A Parametric Finite Element For Simulating Solid-State Dewetting Problems

Quan Zhao

with Prof. Weizhu Bao, Dr. Wei Jiang and Dr. Yan Wang

Department of Mathematics National University of Singapore

June 3, 2016

- Mathematical model for weakly anisotropic surface energies
- Variational formulation and parametric finite element method
- Simulation results
- Extension to the strongly anisotropic case
- Summary

Mathematical Model

Figure: A schematic illustration of a solid thin film on a flat, rigid substrate

Mathematical Model

Figure: A schematic illustration of a solid thin film on a flat, rigid substrate

Sharp Interface Model – Dynamics Y. Wang et al. 2015

$$\partial_t \dot{X} = \partial_{ss} \mu \ \vec{n}, \qquad 0 < s < L(t), \qquad t > 0, \ \mu = \left[\gamma(\theta) + \gamma''(\theta)
ight] \kappa, \qquad \kappa = -\left(\partial_{ss} ec{X}
ight) \cdot ec{n};$$

Weak Anisotropy $\gamma(\theta) + \gamma''(\theta) > 0 \quad \forall \theta \in [-\pi, \pi], \ \vec{X} = (\underline{x}(s, t), y(\underline{s}, t))$

Mathematical Model

With following boundary conditions:

(i) Contact point condition

$$y(0,t) = 0, \qquad y(L,t) = 0, \qquad t \ge 0,$$

(ii) Relaxed contact angle condition

$$\frac{dx_c^{\prime}}{dt} = \eta f(\theta_d^{\prime}; \sigma), \qquad \frac{dx_c^{\prime}}{dt} = -\eta f(\theta_d^{\prime}; \sigma), \qquad t \ge 0,$$

(iii) Zero-mass flux condition

$$\partial_s \mu(0,t) = 0, \qquad \partial_s \mu(L,t) = 0, \qquad t \ge 0;$$

where $\theta_d^I := \theta_d^I(t)$ and $\theta_d^r := \theta_d^r(t)$ are the (dynamic) contact angles at the left and right contact points, respectively, $0 < \eta < \infty$ denotes the contact line mobility, and $f(\theta; \sigma)$ (*anisotropic young's equation*) is defined as:

$$f(\theta;\sigma) = \gamma(\theta)\cos\theta - \gamma'(\theta)\sin\theta - \sigma, \qquad \theta \in [-\pi,\pi],$$

High order and nonlinear geometric equations with boundary conditions

- "Marker-particle" method (explicit finite-difference scheme) Wong et al. 2000; Y. Wang et al. 2015
 - 1. First update the inner mesh points by the explicit finite difference scheme
 - 2. renew the two contact points according to the contact angle condition.
 - 3. Do polynomial interpolation and redistribute the mesh points uniformly with respect to arc length.

High order and nonlinear geometric equations with boundary conditions

- Marker-particle" method (explicit finite-difference scheme) Wong et al. 2000; Y. Wang et al. 2015
 - 1. First update the inner mesh points by the explicit finite difference scheme
 - 2. renew the two contact points according to the contact angle condition.
 - 3. Do polynomial interpolation and redistribute the mesh points uniformly with respect to arc length.

Parametric finite element method for surface diffusion flow(E.Bansch et al., 2004; J.W. Barrett et al., 2007)

Variational Formulation

 Introduce a new time-independent spatial variable ρ ∈ I := [0,1] to parameterize the curve Γ(t)

$$\Gamma(t) = \vec{X}(\rho, t) : I \times [0, T] \to \mathbb{R}^2.$$

• Define the following inner product for any scalar (or vector) functions.

$$\langle u, v \rangle_{\Gamma} := \int_{\Gamma(t)} u(s) v(s) \, ds = \int_{I} u(s(\rho, t)) v(s(\rho, t)) |\partial_{\rho} \vec{X}| \, d\rho, \forall \, u, v \in L^{2}(I),$$

 Define the functional space for the solution of the solid-state dewetting problem as

$$H^1_{a,b}(I) = \{ u \in H^1(I) : u(0) = a, u(1) = b \},\$$

Rewrite the governing equations as

$$\begin{aligned} \partial_t \vec{X} \cdot \vec{n} &= \partial_{ss} \mu, \\ \mu &= \left[\gamma(\theta) + \gamma''(\theta) \right] \kappa, \\ \kappa \, \vec{n} &= -\partial_{ss} \vec{X}; \end{aligned}$$

Variational Formulation

Given an initial curve $\Gamma(0) = \vec{X}(\rho, 0) = \vec{X}_0(s)$, then for any time $t \in (0, T]$, find $\Gamma(t) = \vec{X}(\rho, t) \in H^1_{a,b}(I) \times H^1_0(I)$ with the *x*-coordinate positions of moving contact points $a = x_c^I(t) \le x_c^r(t) = b$, $\mu(\rho, t) \in H^1(I)$, and $\kappa(\rho, t) \in H^1(I)$ such that

$$\begin{split} &\langle \partial_t \vec{X}, \ \varphi \vec{n} \rangle_{\Gamma} + \langle \partial_s \mu, \ \partial_s \varphi \rangle_{\Gamma} = 0, \qquad \forall \ \varphi \in H^1(I), \\ &\langle \mu, \ \psi \rangle_{\Gamma} - \langle \left[\gamma(\theta) + \gamma''(\theta) \right] \kappa, \ \psi \rangle_{\Gamma} = 0, \qquad \forall \ \psi \in H^1(I), \\ &\langle \kappa \vec{n}, \ \vec{\omega} \rangle_{\Gamma} - \langle \partial_s \vec{X}, \ \partial_s \vec{\omega} \rangle_{\Gamma} = 0, \qquad \forall \ \vec{\omega} \in H^1_0(I) \times H^1_0(I), \end{split}$$

Proposition (Mass conservation)

Assume that $(\vec{X}(\rho, t), \mu(\rho, t), \kappa(\rho, t))$ be a weak solution of the variational problem, then the total mass of the thin film is conserved during the evolution, *i.e.*,

$$A(t)\equiv A(0)=\int_{\Gamma(0)}y_0(s)\partial_s x_0(s)\ ds,\qquad t\geq 0.$$

Proposition (Energy dissipation)

Assume that $(\vec{X}(\rho, t), \mu(\rho, t), \kappa(\rho, t))$ be a weak solution of the variational problem and it has higher regularity, i.e., $\vec{X}(\rho, t) \in C^1(C^2(I); [0, T]) \times C^1(C^2(I); [0, T])$, then the total energy of the thin film is decreasing during the evolution, i.e.,

$$W(t) \leq W(t_1) \leq W(0) = \int_{\Gamma(0)} \gamma(\theta) ds - (x_c^r(0) - x_c^l(0))\sigma, \quad t \geq t_1 \geq 0.$$

Parametric Finite Element Method

- Divide $I = \bigcup_{j=1}^{N} I_j = \bigcup_{j=1}^{N} [\rho_{j-1}, \rho_j]$ with h = 1/N and $\rho_j = jh$, take time steps as $0 = t_0 < t_1 < t_2 < \dots$ with $\tau_m := t_{m+1} t_m$ for $m \ge 0$.
- Define the space

$$V^{h} := \{ u \in C(I) : u \mid_{I_{j}} \in P_{1}, \quad j = 1, 2, ..., N \} \subset H^{1}(I), \\ \mathscr{V}^{h}_{a,b} := \{ u \in V^{h} : u(0) = a, u(1) = b \} \subset H^{1}_{a,b}(I),$$

• Define the mass lumped inner product $\langle \cdot, \cdot \rangle_{\Gamma^m}^h$ over $\Gamma^m = \vec{X}^m$ as

$$\begin{split} \left\langle u, v \right\rangle_{\Gamma^m}^h &:= \frac{1}{2} \sum_{j=1}^N \left| \vec{X}^m(\rho_j) - \vec{X}^m(\rho_{j-1}) \right| \Big[\big(u \cdot v \big) (\rho_j^-) + \big(u \cdot v \big) (\rho_{j-1}^+) \Big], \\ \text{where } u(\rho_j^{\pm}) &= \lim_{\rho \to \rho_j^{\pm}} u(\rho). \end{split}$$

A semi-implicit parametric finite element method (PFEM)

For $m \ge 0$, first update the two contact point positions $x_c^l(t_{m+1})$ and $x_c^r(t_{m+1})$ via the relaxed contact angle condition by using the forward Euler method and then find $\Gamma^{m+1} = \vec{X}^{m+1} \in \mathcal{V}_{a,b}^h \times \mathcal{V}_0^h$ with $a := x_c^l(t_{m+1}) \le b := x_c^r(t_{m+1}), \mu^{m+1} \in V^h$ and $\kappa^{m+1} \in V^h$ such that

$$\begin{split} &\left\langle \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m}, \ \varphi_h \vec{n}^m \right\rangle_{\Gamma^m}^h + \left\langle \partial_s \mu^{m+1}, \ \partial_s \varphi_h \right\rangle_{\Gamma^m}^h = 0, \qquad \forall \ \varphi_h \in V^h, \\ &\left\langle \mu^{m+1}, \ \psi_h \right\rangle_{\Gamma^m}^h - \left\langle \left[\gamma(\theta^m) + \gamma''(\theta^m) \right] \kappa^{m+1}, \ \psi_h \right\rangle_{\Gamma^m}^h = 0, \forall \ \psi_h \in V^h, \\ &\left\langle \kappa^{m+1} \vec{n}^m, \ \vec{\omega}_h \right\rangle_{\Gamma^m}^h - \left\langle \partial_s \vec{X}^{m+1}, \ \partial_s \vec{\omega}_h \right\rangle_{\Gamma^m}^h = 0, \qquad \forall \ \vec{\omega}_h \in \mathscr{V}_0^h \times \mathscr{V}_0^h. \end{split}$$

Convergence order test (
$$\gamma = 1$$
)

$$e_{h,\tau}(t) = \|\vec{X}_{h,\tau} - \vec{X}_{\frac{h}{2},\frac{\tau}{4}}\|_{L^{\infty}} = \max_{0 \le j \le N} \min_{\rho \in [0,1]} |\vec{X}_{h,\tau}(\rho_j, t) - \vec{X}_{\frac{h}{2},\frac{\tau}{4}}(\rho, t)|,$$

Table: The numerical convergence orders in the L^{∞} norm sense for a *closed curve* evolution under the *isotropic* surface diffusion flow.

$a^{(t)}$	$h = h_0$	$h_0/2$	$h_0/2^2$	$h_0/2^3$	$h_0/2^4$
$e_{h,\tau}(l)$	$ au= au_0$	$ au_0/2^2$	$ au_0/2^4$	$ au_0/2^6$	$ au_0/2^8$
$\overline{e_{h,\tau}(t=0.5)}$	4.58E-3	1.09E-3	2.63E-4	6.40E-5	1.58E-5
order	_	2.07	2.05	2.04	2.02
$\overline{e_{h,\tau}(t=2.0)}$	3.61E-3	9.43E-4	2.45E-4	6.31E-5	1.61E-5
order	_	1.94	1.95	1.96	1.97
$\overline{e_{h,\tau}(t=5.0)}$	3.63E-3	9.47E-4	2.46E-4	6.33E-5	1.62E-5
order	-	1.94	1.95	1.96	1.97

Convergence order test (
$$\gamma = 1 + \beta \cos(k(\theta + \phi))$$
)

Table: The numerical convergence orders in the L^{∞} norm sense for a *closed curve* evolution under the *anisotropic* surface diffusion flow, where the parameters of the surface energy are chosen as: $k = 4, \beta = 0.06, \varphi = 0$.

$a^{(t)}$	$h = h_0$	$h_0/2$	$h_0/2^2$	$h_0/2^3$	$h_0/2^4$
$e_{h,\tau}(l)$	$ au= au_0$	$ au_0/2^2$	$ au_0/2^4$	$ au_0/2^6$	$ au_0/2^8$
$\overline{e_{h,\tau}(t=0.5)}$	3.82E-2	1.43E-2	6.05E-3	2.19E-3	6.76E-4
order	_	1.41	1.24	1.47	1.69
$\overline{e_{h,\tau}(t=2.0)}$	1.80E-2	6.48E-3	2.47E-3	7.99E-4	2.24E-4
order	_	1.47	1.39	1.63	1.83
$\overline{e_{h,\tau}(t=5.0)}$	1.74E-2	6.19E-3	2.36E-3	7.60E-4	2.12E-4
order	-	1.49	1.39	1.64	1.84

Convergence order test (
$$\gamma = 1 + \beta \cos(k(\theta + \phi))$$
)

Table: The numerical convergence orders in the L^{∞} norm sense for an *open curve* evolution under the *anisotropic* surface diffusion flow (solid-state dewetting with anisotropic surface energies), where the computational parameters are chosen as: $k = 4, \beta = 0.06, \varphi = 0, \sigma = \cos(5\pi/6)$.

$a^{(t)}$	$h = h_0$	$h_0/2$	$h_0/2^2$	$h_0/2^3$
$e_{h,\tau}(l)$	$ au= au_0$	$ au_0/2^2$	$ au_0/2^4$	$ au_0/2^6$
$\overline{e_{h,\tau}(t=0.5)}$	3.91E-2	1.73E-2	7.52E-3	3.40E-3
order	_	1.17	1.20	1.16
$\overline{e_{h,\tau}(t=2.0)}$	3.58E-2	1.73E-2	7.71E-3	3.46E-3
order	_	1.05	1.17	1.15
$\overline{e_{h,\tau}(t=5.0)}$	2.75E-2	1.39E-2	6.61E-3	3.10E-3
order	-	0.98	1.07	1.09

(ロト 4 国 ト 4 国 ト 4 国 ト 一 国 - りへの

• Several steps in the evolution of small islands and $\gamma(\theta) = 1 + \beta \cos(k(\theta + \varphi))$

Figure: $\varphi = 0, \sigma = \cos(3\pi/4)$ in all cases. Figures (a)-(c) are results for $\beta = 0.02, 0.04, 0.06$ (k = 4 is fixed), and Figures (d)-(f) are simulation results for (d) $k = 2, \beta = 0.32$, (e) $k = 3, \beta = 0.1$, and (f) $k = 6, \beta = 0.022$, respectively.

Mass conservation, energy dissipation and long time equidistribution Define the mesh-distribution function as

Figure: (a) The temporal evolution of the normalized total free energy and the normalized area (mass); (b) the temporal evolution of the mesh distribution $\Psi(t)$.

pinch off for large islands

$$L = 60, m = 4, \beta = 0.06, \sigma = \cos(5\pi/6)$$

◆□▶ ◆圖▶ ◆厘≯

Mass conservation and energy dissipation for large island

Figure: The corresponding temporal evolution for the normalized total free energy and the normalized area (mass).

|--|

- Mild restrictions on numerical stability ($\tau_m = ch^2$)
- Solving linear systems, very efficient to implement
- Allow a tangential movement of the mesh points and long time equidistribution. J.W. Barrett et al., 2007
- Maintain mass conservation and energy dissipation in the sense of weak formulation where mass A(t) and energy W(t) defined as

$$A(t) = \int_{\Gamma(t)} y \partial_s x \, ds, \qquad W(t) = \int_{\Gamma(t)} \gamma(\theta) \, ds - (x_c^r - x_c^l) \sigma, \qquad t \ge 0,$$

• Regularized sharp interface model $(\gamma(\theta) + \gamma''(\theta) < 0$ for some θ)

the sharp-interface model will become mathematically ill-posed. The Willmore energy regularization will be added into the total interfacial energy as

$$W_{\varepsilon} := W + \frac{\varepsilon^2}{2} \int_{\Gamma} \kappa^2 \, ds = \int_{\Gamma} \gamma(\theta) \, ds + \frac{\varepsilon^2}{2} \int_{\Gamma} \kappa^2 \, ds - (x_c^r - x_c^l) \sigma,$$

So the regularized sharp interface model for strongly anisotropic surface energies (W. Jiang *et al.* (2015)) will be

$$\partial_t \vec{X} = \partial_{ss} \mu \ \vec{n}, \qquad 0 < s < L(t), \qquad t > 0,$$

 $\mu = \left[\gamma(\theta) + \gamma''(\theta)\right] \kappa - \epsilon^2 \left(\frac{\kappa^3}{2} + \partial_{ss}\kappa\right), \qquad \kappa = -\left(\partial_{ss} \vec{X}\right) \cdot \vec{n};$

Boundary Conditions For Strong Case

With the following boundary conditions,

(i) Contact point condition

$$y(0,t) = 0, \qquad y(L,t) = 0, \qquad t \ge 0,$$

(ii) Relaxed contact angle condition

$$\frac{dx_c^l}{dt} = \eta f_{\varepsilon}(\theta_d^l; \sigma), \qquad \frac{dx_c^r}{dt} = -\eta f_{\varepsilon}(\theta_d^r; \sigma), \qquad t \ge 0,$$

(iii) Zero-mass flux condition

$$\partial_s \mu(0,t) = 0, \qquad \partial_s \mu(L,t) = 0, \qquad t \ge 0,$$

(iv) Zero-curvature condition

$$\kappa(0,t)=0, \qquad \kappa(L,t)=0, \qquad t\geq 0;$$

where $f_{\varepsilon}(\theta; \sigma) := \gamma(\theta) \cos \theta - \gamma'(\theta) \sin \theta - \sigma - \varepsilon^2 \partial_s \kappa \sin \theta$ for $\theta \in [-\pi, \pi]$, which reduces to $f(\theta; \sigma)$ when $\varepsilon \to 0^+$.

Parametric Finite Element Method

For $m \ge 0$, first update the two contact point positions $x_c^l(t_{m+1})$ and $x_c^r(t_{m+1})$ via the relaxed contact angle condition (0.1) by using the forward Euler method and then find $\Gamma^{m+1} = \vec{X}^{m+1} \in \mathscr{V}_{a,b}^h \times \mathscr{V}_0^h$ with the *x*-coordinate positions of the moving contact points $a := x_c^l(t_{m+1}) \le b := x_c^r(t_{m+1}), \mu^{m+1} \in V^h$ and $\kappa^{m+1} \in \mathscr{V}_0^h$ such that

$$\left\langle \frac{\vec{X}^{m+1} - \vec{X}^m}{\tau_m}, \varphi_h \vec{n}^m \right\rangle_{\Gamma^m}^h + \left\langle \partial_s \mu^{m+1}, \partial_s \varphi_h \right\rangle_{\Gamma^m}^h = 0, \quad \forall \varphi_h \in V^h,$$

$$\left\langle \mu^{m+1}, \psi_h \right\rangle_{\Gamma^m}^h - \left\langle \left[\widetilde{\gamma}(\theta^m) - \frac{\varepsilon^2}{2} (\kappa^m)^2 \right] \kappa^{m+1}, \psi_h \right\rangle_{\Gamma^m}^h$$

$$- \varepsilon^2 \left\langle \partial_s \kappa^{m+1}, \partial_s \psi_h \right\rangle_{\Gamma^m}^h = 0, \quad \forall \psi_h \in \mathcal{V}_0^h,$$

$$\left\langle \kappa^{m+1} \vec{n}^m, \vec{\omega}_h \right\rangle_{\Gamma^m}^h - \left\langle \partial_s \vec{X}^{m+1}, \partial_s \vec{\omega}_h \right\rangle_{\Gamma^m}^h = 0, \quad \forall \vec{\omega}_h \in \mathcal{V}_0^h \times \mathcal{V}_0^h,$$

where
$$\widetilde{\gamma}(\theta^m) = \gamma(\theta^m) + \gamma''(\theta^m)$$
.

Zhao Quan (NUS)

21/24

PFEM

Model convergence test

Figure: Comparison of the numerical equilibrium shapes of thin island film with its theoretical equilibrium shape for several values of regularization parameter ε , and the parameters are chosen as (a) $k = 4, \beta = 0.2, \varphi = 0, \sigma = \cos(2\pi/3)$; (b) $k = 4, \beta = 0.2, \varphi = 0, \sigma = \cos(\pi/3)$.

Evolution of small thin islands

$$L = 5, m = 4, \beta = 0.2, \sigma = \cos(3\pi/4)$$

Summary

- PFEM is good to solve the sharp interface model for both weakly and strongly anisotropic surface energies.
- The convergence of the scheme, the effects of the anisotropic on the equilibrium of the thin films and the model convergence for strong case.
- Tends to distribute the mesh points uniformly on the curve according the arc length automatically.
- Future Work
 - Applied the PFEM method to the three dimension sharp interface model.