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where u is velocity, p is pressure, p, v are coefficients and g is
force term. We assume that v is large enough. Thus the

Reynolds number will be low enough. This means that Y and

(u - V)u will be eliminated and the flow will be stationary.
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Consider the equations on a rectangular domain, we have an
interface I in it.

Stationary
Stokes
e y=d
Rui Hu [ *)+
oQ x*
y==¢
X =a x=05b

We define the jump in the pressure p at point x* on the
interface ' as
[Pl = lim p— lim p (2)

x—(x*)* x—(x*)~

The other jumps have similar definitions.
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where F is the source along the interface A
F = [5f(s)d2(x —X(s))ds, i =f-nand fo = f - 7. The jump
conditions are derived by Z. Li, Ito and X. Wan. [5].



Motivation
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Inierface m We are using Cartesian mesh. It is the most common and
etho or

Stsatiinary trivia mesh we use in the finite difference method.
tokes

iDteriace m Lots of methods can make the velocity be second order
Rui Hu accuracy and first order accuracy for pressure. J. T. Beale
has already proved that the computational solution can

reach second order accuracy for elliptic interface problems.

m The Neumann boundary condition for pressure has been
derived by H. Johnston and Jian-Guo Liu.

m The main idea is decoupling the Stationary Stokes
interface problem into three Poisson equations and apply
augmented approach to it.

m Decoupling the Stokes problem into three Poisson
equations can help decouple the interface conditions.
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where i = pu, Vv = pv, g = (g1,8)".F = (F1, F2)T and
Rl q = (q1,92) = ([, [7]) = ([pu], [1ov]) which is augment
Problem variable.
e According to [11][12], we can solve out q = (g1, g2). Thus, for
the pressure Poisson equation, we have

Ap =V-(F+g)
o [0] 0k e O
Pl =h-25, T’[an}_aT” 072

with g known, we can apply immersed interface method on this
equations.
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V- Vp=uV-DAu+V-G (6)
with condition V - u =0,
Ap=V- -G (7)

This is a Poisson equation for pressure p. Boundary condition
is needed for the equation such that we can keep the
transformed equation equivalent to the origin one.
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pressure:
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0
op =[-pun- (VX V xu)+n-G| (8)
on|yq oQ

This has been derived by H. Johnston and Jian-Guo Liu.



Augmented approach for pressure
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o Dot We can rewrite the pressure boundary condition as:
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Rui Hu @ = A+ G,x=0b (10)
Ox
P _ A Guy=c (11)
dy
9 _ Av+Guy—d (12)
dy

We introduce the augmented boundary variables

- - e . 0 0
= (41,G2, 43, Ga)" = (675 7£

X=

op
bay

p

'y
y=c

)T
d
(13)

X= y=



Augmented approach for pressure
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Interface becomes
Problem
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Then we will consider the immersed interface method on this
equations. Set V- G = F. (The F here is different from the
one representing source along interface)
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iDteriace Many methods to Stokes equation can reach second order
Rui Hu accuracy on velocity but first order accuracy on pressure. There
are some computational examples such as Z. Li's Stokes-Darcy
Fluid Structure showing that the approach we introduced above
can reach second order accuracy on both velocity and pressure.
My goal is proving theoretically that the approach can reach

second order on pressure in stationary Stokes equation even

though pressure has first order accuracy around the interface.
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Problem

Rui Hu m rectangular region
Q={x€R?>:0<x< NhO0O<y< Mh}

m computation domain
Qu={hechZ?:1<jj<N-1,1<jpp<M-1}

m boundary 0Q, ={jh:0<j3 < N,jp=00r M;0 < jp <
M,j1 =0or N}

m second-order discrete Laplacian
Apph = Dfop—I—D{D;p
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d1p(0, joh) = T (15)
dplin,0) = PURBLZPURZR )
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At irregular point, there is T"(jh), determined by jumps on T
App©(jh) = Fi(jh) + T"(jh) + r°(h), 7" (jh)| < Ch (20)
Define F" on Q,

Fh(ih) = Fi(jh) + T"(jn), jh irregular (21)
F+(jh), jh regular
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Thus p" is the solution to

App"=F" in Qo dp"=0 on 0Q4 (22)
Then the error p/' — p¢ will satisfy

Ap(p"—p®) = —7" in Q, (23)
d(p"—p®) = —O(h*) on 0%, (24)

According to the Lemma 2.2 from Beale's[1]. There exist
functions F; and F> such that

F" =D Fi+DyF in Q (25)

The v we are going to use is different from the one we used
previous. It will represent a general function.
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dv = —O0(h*) on 0%y (27)

Then
IVEvIE, < IF<lig, Iviig, + (IFillg, + O°)IDf vig,

+ (IFallg, + O(F))IID3 vlig, +40(h*)llvllg,
(28)
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Nl (Lnv,v)g, = —(Viv, Viv)g, + Y [Df v(Nh, 2h) -
2=0
N M
+ Y _[Df v(juh, MR)P - > = DI v(0, jah) - v(0, jah) - h
1=0 =0

N M
— > DFv(jah,0) - v(jrh,0) - h+ > D v(Nh, j2h) - v(Nh, jah) -
J1=0 J2=0

N
+ > Dy v(jrh, Mh) - v(jrh, Mh) - h
/=0
(29)
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Probiem (F™8 + Dy F1 + Dy Fa,v)g = (F'%,v)g
Rui Hu _ _ § ¢ (30)
+(Dy A, V)ﬁ,, + (D5 F, V)ﬁh
(D1 F1,v)g, = —(F1, Df v)g, (31)
(Dy F2,v)g, = —(F2, D5 v)g, (32)

So
(Freg + Dl_Fl + D2_F2, V)ﬁh =
— (F1, D' v)g, — (F2, Dy v)g,

(Fres, V)ﬁh (33)
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D v =—0(h?),Di v =—0(h) (34)
With Cauchy-Schwarz inequality,

IVhviig, < IF=lg, Iviig, + (1Flig, + O(F*)I DY vilg,

+ (IFallg, + O(F))IID3 vlig, +40(h*)llvlg,
(35)
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v
Q,

A=
M- N

(36)

Then,
v —Allg, < ClIVyvllg, (37)
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= V(Cl, C2) (38)

For any point (x,y) € Q4

vix,y) =v(a, o)+ ZD+ v(x', o h-I-ZD+ (c1,y")h
x'=c; y'=c

(39)
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v = Allg, < > IDFv(X, @)hlig, + Y 1DF v(er,y)hllg,
x'=0 y'=0
242 242
< N<h + M<h
- 2
= C[IVyvilg,

Vi vilg,

(40)
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HELAI Let p€ be the exact solution of the pressure part problem with
Rl the interface T at least C*. Suppose A,p€ has the form given
by D; Dif p® + D5 Dy p¢, with ||7,(jh)|| < Ch at irregular grid
points and ||7,(jh)|| < Ch? at regular grid points. Let p" be the
solution of (31),(32). And there is a chosen grid point («, 3),

on which p" — p® = 0. Then,
1p"(ih) = p°(h) g, < Coh® (41)
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Froblem v(a, 8) = A=0. With Lemma 2

Rui Hu

Ivllg, < ClIVEvlg, (42)
Combining with the result we get from Lemma 1

IVEvIig, < CIIFEllg, Vi viig, + (I1Fllg, + O DIV v,

+ (IF2llg, + OBV} vig, +4CO(R) IV} vilg,
(43)
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I1Fillg, = O(h?), | F"€|lg, = O(h) (44)

Ivlig, < (5C +2)0(h*) +20(h%) (45)

Thus,
1p" (i) — p(jh)Ilg, < Coh? (46)



Conclusion and Future work
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Interface

Problem solution to pressure by decoupling the stationary stokes
Rui Hu equation and applying augment approach to it.

Future work:

m Elliptic interface problems with Neumann boundary
condition.

m How the result will be in 3 dimensional problem?

m Splitting approach.
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your patience!
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