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Evaluation codes

Fq: a finite field with q elements

P1, . . . ,Pn points in m-dimensional space Fm
q .

Definition

The evaluation map Ev : Fq[x1, . . . , xm]→ Fn
q is defined by

Ev(f ) := (f (P1), . . . , f (Pn)).
For any linear space L ⊂ Fq[x1, . . . , xm], one obtains a linear code
Ev(L).

Remarks:

1 This point of view advocated by Fitzgerald–Lax

2 Lagrange interpolation: any linear code can be obtained in
this way.

3 If an ideal I ⊂ Fq[x1, . . . , xm] satisfies f (Pi ) = 0 for all f ∈ I
and all Pi , then we can define Ev : Fq[x1, . . . , xm]/I → Fn

q.
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Example

Choose P1, . . . ,Pn all n = qm points in Fm
q and choose

L ⊂ Fq[x1, . . . , xm] the polynomials of total degree up to r .

Ev(L) = RMq(r ,m), the (generalized) Reed–Muller code of order r .

Dimension:
(m+r

r

)
. Minimum distance (q − r)qm−1 if r < q.

Geometrically:

Fm
q is the m-dimensional (affine) space,

P1, . . . ,Pn are the ”rational points” of this space,

L are functions on this space with restricted “behaviour at
infinity”

n − wH(Ev(f )) equals number of zeroes of f
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AG codes

Choose:

1 X : an algebraic curve,

2 P1, . . . ,Pn be rational points on X ,

3 G be a divisor on X s.t. degG < n.,

Write:

g the genus of X ,

D = P1 + · · ·+ Pn,

L(G ) the Riemann–Roch space of G , of dimension k := `(G ),

Then:

Theorem (Goppa)

CL(D,G ) := Ev(L(G )) is an [n, k , d ≥ n − k + 1− g ]Fq code and
CL(D,G )⊥ is an [n, n − k, d⊥ ≥ k + 1− g ]Fq code.
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Three examples

Reed–Solomon codes: Choose χ = P1 and G = aQ, with Q the
point “at infinity”. Then CL(D, aQ) is a Reed–Solomon code.

Hermitian codes: Choose χ over Fq2 defined by yq + y = xq+1,
Q the point at infinity, P1, . . . ,Pn up to q3 rational points of χ.
Then CL(D, aQ) is an [n, k , d ≥ n − k + 1− g ] code with
k = `(aQ) and g = q(q − 1)/2.

Asymptotic good families: Choose χ over Fq2 from an
“asymptotically optimal” family. Tfasman–Vladut–Zink found a
family of codes with asymptotic rate R = k/n and relative distance
δ = d/n:

R + δ ≥ 1− 1

q − 1
.

Beats the Gilbert–Varshamov bound if q ≥ 7.
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Minimum distance AG codes

CL(D,G ) : d ≥ n − deg(G ) ≥ n − k + 1− g

Choose f ∈ L(G ) such that wH(Ev(f )) = d .

f has zeroes in n − d rational points, say P1, . . . ,Pn−d .

f ∈ L(G − P1 − · · · − Pn−d)

0 ≤ deg(G − P1 − · · · − Pn−d) = deg(G )− n + d

d ≥ n − deg(G ) ≥ n − k + 1− g , since
k = `(G ) ≥ deg(G )− g + 1.

CL(D,G )⊥ : d⊥ ≥ deg(G )− 2g + 2 ≥ n − k + 1− g

CL(D,G )⊥ = CL(D,H) for a divisor H with
deg(H) = n − deg(G ) + 2g − 2.
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Basic decoding

Received word
r = (r1, . . . , rn) = c + e,

sent codeword
c = Ev(f ) for f ∈ L(G ).

Find Q(T ) = Q1 · T + Q0 such that:

1 Q0 ∈ L(A + G ), Q1 ∈ L(A), for a suitably chosen divisor A.

2 Q1(Pi )ri + Q0(Pi ) = 0 for all i .

Then f = −Q0/Q1 if wH(e) ≤ (n − deg(G )− 1− g)/2.

Extension to list decoding by Guruswami–Sudan.
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Alternative proof of minimum distance CL(D,G )⊥

H(Q) = {γ0, γ1, γ2, . . . } Weierstrass semigroup at Q.

Given by the pole orders of f0, f1, . . . of f ∈ L(∞Q)

p(T ) :=
∑

i t
γi

If χ = P1, then

p(t) = 1 + t + t2 + · · · =
1

1− t
.

HG (Q) = {δ0, δ1, . . . }
Given by pole orders of g0, g1, . . . of g ∈ L(G +∞Q)

pG (T ) :=
∑

j t
δj .

If χ = P1 and G = aQ, then

pG (t) = 1 + t + t2 + · · · =
1

1− t
.
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Alternative proof of minimum distance CL(D,G )⊥

Let c ∈ CL(D,G )⊥\CL(D,G + Q)⊥

G = aQ + G ′: vQ(G ) = a

Feng–Rao,Duursma:
wH(c) ≥ νa := |{(γi , δj) | γi + δj = a + 1}|
This is the coefficient of ta+1 in p(t) · pG (t).

If χ = P1 and G = aQ:

p(t)pG (t) =
1

(1− t)2
= 1 + 2t + 3t2 + . . . ,

hence wH(c) ≥ a + 2.

General: Using that H(Q) and HG (Q) have g ”gaps”:
wH(c) ≥ deg(G )− 2g + 2
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Variations of the order bound

A global statement on d⊥ was obtained by iterating:

CL(D,G )⊥ ⊃ CL(D,G + Q)⊥ ⊃ CL(D,G + 2Q)⊥ ⊃ · · ·

d⊥ ≥ d∗ := min
α≥a

νa ≥ deg(G )− 2g + 2.

In 2007, B. strengthened the method using more general filtrations:

CL(D,G )⊥ ⊃ CL(D,G + Q1)⊥ ⊃ CL(D,G + Q1 + Q2)⊥ ⊃ · · ·

Duursma generalized this further.
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Decoding CL(D,G )⊥ by majority voting

Let r = (r1, . . . , rn) be the received word, r = c + e for
c ∈ CL(D,G )⊥.

Consider the syndrome matrix S = (
∑

` fi (P`) · r` · gj(P`))i ,j .

Based on the structure of S , each of the, say νa, pairs in
{(γi , δj) | γi + δj = a + 1} ”votes” in which coset of
CL(D,G + Q)⊥ the error vector e lies.

The vote is correct if wH(e) ≤ (νa − 1)/2.

Iterating majority voting, we find c if wH(e) ≤ (d∗ − 1)/2.
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Fast decoding of AG-codes

An RS-code of length n can be decoded in O(n2) using the
Euclidean algorithm (or Berlekamp–Massey).

Using the fast Euclidean algorithm (or BM) in Õ(n).

Majority voting: O(n3) in general, O(n7/3) for Hermitian
codes (Sakata).

Basic algorithm for Hermitian codes: Õ(n2) (Brander, B.)

Basic algorithm for Hermitian codes: Õ(n5/3) (Rosenkilde né
Nielsen, B.)

Central question: How to decode even faster?
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Curves with many rational points

Given a curve χ defined over Fq, we define

g(χ) genus , N(χ) number of rational points.

Then (Hasse–Weil):

N(χ) ≤ q + 1 + 2
√
qg(χ).

The Hermitian curve attains this bound, but curves with high
genus cannot.

Ihara’s constant: A(q) := lim sup
g(χ)→∞

N(χ)

g(χ)
.

Asymptotic result for codes:

R + δ ≥ 1− 1

A(q)
.
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Facts on A(q)

Serre:
A(q) > c log(q).

Drinfeld–Vladut:
A(q) ≤ √q − 1.

Ihara,Tsfasman–Vladut–Zink

A(p2m) ≥ pm − 1.

Hence A(p2m) = pm − 1, but A(p2m+1) is unknown.
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Function fields

A curve χ defined over Fq gives rise to a function field Fq(χ)
consisting of all algebraic functions on χ.

Example: χ = P1, then Fq(χ) = Fq(x).

Example: χ the Hermitian curve, then Fq2(χ) = Fq2(x , y) with
yq + y = xq+1.

General: Fq(χ) can be written as a finite algebraic extension of
Fq(x) for some x ∈ Fq(χ).



Part I: Algebraic geometry (AG) codes Part II: Finding curves. Conclusion

Towers of function fields

Tower of function fields:

F = (F0 ⊆ F1 ⊆ · · · ⊆ Fi ⊆ · · · )

1 F0 = Fq(x0)

2 Fi+1/Fi a finite extension, say Fi+1 = Fi (xi+1)

3 g(Fi )→∞ as i →∞
4 Fq ∩ Fi = Fq

Limit of the tower F :

λ(F) := lim
i→∞

N(Fi )

g(Fi )
.

Then A(q) ≥ λ(F).
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Recursive towers

A recursive towers is obtained by an equation
0 = ϕ(X ,Y ) ∈ Fq[X ,Y ] such that

F0 = Fq(x0),
Fi+1 = Fi (xi+1) with ϕ(xi+1, xi ) = 0 for i ≥ 0.

Explicit recursive towers have given rise to good lower bounds
on A(q).

Garcia, Stichtenoth introduced an explicit tower with the
equation (xi+1xi )

q + xi+1xi = xq+1
i over Fq2 or equivalently

xqi+1x
q−1
i + xi+1 = xqi over Fq2 .
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Garcia–Stichtenoth tower

(xi+1xi )
q + (xixi+1) = xq+1

i over Fq2 .

Using properties of norm and trace:
For an xi ∈ Fq2\{0}, there are q possibilities for xi+1 ∈ Fq2\{0}.

Hence N(Fi ) ≥ (q2 − 1)qi .

A nontrivial computation gives g(Fi ) ≤ (q + 1)qi .

This tower is optimal: λ(F) = q − 1.
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Recent recursive towers

To show the recent result on A(pn), n = 2m + 1, Bassa, B.,
Garcia, Stichtenoth used a tower satisfying the recursion

xq
n−1

i+1 − 1

xq
m−1

i+1

=
xq

n−1
i − 1

xq
n−qm+1

i

.

Using this tower, they showed:

A(pn) ≥ 2

(
1

pm − 1
+

1

pm+1 − 1

)−1
.

Therefore the following holds for any n:

A(pn) ≥ 2

(
1

pdn/2e − 1
+

1

pbn/2c − 1

)−1
.

Results for codes: The asymptotic GV-bound can be improved for:

q = p2m+1 if m > 0 and q > 125.
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Source of the equations

Tsfasman–Vladut–Zink found their results using modular curves.

The first Garcia–Stichtenoth tower was found in a completely
different way.

Elkies showed though, that this and all other known optimal
recursive towers are in fact modular as well.

The equation for the tower by Bassa–B.–Garcia–Stichtenoth was
found using modular theory.
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Conclusion

The past few years saw exciting developments in AG codes:
1. Fast decoding.
2. New results on A(p2m+1).

Main open problems:
1. Faster decoding.
2. The case A(p).
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THANK YOU!
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