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Mathematical Model
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Figure: A schematic illustration of a solid thin film on a flat, rigid substrate

♠ Sharp Interface Model – Dynamics Y. Wang et al. 2015

∂t~X = ∂ssµ~n, 0 < s < L(t), t > 0,

µ =
[
γ(θ )+ γ

′′(θ )
]
κ, κ =−

(
∂ss~X

)
·~n;

Weak Anisotropy γ(θ) + γ ′′(θ) > 0 ∀θ ∈ [−π,π], ~X = (x(s, t),y(s, t)).
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Mathematical Model

With following boundary conditions:

(i) Contact point condition

y(0, t) = 0, y(L, t) = 0, t ≥ 0,

(ii) Relaxed contact angle condition

dx l
c

dt
= η f (θ

l
d ;σ),

dx r
c

dt
=−η f (θ

r
d ;σ), t ≥ 0,

(iii) Zero-mass flux condition

∂sµ(0, t) = 0, ∂sµ(L, t) = 0, t ≥ 0;

where θ l
d := θ l

d (t) and θ r
d := θ r

d (t) are the (dynamic) contact angles at the left
and right contact points, respectively, 0 < η < ∞ denotes the contact line
mobility, and f (θ ;σ) (anisotropic young’s equation) is defined as:

f (θ ;σ) = γ(θ)cosθ − γ
′(θ)sinθ −σ , θ ∈ [−π,π],
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Numerical Challenges

High order and nonlinear geometric equations with boundary conditions
♠ "Marker-particle" method (explicit finite-difference scheme) Wong et al.

2000; Y. Wang et al. 2015
1. First update the inner mesh points by the explicit finite difference scheme
2. renew the two contact points according to the contact angle condition.
3. Do polynomial interpolation and redistribute the mesh points uniformly with

respect to arc length.

♠ Parametric finite element method for surface diffusion flow(E.Bansch et
al., 2004; J.W. Barrett et al., 2007)
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Variational Formulation

Introduce a new time-independent spatial variable ρ ∈ I := [0,1] to
parameterize the curve Γ(t)

Γ(t) = ~X(ρ, t) : I× [0,T ]→ R2.

Define the following inner product for any scalar (or vector) functions.〈
u,v
〉

Γ
:=
∫

Γ(t)
u(s)v(s)ds =

∫
I
u(s(ρ, t))v(s(ρ, t))|∂ρ

~X |dρ,∀ u,v ∈ L2(I),

Define the functional space for the solution of the solid-state dewetting
problem as

H1
a,b(I) = {u ∈ H1(I) : u(0) = a,u(1) = b},

Rewrite the governing equations as

∂t~X ·~n = ∂ssµ,

µ =
[
γ(θ) + γ

′′(θ)
]
κ,

κ~n =−∂ss~X ;
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Variational Formulation

Given an initial curve Γ(0) = ~X(ρ,0) = ~X0(s), then for any time t ∈ (0,T ], find
Γ(t) = ~X(ρ, t) ∈ H1

a,b(I)×H1
0 (I) with the x-coordinate positions of moving

contact points a = x l
c(t)≤ x r

c(t) = b, µ(ρ, t) ∈ H1(I), and κ(ρ, t) ∈ H1(I)
such that

〈
∂t~X , ϕ~n

〉
Γ
+
〈
∂sµ, ∂sϕ

〉
Γ
= 0, ∀ ϕ ∈ H1(I),〈

µ, ψ
〉

Γ
−
〈[

γ(θ )+ γ
′′(θ )

]
κ, ψ

〉
Γ
= 0, ∀ ψ ∈ H1(I),〈

κ~n, ~ω
〉

Γ
−
〈
∂s~X , ∂s~ω

〉
Γ
= 0, ∀ ~ω ∈ H1

0(I)×H1
0(I),
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Variational Formulation

Proposition (Mass conservation)

Assume that (~X(ρ, t),µ(ρ, t),κ(ρ, t)) be a weak solution of the variational
problem, then the total mass of the thin film is conserved during the evolution,
i.e.,

A(t)≡ A(0) =
∫

Γ(0)
y0(s)∂sx0(s) ds, t ≥ 0.

Proposition (Energy dissipation)

Assume that (~X(ρ, t),µ(ρ, t),κ(ρ, t)) be a weak solution of the variational
problem and it has higher regularity, i.e.,
~X(ρ, t) ∈ C1

(
C2(I); [0,T ]

)
×C1

(
C2(I); [0,T ]

)
, then the total energy of the

thin film is decreasing during the evolution, i.e.,

W (t)≤W (t1)≤W (0) =
∫

Γ(0)
γ(θ) ds− (x r

c(0)− x l
c(0))σ , t ≥ t1 ≥ 0.
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Parametric Finite Element Method

Divide I =
⋃N

j=1 Ij =
⋃N

j=1[ρj−1,ρj ] with h = 1/N and ρj = jh, take time
steps as 0 = t0 < t1 < t2 < .. . with τm := tm+1− tm for m ≥ 0.

Define the space

V h := {u ∈ C(I) : u |Ij∈ P1, j = 1,2, . . . ,N} ⊂ H1(I),

V h
a,b := {u ∈ V h : u(0) = a, u(1) = b} ⊂ H1

a,b(I),

Define the mass lumped inner product
〈
·, ·
〉h

Γm over Γm = ~X m as

〈
u, v

〉h
Γm :=

1
2

N

∑
j=1

∣∣∣~X m(ρj)−~X m(ρj−1)
∣∣∣[(u · v)(ρ

−
j ) +

(
u · v

)
(ρ

+
j−1)
]
,

where u(ρ
±
j ) = lim

ρ→ρ
±
j

u(ρ).
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Parametric Finite Element Method

♠ A semi-implicit parametric finite element method (PFEM)
For m ≥ 0, first update the two contact point positions x l

c(tm+1) and
x r

c(tm+1) via the relaxed contact angle condition by using the forward
Euler method and then find Γm+1 = ~X m+1 ∈ V h

a,b×V h
0 with

a := x l
c(tm+1)≤ b := x r

c(tm+1), µm+1 ∈ V h and κm+1 ∈ V h such that

〈~X m+1−~X m

τm
, ϕh~n

m
〉h

Γm
+
〈
∂sµ

m+1, ∂sϕh
〉h

Γm = 0, ∀ ϕh ∈ V h,〈
µ

m+1, ψh
〉h

Γm−
〈[

γ(θ m)+ γ
′′(θ m)

]
κ

m+1, ψh
〉h

Γm = 0,∀ ψh ∈ V h,〈
κ

m+1~nm, ~ωh
〉h

Γm−
〈
∂s~X

m+1, ∂s~ωh
〉h

Γm = 0, ∀ ~ωh ∈ V h
0 ×V h

0 .
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Numerical Results

♠ Convergence order test (γ = 1)

eh,τ (t) =‖ ~Xh,τ −~X h
2 ,

τ

4
‖L∞= max

0≤j≤N
min

ρ∈[0,1]
|~Xh,τ (ρj , t)−~X h

2 ,
τ

4
(ρ, t)|,

Table: The numerical convergence orders in the L∞ norm sense for a closed curve
evolution under the isotropic surface diffusion flow.

eh,τ (t)
h = h0 h0/2 h0/22 h0/23 h0/24

τ = τ0 τ0/22 τ0/24 τ0/26 τ0/28

eh,τ (t = 0.5) 4.58E-3 1.09E-3 2.63E-4 6.40E-5 1.58E-5
order – 2.07 2.05 2.04 2.02
eh,τ (t = 2.0) 3.61E-3 9.43E-4 2.45E-4 6.31E-5 1.61E-5
order – 1.94 1.95 1.96 1.97
eh,τ (t = 5.0) 3.63E-3 9.47E-4 2.46E-4 6.33E-5 1.62E-5
order – 1.94 1.95 1.96 1.97
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Numerical Results

♠ Convergence order test (γ = 1 + β cos(k(θ + ϕ)))

Table: The numerical convergence orders in the L∞ norm sense for a closed curve
evolution under the anisotropic surface diffusion flow, where the parameters of the
surface energy are chosen as: k = 4,β = 0.06,ϕ = 0.

eh,τ (t)
h = h0 h0/2 h0/22 h0/23 h0/24

τ = τ0 τ0/22 τ0/24 τ0/26 τ0/28

eh,τ (t = 0.5) 3.82E-2 1.43E-2 6.05E-3 2.19E-3 6.76E-4
order – 1.41 1.24 1.47 1.69
eh,τ (t = 2.0) 1.80E-2 6.48E-3 2.47E-3 7.99E-4 2.24E-4
order – 1.47 1.39 1.63 1.83
eh,τ (t = 5.0) 1.74E-2 6.19E-3 2.36E-3 7.60E-4 2.12E-4
order – 1.49 1.39 1.64 1.84
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Numerical Results

♠ Convergence order test (γ = 1 + β cos(k(θ + ϕ)))

Table: The numerical convergence orders in the L∞ norm sense for an open curve
evolution under the anisotropic surface diffusion flow (solid-state dewetting with
anisotropic surface energies), where the computational parameters are chosen as:
k = 4,β = 0.06,ϕ = 0,σ = cos(5π/6).

eh,τ (t)
h = h0 h0/2 h0/22 h0/23

τ = τ0 τ0/22 τ0/24 τ0/26

eh,τ (t = 0.5) 3.91E-2 1.73E-2 7.52E-3 3.40E-3
order – 1.17 1.20 1.16
eh,τ (t = 2.0) 3.58E-2 1.73E-2 7.71E-3 3.46E-3
order – 1.05 1.17 1.15
eh,τ (t = 5.0) 2.75E-2 1.39E-2 6.61E-3 3.10E-3
order – 0.98 1.07 1.09
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Numerical Results

♠ Several steps in the evolution of small islands and
γ(θ) = 1 + β cos(k(θ + ϕ))
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Figure: ϕ = 0,σ = cos(3π/4) in all cases. Figures (a)-(c) are results for
β = 0.02,0.04,0.06 (k = 4 is fixed), and Figures (d)-(f) are simulation results for (d)
k = 2,β = 0.32, (e) k = 3,β = 0.1, and (f) k = 6,β = 0.022, respectively.
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Numerical Results

♠ Mass conservation, energy dissipation and long time equidistribution

Define the mesh-distribution function as

Ψ(t = tm) = Ψm :=
max1≤j≤N ||~X m(ρj)−~X m(ρj−1)||
min1≤j≤N ||~X m(ρj)−~X m(ρj−1)||
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Figure: (a) The temporal evolution of the normalized total free energy and the
normalized area (mass); (b) the temporal evolution of the mesh distribution Ψ(t).
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Numerical Results

♠ pinch off for large islands

L = 60,m = 4,β = 0.06,σ = cos(5π/6)
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Numerical Results

♠ Mass conservation and energy dissipation for large island
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Figure: The corresponding temporal evolution for the normalized total free energy and
the normalized area (mass).
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Efficiency Of PFEM

♠ Mild restrictions on numerical stability (τm = ch2)

♠ Solving linear systems, very efficient to implement

♠ Allow a tangential movement of the mesh points and long time
equidistribution. J.W. Barrett et al., 2007

♠ Maintain mass conservation and energy dissipation in the sense of weak
formulation where mass A(t) and energy W (t) defined as

A(t) =
∫

Γ(t)
y∂sx ds, W (t) =

∫
Γ(t)

γ(θ) ds− (x r
c − x l

c)σ , t ≥ 0,
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Extension to Strongly Anisotropic Case

♠ Regularized sharp interface model (γ(θ) + γ ′′(θ) < 0 for some θ )

the sharp-interface model will become mathematically ill-posed. The Willmore
energy regularization will be added into the total interfacial energy as

Wε := W +
ε2

2

∫
Γ

κ
2 ds =

∫
Γ

γ(θ) ds +
ε2

2

∫
Γ

κ
2 ds− (x r

c − x l
c)σ ,

So the regularized sharp interface model for strongly anisotropic surface
energies (W. Jiang et al. (2015)) will be

∂t~X = ∂ssµ~n, 0 < s < L(t), t > 0,

µ =
[
γ(θ )+ γ

′′(θ )
]

κ− ε
2
(

κ3

2
+∂ssκ

)
, κ =−

(
∂ss~X

)
·~n;
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Boundary Conditions For Strong Case

With the following boundary conditions,

(i) Contact point condition

y(0, t) = 0, y(L, t) = 0, t ≥ 0,

(ii) Relaxed contact angle condition

dx l
c

dt
= η fε (θ

l
d ;σ),

dx r
c

dt
=−η fε (θ

r
d ;σ), t ≥ 0,

(iii) Zero-mass flux condition

∂sµ(0, t) = 0, ∂sµ(L, t) = 0, t ≥ 0,

(iv) Zero-curvature condition

κ(0, t) = 0, κ(L, t) = 0, t ≥ 0;

where fε (θ ;σ) := γ(θ)cosθ − γ ′(θ)sinθ −σ − ε2∂sκ sinθ for θ ∈ [−π,π],
which reduces to f (θ ;σ) when ε → 0+.

Zhao Quan (NUS) PFEM June 3, 2016 20 / 24



Parametric Finite Element Method

For m ≥ 0, first update the two contact point positions x l
c(tm+1) and x r

c(tm+1)
via the relaxed contact angle condition (0.1) by using the forward Euler method
and then find Γm+1 = ~X m+1 ∈ V h

a,b×V h
0 with the x-coordinate positions of the

moving contact points a := x l
c(tm+1)≤ b := x r

c(tm+1), µm+1 ∈ V h and
κm+1 ∈ V h

0 such that

〈~X m+1−~X m

τm
, ϕh~n

m
〉h

Γm
+
〈
∂sµ

m+1, ∂sϕh
〉h

Γm = 0, ∀ ϕh ∈ V h,

〈
µ

m+1, ψh
〉h

Γm−
〈[

γ̃(θ m)− ε2

2
(κm)2]

κ
m+1, ψh

〉h

Γm

−ε
2〈

∂sκ
m+1, ∂sψh

〉h
Γm = 0, ∀ ψh ∈ V h

0 ,〈
κ

m+1~nm, ~ωh
〉h

Γm−
〈
∂s~X

m+1, ∂s~ωh
〉h

Γm = 0, ∀ ~ωh ∈ V h
0 ×V h

0 ,

where γ̃(θ m) = γ(θ m) + γ ′′(θ m).
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Numerical Results

♠ Model convergence test
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Figure: Comparison of the numerical equilibrium shapes of thin island film with its
theoretical equilibrium shape for several values of regularization parameter ε , and the
parameters are chosen as (a) k = 4,β = 0.2,ϕ = 0,σ = cos(2π/3);
(b) k = 4,β = 0.2,ϕ = 0,σ = cos(π/3).
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Numerical Results

♠ Evolution of small thin islands

L = 5,m = 4,β = 0.2,σ = cos(3π/4)
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Summary and Future Work

Summary
PFEM is good to solve the sharp interface model for both weakly and
strongly anisotropic surface energies.
The convergence of the scheme, the effects of the anisotropic on the
equilibrium of the thin films and the model convergence for strong case.
Tends to distribute the mesh points uniformly on the curve according the
arc length automatically.

Future Work
Applied the PFEM method to the three dimension sharp interface model.
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