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Control Problem

PDE System

Configuration and Domain
I Consider an elastic body located at time t ≥ 0 in a domain Ωe(t) ⊂ R3

I Let ∂Ωe(t) = Γ(t)

I The solid is surrounded by a fluid in R3

I Let Ω be a bounded domain comprising the two open domains
Ω = Ωe(t) ∪ Ωf (t)

I Let Ω have smooth boundary ∂Ω = Γf
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Control Problem

PDE System

Fluid

I The fluid occupies domain Ωf (t) = Ω \ Ωe(t), which is moving with
time, and has smooth boundary Γ(t) ∪ Γf

I Assume the fluid is Newtonian, viscous, and incompressible. Its
behavior is described by its velocity u and pressure p

I The viscosity of the fluid is ν > 0

I The fluid strain tensor is given by

ε(u) =
Du + (Du)∗

2
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Control Problem

PDE System

I The fluid state satisfies the following Navier-Stokes equations with
given forcing term F :{

ut − ν ∆u + (Du)u + ∇p = F |Ωf (t) on Ωf (t)

div u = 0 on Ωf (t)

I The fluid equations have homogeneous Dirichlet boundary conditions
on the boundary Γf , that is,

u = 0 on Γf

Kristina M. Martin 5 / 26



Control Problem

PDE System

Mapping

I The evolution of the fluid domain Ωf (t) is induced by the structural
deformation through the common interface Γ(t)

I Ωf (t) is described according to a map acting in a fixed reference
domain

I The material reference configuration for the solid is Ωe
0 := Ωe(0) ⊂ Ω

with boundary Γ0 := Γ(0), and Ωf
0 := Ωf (0) = Ω \ Ωe

0 is the reference
fluid configuration

I The volume Ω is described by a smooth, injective map:

ϕ : Ω̄× R+ −→ Ω̄, (x , t) 7→ ϕ = ϕ(x , t)
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Control Problem

PDE System

Deformation

I For x ∈ Ωe
0, ϕ(x , t) is the position at time t ≥ 0 of the material point

x

I ϕ preserves the boundary Γf , i.e. ϕ = IΓf on Γf

I J(ϕ) := det(Dϕ) defines the Jacobian of the deformation. We take ϕ
to be orientation-preserving so

J(ϕ) > 0
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Control Problem

PDE System

Solid

I Assume a St. Venant-Kirchoff material, which assumes large
displacement and small deformation

I Elasticity evolves according to the response function for the second
Piola-Kirchoff stress tensor,

Σ = λTr(σ(ϕ))I + µ(σ(ϕ))

where

σ(ϕ) =
1

2
((Dϕ)∗Dϕ− I )

is the Green-St. Venant nonlinear strain tensor and λ > 0 and µ > 0
are the Lamé constants of the material
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Control Problem

PDE System

Solid

I The equation of elastodynamics is written on the reference
configuration Ωe

0 in terms of the response function for the first
Piola-Kirchoff stress tensor

P = DϕΣ(σ(ϕ)).

I Then ϕ satisfies the nonlinear elastodynamics equations:

ϕtt − DivP = 0 on Ωe
0
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Control Problem

PDE System

Interaction
The interaction takes place on the interface and is realized via suitable
transmission boundary conditions by requiring continuity of both fluid and
boundary velocities, and of the normal stress tensors across Γ:{

u ◦ ϕ = ϕt on Γ0

Pn = J(ϕ)(σ(p, u) ◦ ϕ)(Dϕ)−∗n on Γ0,

where σ(p, u) = −pI + 2νε(u) and n = n(t) is the unit outer normal
vector along Γ(t) with respect to Ωe(t).
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Control Problem

PDE System

To summarize, the PDE model in the mixed Eulerian-Lagrangian
formulation is 

ut − ν∆u + (Du)u +∇p = F Ωf (t)

div u = 0 Ωf (t)

ϕtt − DivP = 0 Ωe
0

u ◦ ϕ = ϕt Γ0

Pn = J(ϕ)(σ(p, u) ◦ ϕ)(Dϕ)−∗n Γ0

ϕ = IΓf Γf

(1)

with initial conditions

ϕ(·, 0) = ϕ0, ϕt(·, 0) = ϕ1, u(·, 0) = u0, p(·, 0) = p0 on (Ωe
0)2 × (Ωf

0)2.
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Control Problem

PDE System

Control

I In many applications, a central goal is the optimization or optimal
control of a considered process

optimize fluid velocity or pressure
optimize the deformation of the structure
minimize wall shear stresses

I We focus on minimization of turbulence in the fluid

I The optimization addressed from the point of view of optimal control
determining the optimal action upon the system in order to minimize
vorticity of the flow.
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Control Problem

Minimization Problem

The minimization problem: for an admissible set of controls U, minimize

min
F∈U

J(F )

J(F ) =
1

2

∫ T

0

∫
Ωf (t)

|∇ × u|2dΩf (t)dt +
1

2

∫ T

0
‖F‖2

Hs(Ωf (t))dt (P)

Goals:
1 Existence of optimal control acting inside the fluid domain.

This will show that the turbulence inside the flow can be reduced by
applying a body force on the fluid.

2 First order necessary conditions of optimality
Finding a suitable adjoint problem and using it to explicitly compute
the gradient of the functional J.
Characterization of the optimal control, paving the way for a numerical
study of the problem.
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Existence of Optimal Control

Lagrangian Frame

Lagrangian variables
We move the system to the Lagrangian frame in the variables v , q, and f
representing the velocity, pressure, and forcing term, respectively, in
reference configuration Ωf

0:

I v(x , t) = ϕt(x , t) = u(ϕ(x , t), t) x ∈ Ωf
0

I q(x , t) = p(ϕ(x , t), t)

I f (x , t) = F (ϕ(x , t), t)
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Existence of Optimal Control

Functional Framework

We require the following functional framework. Define

I V 4
f (T ) = {w ∈ L2(0,T ; H4(Ωf

0)) | ∂nt w ∈ L2(0,T ; H4−n(Ωf
0)), n = 1, 2, 3}

I V 4
e (T ) = {w ∈ L2(0,T ; H4(Ωe

0)) | ∂nt w ∈ L2(0,T ; H4−n(Ωe
0)), n = 1, 2, 3}

I XT =

{
v ∈ L2(0,T ; H1

0(Ω)) |
(
v f ,

∫ ·
0

v e

)
∈ V 4

f (T )× V 4
e (T )

}
I WT = {v ∈ XT | vttt ∈ L∞(0,T ; L2(Ω)), ∂nt

∫ ·
0

v e ∈

L∞(0,T ; H4−n(Ωe
0)), n = 0, 1, 2, 3}

I YT = {q ∈ L2(0,T ; H3(Ωf
0)) | ∂nt q ∈ L2(0,T ; H3−n(Ωf

0; )), n = 1, 2}
I ZT = {q ∈ YT | qtt ∈ L∞(0,T ; L2(Ωf

0))}
I E = {f ∈ L2(0, T̄ ; H3(Ω) | (ft , ftt , fttt ∈ L2(0, T̄ ; H2(Ω)×H1(Ω)× L2(Ω))}.
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Existence of Optimal Control

Existence of Unique Solution

Existence Result [Coutand and Shkoller (2006)]

Let Ω ⊂ R3 be a bounded domain of class H4. Let T̄ > 0, and let ν > 0,
λ > 0, µ > 0 be given. Let Ωe(t) ⊂ Ω be the closure of the open set
representing the solid body at each time t ∈ [0, T̄ ]. For f ∈ E with
f (0) ∈ H4(Ω), ft(0) ∈ H4(Ω), and necessary compatibility conditions on
initial data, there exists T ∈ (0, T̄ ) depending on u0, f , and Ωf

0, such that
there exists a unique solution (v , q) ∈WT × ZT of the NS-elasticity
coupling.
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Existence of Optimal Control

Existence of Optimal Pair

Theorem 1 (Bociu, Castle, M., Toundykov)

Given initial data satisfying the regularity and compatibility conditions as
in the existence result of Coutand and Shkoller, there exists a solution to
the minimization problem (P).

That is, there exists f ∈ Qad = BE (0,R) = {f ∈ E | ‖f ‖E ≤ R}, for some
fixed R > 0, and (v , q) ∈WT × ZT such that the functional J(f ) attains a
minimum at f , and (v , q) is the solution of the NS-elasticity coupling with
forcing term f .
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Existence of Optimal Control

Existence of Optimal Pair

Summary of the proof:

I Let {fn} ∈ Qad be a minimizing sequence for J

I (vn, qn) = (vfn , qfn), where the latter is the associated solution of the
NS-elasticity coupling with right hand side fn

I By the coercivity of J, we know that {fn} is a bounded sequence in
E . Now we use the following estimate given in [3]:

‖(vn, qn)‖WT×ZT
≤ 12Cδ0 [N0(u0, (wi )

3
i=1) + M0(fn) + N((qi )

2
i=0)],

(?)
∀n, where Cδ0 is a constant, N0(u0, (wi )

3
i=1) and N((qi )

2
i=0) are

generic smooth functions depending only on
3∑

i=0
[‖w3−i‖H i (Ωe

0) + ‖w3−i‖H i (Ωf
0
)] and

2∑
i=0
‖q2−i‖H i (Ωf

0), and M0(fn) is

a smooth function depending on ‖fn‖E
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Existence of Optimal Control

Existence of Optimal Pair

I Therefore (?) gives that (vn, qn) is a bounded sequence in WT × ZT

I Let W (0,T ) = {v ∈ L2(0,T ;H1
0 (Ω)) |∂3

t v ∈ L2(0,T ; L2(Ω))} [4],
which is a Hilbert space

I WT ⊂W (0,T )

I Let X̃T = XT ∩W (0,T ) (which is a Hilbert space)

I ‖(vn, qn)‖X̃T×YT
≤ ‖(vn, qn)‖WT×ZT

for all (vn, qn) ∈WT × ZT , so

{(vn, qn)} is a bounded sequence in X̃T × YT

I Then there exists a pair (f̄ , (v̄ , q̄)) and a subsequence, still denoted
by (fn, (vn, qn)) such that

fn ⇀ f̄ in E ,

(vn, qn) ⇀ (v̄ , q̄) ∈ X̃T × YT ,

∇× vn ⇀ ∇× v̄ ∈ L2(0,T ; L2(Ω))
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Existence of Optimal Control

Existence of Optimal Pair

I By lower-semicontinuity, we have that

‖f̄ ‖2
E ≤ lim inf

n→∞
‖fn‖2

E and

‖∇ × v̄‖L2(0,T ;L2(Ω)) ≤ lim inf
n→∞

‖∇ × vn‖L2(0,T ;L2(Ω))

I

J(f̄ ) = ‖f̄ ‖2
E + ‖∇ × v̄‖2

L2(0,T ;L2(Ω)) ≤ lim inf
n→∞

J(fn)

=⇒ J(f̄ ) = lim inf
n→∞

J(fn)
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Existence of Optimal Control

Existence of Optimal Pair

Desired Regularity
Velocity

I {
∂tttvn → ∂ttt v̄ weakly in L2(0,T ; L2(Ω)),

∂tttvn → ṽ weakly* in L∞(0,T ; L2(Ω))

I For φ ∈ C∞c ((0,T )× Ω) we have∫ T

0

∫
Ω
∂tttvn · φ→

∫ T

0

∫
Ω
∂ttt v̄ · φ and

∫ T

0

∫
Ω
∂tttvn · φ→

∫ T

0

∫
Ω
ṽ · φ

=⇒ ṽ = ∂ttt v̄ a.e. in (0,T )× Ω

I So
∂ttt v̄ ∈ L∞(0,T ; L2(Ω)).
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Existence of Optimal Control

Existence of Optimal Pair

I Similarly we obtain that

∂kt

∫ ·
0
v̄ e in L∞(0,T ; H4−k(Ωe

0)), k = 0, 1, 2, 3.

I So v̄ ∈WT .

Pressure

I {
∂ttqn → ∂tt q̄ weakly in L2(0,T ; H1(Ωf

0)) and

∂ttqn → q̃ weakly* in L∞(0,T ; L2(Ωf
0)).
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Existence of Optimal Control

Existence of Optimal Pair

I So for φ ∈ C∞c ((0,T )× Ωf
0) we have∫ T

0

∫
Ωf

0

∂ttqn · φ→
∫ T

0

∫
Ωf

0

∂tt q̄ · φ

and ∫ T

0

∫
Ωf

0

∂ttqn · φ→
∫ T

0

∫
Ωf

0

q̃ · φ

I Thus q̃ = ∂tt q̄ a.e. in (0,T )× Ωf
0.

I Consequently the weak limit q̄ is in ZT .

I Taken together, we have (v̄ , q̄) ∈ WT × ZT .
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First Order Necessary Conditions of Optimality

Revisiting Goals

1 Existence of optimal control
Showing that we can pass with the limit follows from Lions-Aubin
compactness arguments due to high regularity on velocity and pressure
[6].

2 First order necessary conditions of optimality
Finding a suitable adjoint problem and using it to explicitly compute
the gradient of the functional J.
A linearization was obtained by Bociu and Zolésio [7].
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First Order Necessary Conditions of Optimality

Challenges and Ongoing Work

I The linearization shows that the boundary and its curvatures play an
essential role in the final dynamical linearized systems around some
equilibrium and cannot be neglected.

I Simplification and well-posedness of the adjoint system for the steady
state problem.

I Finding a suitable adjoint system in the dynamical case and using it to
explicitly compute the gradient of the corresponding cost functional.

I In both cases, characterizing the optimal control via the first order
necessary conditions of optimality.

Kristina M. Martin 25 / 26



First Order Necessary Conditions of Optimality
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