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What are Vesicles?

Vesicles are cellular organelles that are composed of a lipid bilayer.

Figure: Diagram of lipid vesicles showing a solution of molecules (green dots)
trapped in the vesicle interior. (Taken from Wikipedia.org)
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Vesicle and Red Blood Cells (RBCs) both share similar mechanical
behaviors.

—l

—_—{ Zum o
red blood cells

Figure: Red Blood Cells (Taken from Google Search)



Governing equations

%+(u-V)u=—Vp+ éAquf, (1)
V-u=0, (2)
f(x) = /r (F Rlc F,,) 5(x — X(r,s, £)) dA, (3)

F, =V —2Hon,  F,= % (AsH+2H(H> = K))n,  (4)

Ge(rs 0=V = [utx 03 X(rs. e (5)

Vs-U=0 onT. (6)
where Re = pR3 /it (the Reynolds number), Ca = 1R /cpt. (the
capillary number), and Ry = \/A/4r = (3V /47)}/3 (effective radius).

3V
- - 7
4r(A/4m)3/? (7)

The reduced volume v represents the volume ratio between the vesicle
and the sphere with the same surface area. (v = 1 for sphere)



Classical differential geometry
For the vesicle boundary X, define the first fundamental coefficients as

E=X,-X,, F=X,-Xs, and G =X, X,

then
sy GX X, EX. — FX,
T EG-F2 " EG-F2 7
GX, — FX, EXs — FX,
Ve U="Tm Ut o Y
» Usingax (bxc)=(a-c)b—(a-b)c,
we obtain two useful relations
GX, — FX, EXs — FX,
Xoxne= oot Z 78 X, = o8 8
X, x X X, x X
which give
~ (Xs xn)o, 4 (n x X))o
> Vo = X, X X.| and

> Xs xn,+ng x X, = =2Hn|X, x X,|.



Nearly incompressible surface

To avoid solving the extra unknown tension o(r, s, t), we propose an
alternative way to approximate the zero surface divergence. We use

0
5|X, X X5| - (Vs : U)'X,— X Xs‘
t
from which each surface dilating factor should maintain the initial profile

during time integration whenever V¢ - U = 0. Therefore, we introduce a
spring-like elastic tension as

o = oo (X, x Xs| — [X? x XJ|)

where oo > 1 and |X? x X?| is the initial surface dilating factor. We also
define the modified elastic energy by

E,(X) = % // (1X, x Xq| — [X? x x2|)2 drds.



Derivation of the rate of change of surface dilation factor

0 X, x Xs
— Xy X Xs| = —— - (Xt X X X, x X
8t‘ r S| |Xr><Xs‘ (rt s + X, st)
= (Xt X Xs) + 0 (X, x Xat)  ((since n = Fo%e )

=(Xsxn) X+ (nxX,)-Xst (using (axb)-c=(bxc)-a)
=(Xsxn)-Ur+(nxX,;)-Us (since X; =U)

GX, — FXs EXs — FX, . .
= -U -U the t lat

X, % Xi] r+ X, X X.] s (using the two relations)

= (Vs-U)|X; x Xs| (by the definition of Vs - U)




Derivation of modified elastic force by variational derivative

4 E; (X +€Y)
de

e=0

X, x X
= //oo (1Xr x Xs| — X2 x x2|)$ (Y, x Xs + X, x Ys) drds
[Xr x Xs|

- //on-(Y, X Xs 4+ X % o) drds (by n= Jexk)

//O’(XS xn)-Y,+o(nxX,) Ys drds (by the scalar triple product formula)
=- //(JXS xn)r Y+ (onxXr)s-Y drds (by integration by parts)

- _/ [0:Xs X 0+ osn x Xy + 0(Xs x n)y + o(n x X,)s] - Y drds

= —//(U,Xs X n+4osn X Xr 4+ 0Xs X ne+ong x X,)-Y drds

—_ //(vsa —20Hn)- Y |X, x Xs| drds

=- / (Vso —20Hn)-YdA (since dA = |X, X Xs| drds)
r

=7/Fg-YdA
r



Grid layouts for Eulerian and Lagrangian variables

£

Figure: Fluid variables on a staggered MAC grid in 3D (left). Triangular
surface patches that share the vertex X (right).

» The unit outward normal vector of the /-th triangle is
(X —X3) % (X} —X})
(X2 —X3)x (X3 —X})|

> The area of the (-th triangle is dA, = |(X2 — X}) x (X3 — X})| /2.

ny =



Numerical algorithm
1. Compute the vesicle boundary forces.
We find the tension F,(Xx) = Vso(Xk) — o(Xk)H(Xk) using
op = 69 (dA, — dAY), where formally &y = oo/(drds),

o(Xg) = Z oe/3,

e T (Xk)

(X3 — Xl) X Ny ng X (X2 — Xl)
Vso'zz%(af—a%) W(JS—O%),
dA./3

Vso(Xk) = Z weVsop, where wy = ;

LeT(X4) dA(Xx)

1
H(Xk) = W(Xk) Z ny X (X? — X%), where H = 2Hn.
LeT(Xk)

For a smooth surface patch S, the last formula is a discrete version of

/ 2HndA = 74 n x dX, and equivalent to the cotangent formula.
s as



From the discrete version of bending energy

Ny
Eo[X] = 2 > IH(X)P dA(X),

we obtain the bending force F,(Xx)dA(Xk) =

Cp 1 1

§ Z ((Hg—l‘lg~C¢) (2ngXEé>+2CgXE?+nthz>,
LeT(Xk)

where

§:|H , E:EPXH

pev 6) ¢ pevie
Ef =X — X}, h{ =H(X}) - H(X]).
Thus, the boundary force becomes
F(X})dA(X}) = Fo(X2)dA(XE) + Fp(X})dA(XY).



2. Solve the Navier-Stokes

3u* —4u" +u"! N N . .
/)( AL +2(u"-Vp)u" = (u" V) u 1)
Ny
= —Vup" + ppu* + Y F(X7) dAX7)dh (x — X7) ,
k=1
*x 3p ap* _ * _ .n+l
App* = 2Atvh C an = Oond, u*=u on 0%,
2At 2uAt
"t =u* - 7VhP Vpp"t = Vpp* + Vipp" — l;TAh(VhP*)

3. Update the new position

X = +At2u"+l )On(x — X2)h®



Equivalence of the discrete mean curvature vector formula and
the cotangent formula
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Figure: The notations for the computation of the mean curvature vector using
two equivalent formulas.

We begin with the cotangent formula
L
H(X)dA(X) = 5 > (cota; + cot ) (X — X)),
j=1

where X; are the vertices within 1-ring of the vertex X, and the angles «;
and 3; are the corresponding angles.



The righthand side becomes

N | =
=

I
|

NI= NI= NI=R N= =
[]=

(cot aj + cot B;) (X — X;)

<
I

cot (X — X) + cot B;(X; — X)

M=

-
||
—

cot oj(X; — X) 4 cot Bj—1(Xj—1 — X) (using the periodicity of index)

.
|
—

cot o (X3 — X}) 4 cot Bj—1(X3 — X}) (denoting the vertices in the /-th triangle)

M=

.
[
—

cot ajX31 + cot 31 X1, (where X;; = Xz — Xjé).

M=

-
I
—_

(8)

ab__ %, where 6 is the angle between the two vectors

laxb] ™
a and b, for the /-th triangle with the vertices X}, X%, X? and its area dAy, we obtain

Using the identity cotf =

X2 - X32 Xi3 - Xo3

ta; = , cotBi_i=
oty =, 0 = o



Substituting these cotangents into Eq. (8) and summing all the triangles
T(X) within 1-ring around the vertex X, we have

1 Z (Xa1 - X32)X31 — (Xs1 - X32)X21
2dA,

LeT(X)

which, using the vector triple product (a x b) x ¢ =(a-c)b — (b c)a,
becomes

1 Z (X21 x X31) x X32

2 2dA,
ET(X)

_ 1 3 (X21 x X31) X X32
ZET(X) [Xa1 % X31|

= 3 Z n[><X32—f Z an(X?*X%)-

LeT(X) (’e T(X)



Remesh of triangular surface

Figure: Re-meshing triangulation by edge addition (top) and deletion (bottom).



Mapping of local area during simulation

oy = &g (dA] — dAY)

X(0) Index X(t)
# Vertex| (x,y, z) # Triangle| (vy, vy, v3) # Vertex| (x,y,z)
1 |(0,0,0) 1 (1,2,3) 1 |(0.1,0,0)
2 |(0,0,1) 2 (1,4,5) > |(0,0,2.1)
3 (0,1,1) 3 (1,6,7) 3 [(12,1,2)

Figure: Mapping of triangular area.



Numerical results

Numerical issues

» Accuracy check for mean curvature and bending force
» Study on different stiffness parameter 6}

» Convergence of vesicle configuration and fluid velocity
» Numerical experiments

» A suspended vesicle in quiescent flow
> A vesicle in shear flow
> A vesicle under the gravity

Numerical parameters
Unless otherwise stated, we use
» Re=1, Ca=50
> 0o =6 x 10°, grid width h = 6/128
> The initial number of triangles is either 81920 or 327680



Accuracy check for mean curvature and bending force
Using spherical parametric coordinates (6, ¢) € [0, 2x] x [0, 7],

» Unit sphere: X(6, ¢) = (cos 8 sin ¢, sin @ sin ¢, cos ¢),
» Ellipsoid: X(, ¢) = (0.5 cosfsin ¢, 0.5sin @ sin ¢, cos ¢),

» Biconcave surface: X(6,¢) =
(cos@sin ¢, sin fsin ¢, (0.1242 + 0.80125sin* ¢ — 0.4492sin* $) cos ).

Unit sphere
Ellipsoid with aspect ratio 2:1
Biconcave surface
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Figure: Left: A triangulated biconcave surface and its cross-sectional view.
Right: The comparison of mean curvature between numerical values (symbols)
and exact values (solid lines) for three different surfaces. Here, the number of
vertices is N, = 2562 corresponding to 5120 triangles used.



—&— Unit sphere A
— & - Ellipsoid with aspect ratio 2:1
A Biconcave surface 10

L? error (F dA)

number of triangles number of triangles

Figure: The L? errors for the mean curvature H (left) and the bending force
F,dA (right) as functions of the number of triangles.

The L2 error of a function %) is calculated as

VI 0o (X,) — $(Xi)2 dA(X),

where 1¢(Xy) is the exact value and ¢ (X) is the computed value.




Study on different stiffness parameter 5

In this test, we study how the stiffness number gy affects the conservation
of surface area and vesicle volume, and the total surface energy.

» Put an initially oblate vesicle
X(0, @) = (cosfsin ¢,sin b sin ¢, cos $/3.5) in quiescent flow

Computational domain Q = [—2,2]3 with grid size 1283
Choose dy = 6 x 10*,6 x 10°,6 x 10°
The meshwidth h = 1/32 and the time step size At = h/16

The number of triangles used in the initial vesicle surface is 81920
with 40962 number of vertices.
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Figure: The comparison for three different stiffness parameters:

Go = 6 x 10*(A), 6 x 10°(0), and 6 x 10°(Q). (a) the maximum relative error
of the local surface area; (b) the relative error of the global surface area; (c)
the relative error of the global volume; (d) the total energy.



Convergence of vesicle configuration and fluid velocity

» Relax the same oblate vesicle with v = 0.643 in a cube [-2,2]3
> The grid size N = 32, 64,128, 256

> o = (N/32)210* and At = h/8

> ratio = logy(|lun — van|leo/|[u2n — tan (o)

» When N = 32, we use 5120 number of triangles which corresponds
to 2562 number of vertices.

N=32,64,128 N=64,128,256
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Figure: The ratios of convergence for the fluid velocity (u, v, w) and the vesicle
configuration X. Left: N = 32; Right: N = 64



Numerical experiments

A suspended vesicle in quiescent flow

» Oblate surface: X(6, ) = (cos @ sin ¢, sin @ sin ¢, cos ¢/3.5)

> Prolate surface: X(6,¢) = (0.2 cos 8 sin ¢, 0.2sin 6 sin ¢, cos ¢)

» Oscillatory surface:
X(0, ¢) = (55r(¢) cosbsin ¢, 5 r(¢)sinfsin g, 5 r(¢) cos ¢), where
r(¢) = \/cos? ¢ + 9sin ¢ 4 cos?(4¢).

> Q=1[-2,2 ¢, =0.02, 6o =6 x 10°, and At = h/16



t=19.5

t=19.5

t=0

£-0.105 £-0.30
panels)

t=10.5
Figure: Suspended vesicles in quiescent flow. Oblate vesicle (two upper-left
panels); Prolate vesicle (two upper-right panels); Oscillatory vesicle (lower
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A vesicle in shear flow
» Put a prolate vesicle in a simple shear flow u = (z,0,0)
» The non-dimensional shear rate x = uR3/cp
» Q =[-3,3]® and a small Reynolds number Re = 1073 < 1 (Stokes
flow regime)

» The reduced volume v = 0.8, 0.85, 0.9, 0.95, and 0.975 by fixing the
effective radius Ry = 1



o ws

t=7.125 t=15.75 t=24

Figure: The simulation setup of a vesicle motion in a shear flow (top) and the
tank-treading motion of a vesicle with ¥ = 0.8 in a shear flow with x = 100
(bottom).
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Figure: The plot of the inclination angle (left) and the scaled mean angular
velocity (right) as functions of reduced volume v for different dimensionless
shear rate x.

. 1 N, |rxv]
» The frequency w can be computed using w = o Yo "

where r and v are the position and velocity of the vertices projected
on the xz-plane, respectively.




Ppurt 1=T.125 1=15.75 =

Figure: Tumbling motion of a vesicle with ¥ = 0.8 and A = 40 in a shear flow
with x = 100. The computed time is up to t = 24.

To consider viscosity contrast between the interior and exterior of vesicle,
instead of

Ju 1
E‘F(U-V)U——VP-F R—eAu+f, (9)
we use
Ou 1 -
a+(u~V)u:—Vp+ Riev' [1(x) (Vu+VuT)] +f, (10)

where pi(x) is the dimensionless viscosity contrast.
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Figure: The volume relative errors (left) and the surface area relative errors
(right) for the cases of with or without the penalty volume conservation term
Eq. (11). Here, v = 0.8 and x = 100. The viscosity contrast A = 1 and

A = 40, respectively.

To conserve the vesicle volume, we add

F,dA(X) = —C, (\/tvo\/O) ndA(X), (11)

where C, is a sufficiently large constant called a penalty parameter, V! is
the global volume of vesicle at time t, and V? is the global volume of
initially given vesicle.



A vesicle under the gravity

> Prolate: X(8,¢) = (0.5cos8sin ¢,0.5sin 8 sin ¢, cos ¢)

» Oblate: X(6,¢) = (0.75cos 8 sin ¢, 0.75 sin & sin ¢, 0.375 cos ¢)

» The prolate vesicle is placed at different tilted angles n = 0,7 /4 and
/2 initially to see how the initial orientation affects the equilibrium
shape

» To model this problem, simply add an interfacial force
FodA(X) = (p' — p°)(g - X)dA(X)n where p' and p® are interior and
exterior fluid densities, respectively, and g = (0,0, —1)



=

000

Figure: The prolate vesicle with three different tilted angles n = 0, 7/4,7/2
(first to third column) and oblate (fourth column) vesicle under the gravity. All
the snapshots are taken at the same time.



Future Works

e High-order scheme to compute the curvatures and the Laplace-Beltrami
operator

e Vesicle dynamics in extensional flow or in Poiseuille flow
e Multi-vesicle problems to mimic the behaviors of RBCs in capillary
e Viscosity contrast effects on vesicle dynamics

e Reynolds number effects on vesicle dynamics



Thank you for your attention!
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