can this even be done?
2. How large should the shares be?

Cannot refresh 
shares



History

• Christian Cachin. On-line secret sharing, 1995.
• Laszlo Csirmaz and Gabor Tardos. On-line secret 

sharing. 2012.
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Our Results
• Constructions

• Lower bound
– Any scheme for ૛-threshold requires log	ݐ ൅ loglog	ݐ ൅ logloglog	ݐ

bits.

• Equivalence to prefix codes
Exists a scheme for	૛-threshold with share size ࣌ሺ࢚ሻ for single bit 
secret if and only if there exists a prefix code for the integers where 
the length of the ݐ-th codeword is ࣌ሺ࢚ሻ exists.

Share size of ࢚୲୦ partyEvolving access structure
2௧ିଵGeneral

࢑ െ 1 log	ݐ ൅ ଷ࢑ ⋅ threshold-ܓሻݐ	ሺlog݋
log	ݐ ൅ loglog	ݐ

൅ 2logloglog	ݐ
૛-threshold

1s-t-connectivity
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Talk Plan and Techniques

• Equivalence of schemes for -threshold and prefix 
codes

• A construction for -threshold
• Generalization for -threshold

• Construction for general evolving access structures

• Domain Reduction
• Formula for the future



Prefix (free) code
Prefix code: 
An encoding of s.t. no codeword is a prefix of any other

– Good for unique decoding
– Constructions: Elias 75, recursive via domain reduction

Theorem
– Existence of prefix code ∗

• codeword length ࣌ሺ࢚ሻ ൌ	|Σ(t)|
Equivalent to
– Existence of 2-threshold scheme for single bit secrets 

• share of player t of length ܕ ܜ ൌ ሻ࢚ሺ࣌

Elias code is a prefix code with -th codeword length
ߪ ݐ ൌ log	ݐ ൅ 	loglog	ݐ ൅ logloglog	ݐ ൅ ⋯



Prefix of length
of 
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Evolving 2-Threshold from Prefix Codes
Single bit secret 
• Evolving 2-threshold from prefix codes:

– Let ∗ be a prefix code
• codeword length ሻݐሺߪ

Dealer: choose an evolving random string ∗

– If the secret is 0: the share of party is: 
– If the secret is 1: the share of party is 
Reconstruction: if one share is a prefix of the other
– the secret is 0 
– otherwise, the secret is 1 

Share size: 



Evolving 2-Threshold from Prefix Codes

Correctness: shift by string of prefix code yields a 
prefix code
Security: each party gets a random string of length 

Cannot deduce anything on its own
Share size: 

[Elias75].



Lower bound for Evolving 2-Threshold 
Claim: ([KN90] and [CCX13, Appendix A]). 
For any it holds that

௠೟

௡

௧ୀଵ

• Kraft’s inequality for prefix codes 
– characterizes existence of prefix codes

• For the claim to hold

• There is prefix free code where 

௧ length 
of share t

Let ݏ௧,௕ be R.V. distributed as the share of party ݐ	when the secret is ܾ
By secrecy: for single players for every ݐ: ௧,ଵݏ	and	௧,଴ݏ identically dist.

Pr ௧,଴ݏ ൌ ௧,ଵݏ ൒
1
2௠೟	

Every pair of parties determines the secret: equality events are disjoint

1 ൒ Pr ∃݅: ௜,଴ݏ ൌ ௜,ଵݏ ൌ෍Pr ௧,଴ݏ ൌ ௧,ଵݏ ൒෍
1
2௠೟

௡

௧ୀଵ

௡

௧ୀଵ

correctness

Kraft’s Ineq.
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2-Threshold Evolving Access Structures
• Basic scheme ଴ [CsirmazTardos12]

• Party 1 is given a random bit ܾଵ
• Party 2 is given a random bit ܾଶ and the bit ܾଵᇱ ൌ ܾଵ ⊕ ݏ
• Party 3 is given a random bit ܾଷ and the bits ܾଵᇱ and ܾଶᇱ ൌ ܾଶ ⊕ ݏ
• …
• Party ݐ is given a random bit ܾ௧ and bits ܾଵᇱ , … , ܾ௧ିଵᇱ where            
ܾ௜ᇱ ൌ ܾ௜ ⊕ ݏ

• Every pair can compute 
௜ ௜

ᇱ
௜ ௜

• Each single player has no information about 
• Total share size: ଴ bits.

From player ݅ From player ݆
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Domain Reduction for 2-Threshold
1

2

3

4

5

6

7

8

9

10

Generation 1

Generation 2

Generation 3

secret s
2 out of 2

2 out of 8

2 out of 4

11

Generate 1 share of basic 
scheme per generation
and give to all parties

Within a generation: a 
`standard’ Shamir scheme
- Give each party its share
- Two parties from same 
generation define s

Sizes of generations are 
geometrically increasing

Parties are assigned 
to generations

મ૙(s)

-th share size analysis:
Internal scheme: log	ݐ bits
External scheme: ߪ଴ሺlog	ݐሻ bits

Total: ߪଵ ݐ ൌ log	ݐ ൅ ଴ߪ log	ݐ
ൌ log	t ൅ log	t ൌ 2log	t

Apply recursively to get ߪଶ using ߪଵ

Apply recursively to get ߪଷ using ߪଶ
ଷߪ ݐ ൌ log	ݐ ൅ loglog	ݐ ൅ 2logloglog	ݐ
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Comparison with Prefix Codes Based 
Scheme

• Both schemes result with same share size
• The scheme based on prefix codes is non-linear while 

the direct scheme is.
• Direct scheme is more efficient w.r.t longer secrets.
• The direct scheme is used as a basis for the 

generalization for larger thresholds
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-Threshold Domain Reduction

• Start with a basic solution 
• Partition parties into generations, where the generations are 

geometrically increasing in size
• Within a generation use a Shamir -threshold scheme

• Handles case where all ݇ parties come from the same generation

• Generate shares of the basic scheme. Split them 
between the parties such that any parties can learn 
of these shares. 
• Altogether ݇ players will hold ݇ shares of the basic scheme
• Done by sharing share ߨ௜ using a Shamir ݅-threshold scheme 

Which one? next slide

As before

As before

…,ଵߨ , ௞ିଵߨ
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Share Size of -th Party

• Setting parameters gives total share size roughly
௜ ௜ିଵ

• What is ଴?
– Using a naïve scheme (with share size ௧ or ௞) results 

with an exponential dependence on 
– We construct a more efficient scheme with poly

depdendency
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The Basic Scheme for k-Threshold
– At any point: we know the past but don’t know the future.

• Should prepare for any possible future
– How many different futures can there be? 

• Naively: any set of players potentially defined a different future.

Key idea: we do not care who comes from the future but only 
how many.
– Only k relevant options!
– Say parties came so far. This tells us that if parties 

will come in the future, they should learn the secret
– Do so for every party and for every .
– Share size is still exponential in !
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Gen1

Gen2

ଵ

௞

ଵ

௞

Via structure:

௜ ௞ି௜	

௞ିଵ

௜ୀଵ

௜ ௞ି௜௜ and ௞ି௜ together
can recover 

௜ (future) is shared s.t. any 
parties from gen 2 can recover it

௜ (present) is shared s.t. any 
parties from gen 1 can recover it

using Shamir’s scheme

– Group parties into generations of geometrically increasing size.
– Only care about quantity of parties within a generation 

Focus on 2 generations



Gen1

Gen2

ଵ

௞

ଵ

௞

Gen3

Same as before
Let’s handle 3 generations

Via structure:

௜ ௞ି௜	

௞ିଵ

௜ୀଵ

௜ ௞ି௜௜ and ௞ି௜ together
can recover 



Gen1

Gen2

ଵ

௞

ଵ

௞

Gen3

Same as before
Let’s handle 3 generations

Share each ௜ as a secret using 
the solution for 2 generations!
* with threshold 
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Share Size Analysis
The share of party from generation composed of 

௚ାଵ shares generated via standard threshold 
schemes over parties. 

The share size of party is bounded by 
௚ାଵ . 

Set ௞ and ௚ାଵ. 
Therefore, the share size is bounded by
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General Evolving Access Structures

• Scheme for DNFs in the standard setting:
– For a vector (1,0,1,0,0,1) representing a qualified set:
Dealer gives party 1 a random bit ଵ, party 3 a random bit ଷ, 
and party 6 the bit ଵ ଷ

• In the evolving setting:
– If there is an upper bound on the number of qualified sets a 

party is a member of, we can give the party this number of 
random bits (one per clause) [CsirmazTardos12]

– However, we don’t have an upper bound… 
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• Party holds ௧ିଵ bits ଵ ௧ିଵ

• If party completes a qualified set ( ଵ ௧ିଵ
ଵ ௧ିଵ

ଵ ௧ିଵ ଵ
ଵ ௜ for all 

• Otherwise, it gets a random bit
ଵ ௧ିଵ

• Correctness: immediate 
• Security: at least one of the XORed components with 

the secret must be missing.
• Total share size: ௧ିଵ bits.

General Evolving Access Structures

No need to know 
the access structure before
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• If party completes a qualified set ( ଵ ௧ିଵ
ଵ ௧ିଵ

ଵ ௧ିଵ ଵ
ଵ ௜ for all 

• Otherwise, it gets a random bit
ଵ ௧ିଵ

• Some optimization (if access structure is known)
Share size: what matters is how many times party appears in
– Unqualified subsets that can be expanded to qualified
– Qualified subsets where is the last one in the subset

General Evolving Access Structures

When applied to k-threshold: ି࢚ଵ
௜

௞ିଵ
௜ୀ଴

Good when there are 
a few unqualified sets
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Open Problems
• Lower bound for general access structure 

– Easier than the standard setting
• Can we make the share size independent of ?

– Say O(
• An efficient scheme for dynamic majority

– Qualified sets are those that form a majority at some point in time
• Applications for MPC?

– Our schemes are linear which is a critical property for constructions 
of MPC

• Can we gain from allowing statistical error? computational 
security? 

• Verifiable/robust/visual evolving secret sharing… 

For ݇-threshold
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Computational Secret Sharing
• Perfect secret sharing scheme:

Any unauthorized subset X gains absolutely no information:
– For any A, secrets S0, S1, subset X s.t. M(X)=0: 

|Pr[A(П(X,S0)) = 1]-Pr[A(П(X,S1)) = 1]|=0.

• Computational secret sharing scheme:
Any unauthorized subset X gains no useful information:

П(X,S0) ≈c П(X,S1)
In the indistinguishability of encryption style: 
For any PPT A, two secrets S0, S1, subset X s.t. M(X)=0: 

|Pr[A(П(X,S0)) = 1] - Pr[A(П(X,S1)) = 1]| < neg

This is a non-uniform definition
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Computational Secret Sharing
Theorem [Yao~89]:
If M can be computed by a monotone poly-size circuit C then:

There is a computational secret sharing scheme for M.
– Size of a share is proportional to |C|.
– Assuming one-way functions.

• What about monotone access structure that have small  
non-monotone circuits?
– Matching: 

• Parties correspond to edges in the complete graph.  
• Authorized sets: the subgraphs containing a perfect matching.

Construction similar to Yao’s 
garbled circuit

Open problem: do all monotone functions in P have computational 
secret sharing schemes?



Secret Sharing for NP
Rudich circa 1990

What about going beyond P?
• Efficient verification when the authorized set proves 

that it is indeed authorized
– Provides a witness

Example:
– Parties correspond to edges in the complete graph.  
– Authorized sets: subgraphs containing a Hamiltonian 

Cycle.
– The reconstruction algorithm should be provided with the 

witness: a cycle. 39
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Secret Sharing and Oblivious Transfer

Theorem:
If one-way functions exist and a computationally secret 
sharing scheme for the Hamiltonian problem exists then:

Oblivious Transfer Protocols exist.
– In particular Minicrypt = Cryptomania
– Construction is non-blackbox

• No hope under standard assumptions for perfect 
or statistical scheme for Hamiltonicity



Witness Encryption
[Garg, Gentry, Sahai, Waters 2013]

• A witness encryption (EncL, DecL) for a language L NP:
• Encrypt message m relative to string y: ct = EncL(y,m) 
• For any y L: let ct = EncL(y,m) and let w be any

witness for x. Then DecL(ct,w) = m.
• For any y L: ct = EncL(y,m) computationally hides 

the message m.
Gave a candidate construction for witness encryption.

• Byproduct: a candidate construction for secret sharing for a 
specific language in NP (Exact Cover).

41Multilinear Maps, Indistinguishability Obfuscation (iO)…

Includes y



Our Results
If one-way functions exist then:
• Secret Sharing for NP and Witness Encryption for 

NP are (existentially) equivalent.
• If there is a secret sharing scheme for one

NP-complete language, then there is one for all
languages in NP.

42



iO for P

Witness Encryption 
for NP

Secret Sharing 
for NP

Secret Sharing 
for P

One-Way 
functions

Secret Sharing for 
monotone circuit P

Oblivious 
Transfer

[SW14]



Definition of secret sharing for NP
Let M be a monotone access structure in NP.
• Completeness:

For any X s.t. M(X)=1, any witness w (for X), 
and any secret S: 

recon(П(X,S),w) = S.
– All operations polytime

44



Definition of secret sharing for NP: Security

• Let M be a monotone access structure in NP.
Security:
For any adversary A=(Asamp,Adist) such that Asamp
chooses two secrets S0,S1 and a subset X it holds 
that:

|Pr[M(X)=0 ˄ Adist(П(S0,X)) = 1] -
Pr[M(X)=0 ˄ Adist(П(S1,X)) = 1]| 

< neg.

45
This is a static and uniform definition



The Construction
For access structure MNP.
• Define a new language M’NP:

– Let c1, …, cn be n strings.
– Then M’(c1,…,cn) = 1 iff M(X) = 1 where:

• Example: c1=0, c2=0, c3=com(3,r3)
Then M’(c1,c2,c3) = 1 iff M(001)=1 

46

1 if exist ri s.t. ci=com(i,ri)
0 otherwiseXi =

Computationally hiding: com(x1) ≈ com(x2) 
Perfect Binding: com(x1) and com(x2) have disjoint support.

Can be constructed from one-way functions in the CRS model 
with high probability.



The Construction…
Dealer(S):

– Choose r1, …, rn uniformly at random.
– For i [n], compute ci=com(i,ri).
– Compute ct = WE.EncM’((c1, …, cn),S).
– Set Пi = (ri, ct).

Reconstruction: authorized subset X of parties: 
M(X)=1
and witness w witness for X.

– Witness for M’ consists of openings ri such that Xi=1.
– Set w’=(r’1, …, r’n, w).

47

Shared by all

Message m
String y



Security
Suppose an adversary A=(Asamp, Adist) breaks the 
system.
• Construct an algorithm D that breaks the commitment 

scheme:
– For a list of commitments c1, …, cn distinguish between 

two cases:
• They are commitments of 1, …, n.
• They are commitments of n+1, …, 2n.

48



iO for P

Witness Encryption 
for NP

Secret Sharing 
for NP

Secret Sharing 
for P

One-Way 
functions

Secret Sharing for 
monotone circuit P

Oblivious 
Transfer

[SW14]
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Open Problems 

• Adaptive choice of the set X.
• Perfect Secret-Sharing Scheme for directed 

connectivity.
– How to cope with the fan-out

• Computational Secret Sharing Scheme for Matching. 
– How to cope with negation?

• A secret sharing scheme for P based on less heavy 
cryptographic machinery.

Brakerski: diO


