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What are Vesicles?
Vesicles are cellular organelles that are composed of a lipid bilayer.

Figure: Diagram of lipid vesicles showing a solution of molecules (green dots)
trapped in the vesicle interior. (Taken from Wikipedia.org)



Vesicle and Red Blood Cells (RBCs) both share similar mechanical
behaviors.

Figure: Red Blood Cells (Taken from Google Search)



Governing equations

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∆u + f, (1)

∇ · u = 0, (2)

f(x) =

∫
Γ

(
Fσ +

1

ReCa
Fb

)
δ(x− X(r , s, t)) dA, (3)

Fσ = ∇sσ − 2Hσn, Fb =
1

2

(
∆sH + 2H(H2 − K )

)
n, (4)

∂X

∂t
(r , s, t) = U(r , s, t) =

∫
Ω

u(x, t)δ(x− X(r , s, t))dx, (5)

∇s ·U = 0 on Γ. (6)

where Re = ρR2
0/µtc (the Reynolds number), Ca = µR3

0/cbtc (the
capillary number), and R0 =

√
A/4π = (3V /4π)1/3 (effective radius).

ν =
3V

4π(A/4π)3/2
(7)

The reduced volume ν represents the volume ratio between the vesicle
and the sphere with the same surface area. (ν = 1 for sphere)



Classical differential geometry
For the vesicle boundary X, define the first fundamental coefficients as

E = Xr · Xr , F = Xr · Xs , and G = Xs · Xs ,

then

I ∇sσ =
GXr − FXs

EG − F 2
σr +

EXs − FXr

EG − F 2
σs

I ∇s ·U =
GXr − FXs

EG − F 2
·Ur +

EXs − FXr

EG − F 2
·Us

I Using a× (b× c) = (a · c)b− (a · b)c,
we obtain two useful relations

Xs × n =
GXr − FXs

|Xr × Xs |
, n× Xr =

EXs − FXr

|Xr × Xs |

which give

I ∇sσ =
(Xs × n)σr + (n× Xr )σs

|Xr × Xs |
and

I Xs × nr + ns × Xr = −2Hn|Xr × Xs |.



Nearly incompressible surface

To avoid solving the extra unknown tension σ(r , s, t), we propose an
alternative way to approximate the zero surface divergence. We use

∂

∂t
|Xr × Xs | = (∇s ·U)|Xr × Xs |

from which each surface dilating factor should maintain the initial profile
during time integration whenever ∇s ·U = 0. Therefore, we introduce a
spring-like elastic tension as

σ = σ0

(
|Xr × Xs | − |X0

r × X0
s |
)

where σ0 � 1 and |X0
r ×X0

s | is the initial surface dilating factor. We also
define the modified elastic energy by

Eσ(X) =
σ0

2

∫∫ (
|Xr × Xs | − |X0

r × X0
s |
)2

drds.



Derivation of the rate of change of surface dilation factor

∂

∂t
|Xr × Xs | =

Xr × Xs

|Xr × Xs |
· (Xrt × Xs + Xr × Xst)

= n · (Xrt × Xs) + n · (Xr × Xst)
(

since n = Xr×Xs
|Xr×Xs |

)
= (Xs × n) · Xrt + (n× Xr ) · Xst (using (a× b) · c = (b× c) · a)

= (Xs × n) · Ur + (n× Xr ) · Us (since Xt = U)

=
GXr − FXs

|Xr × Xs |
· Ur +

EXs − FXr

|Xr × Xs |
· Us (using the two relations)

= (∇s · U)|Xr × Xs | (by the definition of ∇s · U)



Derivation of modified elastic force by variational derivative

d

dε
Eσ(X + εY)

∣∣∣∣
ε=0

=

∫∫
σ0

(
|Xr × Xs | − |X0

r × X0
s |
) Xr × Xs

|Xr × Xs |
· (Yr × Xs + Xr × Ys) drds

=

∫∫
σn · (Yr × Xs + Xr × Ys) drds

(
by n = Xr×Xs

|Xr×Xs |

)
=

∫∫
σ(Xs × n) · Yr + σ(n× Xr ) · Ys drds (by the scalar triple product formula)

= −
∫∫

(σXs × n)r · Y + (σn× Xr )s · Y drds (by integration by parts)

= −
∫∫

[σrXs × n + σsn× Xr + σ(Xs × n)r + σ(n× Xr )s ] · Y drds

= −
∫∫

(σrXs × n + σsn× Xr + σXs × nr + σns × Xr ) · Y drds

= −
∫∫

(∇sσ − 2σHn) · Y |Xr × Xs | drds

= −
∫

Γ
(∇sσ − 2σHn) · Y dA (since dA = |Xr × Xs | drds)

= −
∫

Γ
Fσ · Y dA



Grid layouts for Eulerian and Lagrangian variables

Figure: Fluid variables on a staggered MAC grid in 3D (left). Triangular
surface patches that share the vertex Xk (right).

I The unit outward normal vector of the `-th triangle is

n` =
(X2

`−X1
`)×(X3

`−X1
`)

|(X2
`−X1

`)×(X3
`−X1

`)| .
I The area of the `-th triangle is dA` =

∣∣(X2
` − X1

`)× (X3
` − X1

`)
∣∣ /2.



Numerical algorithm

1. Compute the vesicle boundary forces.

We find the tension Fσ(Xk) = ∇sσ(Xk)− σ(Xk)H(Xk) using

σ` = σ̃0

(
dA` − dA0

`

)
, where formally σ̃0 = σ0/(drds),

σ(Xk) =
∑

`∈T (Xk )

σ`/3,

∇sσ` =
(X3

` − X1
`)× n`

2 dA`
(σ2
` − σ1

` ) +
n` × (X2

` − X1
`)

2 dA`

(
σ3
` − σ1

`

)
,

∇sσ(Xk) =
∑

`∈T (Xk )

ω`∇sσ`, where ω` =
dA`/3

dA(Xk)
,

H(Xk) =
1

2 dA(Xk)

∑
`∈T (Xk )

n` ×
(
X3
` − X2

`

)
, where H = 2Hn.

For a smooth surface patch S , the last formula is a discrete version of∫
S

2Hn dA =

∮
∂S

n× dX, and equivalent to the cotangent formula.



From the discrete version of bending energy

Eb[X] =
cb
8

Nv∑
k=1

|H(Xk)|2 dA(Xk),

we obtain the bending force Fb(Xk)dA(Xk) =

cb
8

∑
`∈T (Xk )

(
(H` − n` · C`)

(
1

2
n` × Ek

`

)
+

1

2
C` × Ek

` + n` × hk
`

)
,

where

H` =
1

3

∑
p∈V (`)

|H(Xp)|2, C` =
1

dA`

∑
p∈V (`)

Ep
` ×H(Xp),

Ek
` = X3

` − X2
` , hk

` = H(X3
`)−H(X2

`).

Thus, the boundary force becomes

F(Xn
k)dA(Xn

k) = Fσ(Xn
k)dA(Xn

k) + Fb(Xn
k)dA(Xn

k).



2. Solve the Navier-Stokes

ρ

(
3u∗ − 4un + un−1

2∆t
+ 2 (un · ∇h) un −

(
un−1 · ∇h

)
un−1

)
= −∇hp

n + µ∆hu∗ +
Nv∑
k=1

F(Xn
k) dA(Xn

k)δh (x− Xn
k) ,

∆hp
∗ =

3ρ

2∆t
∇h · u∗,

∂p∗

∂n
= 0 on ∂Ω, u∗ = un+1 on ∂Ω,

un+1 = u∗ − 2∆t

3ρ
∇hp

∗,∇hp
n+1 = ∇hp

∗ +∇hp
n − 2µ∆t

3ρ
∆h(∇hp

∗).

3. Update the new position

Xn+1
k = Xn

k + ∆t
∑

x

un+1(x)δh(x− Xn
k)h3



Equivalence of the discrete mean curvature vector formula and
the cotangent formula

Figure: The notations for the computation of the mean curvature vector using
two equivalent formulas.

We begin with the cotangent formula

H(X)dA(X) =
1

2

N∑
j=1

(cotαj + cotβj) (X− Xj),

where Xj are the vertices within 1-ring of the vertex X, and the angles αj

and βj are the corresponding angles.



The righthand side becomes

1

2

N∑
j=1

(
cotαj + cotβj

)
(X− Xj )

= −
1

2

N∑
j=1

cotαj (Xj − X) + cotβj (Xj − X)

= −
1

2

N∑
j=1

cotαj (Xj − X) + cotβj−1(Xj−1 − X) (using the periodicity of index)

= −
1

2

N∑
j=1

cotαj (X3
` − X1

`) + cotβj−1(X2
` − X1

`) (denoting the vertices in the `-th triangle)

= −
1

2

N∑
j=1

cotαjX31 + cotβj−1X21, (where Xij = Xi
` − Xj

`).

(8)
Using the identity cot θ = a·b

|a×b| = a·b
2 dA

, where θ is the angle between the two vectors

a and b, for the `-th triangle with the vertices X1
`, X2

`, X3
` and its area dA`, we obtain

cotαj =
X12 · X32

2 dA`
, cotβj−1 =

X13 · X23

2 dA`
.



Substituting these cotangents into Eq. (8) and summing all the triangles
T (X) within 1-ring around the vertex X, we have

1

2

∑
`∈T (X)

(X21 · X32)X31 − (X31 · X32)X21

2 dA`
,

which, using the vector triple product (a× b)× c = (a · c)b− (b · c)a,
becomes

1

2

∑
`∈T (X)

(X21 × X31)× X32

2 dA`

=
1

2

∑
`∈T (X)

(X21 × X31)× X32

|X21 × X31|

=
1

2

∑
`∈T (X)

n` × X32 =
1

2

∑
`∈T (X)

n` × (X3
` − X2

`).



Remesh of triangular surface

Figure: Re-meshing triangulation by edge addition (top) and deletion (bottom).



Mapping of local area during simulation

σ` = σ̃0

(
dAt

` − dA0
`

)

Figure: Mapping of triangular area.



Numerical results

Numerical issues

I Accuracy check for mean curvature and bending force

I Study on different stiffness parameter σ̃0

I Convergence of vesicle configuration and fluid velocity

I Numerical experiments
I A suspended vesicle in quiescent flow
I A vesicle in shear flow
I A vesicle under the gravity

Numerical parameters
Unless otherwise stated, we use

I Re = 1, Ca = 50

I σ0 = 6× 105, grid width h = 6/128

I The initial number of triangles is either 81920 or 327680



Accuracy check for mean curvature and bending force
Using spherical parametric coordinates (θ, φ) ∈ [0, 2π]× [0, π],

I Unit sphere: X(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ),
I Ellipsoid: X(θ, φ) = (0.5 cos θ sinφ, 0.5 sin θ sinφ, cosφ),
I Biconcave surface: X(θ, φ) =(

cos θ sinφ, sin θ sinφ, (0.1242 + 0.8012 sin2 φ− 0.4492 sin4 φ) cosφ
)
.
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Unit sphere

Ellipsoid with aspect ratio 2:1

Biconcave surface

Figure: Left: A triangulated biconcave surface and its cross-sectional view.
Right: The comparison of mean curvature between numerical values (symbols)
and exact values (solid lines) for three different surfaces. Here, the number of
vertices is Nv = 2562 corresponding to 5120 triangles used.
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Figure: The L2 errors for the mean curvature H (left) and the bending force
FbdA (right) as functions of the number of triangles.

The L2 error of a function ψ is calculated as√∑Nv

k=1 |ψe(Xk)− ψ(Xk)|2 dA(Xk),

where ψe(Xk) is the exact value and ψ(Xk) is the computed value.



Study on different stiffness parameter σ̃0

In this test, we study how the stiffness number σ̃0 affects the conservation
of surface area and vesicle volume, and the total surface energy.

I Put an initially oblate vesicle
X(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ/3.5) in quiescent flow

I Computational domain Ω = [−2, 2]3 with grid size 1283

I Choose σ̃0 = 6× 104, 6× 105, 6× 106

I The meshwidth h = 1/32 and the time step size ∆t = h/16

I The number of triangles used in the initial vesicle surface is 81920
with 40962 number of vertices.
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σ̃0 = 6 × 104

σ̃0 = 6 × 105

σ̃0 = 6 × 106

Figure: The comparison for three different stiffness parameters:
σ̃0 = 6× 104(4), 6× 105(�), and 6× 106(©). (a) the maximum relative error
of the local surface area; (b) the relative error of the global surface area; (c)
the relative error of the global volume; (d) the total energy.



Convergence of vesicle configuration and fluid velocity

I Relax the same oblate vesicle with ν = 0.643 in a cube [−2, 2]3

I The grid size N = 32, 64, 128, 256

I σ̃0 = (N/32)2104 and ∆t = h/8

I ratio = log2(‖uN − u2N‖∞/‖u2N − u4N‖∞)

I When N = 32, we use 5120 number of triangles which corresponds
to 2562 number of vertices.
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Figure: The ratios of convergence for the fluid velocity (u, v ,w) and the vesicle
configuration X. Left: N = 32; Right: N = 64



Numerical experiments

A suspended vesicle in quiescent flow

I Oblate surface: X(θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ/3.5)

I Prolate surface: X(θ, φ) = (0.2 cos θ sinφ, 0.2 sin θ sinφ, cosφ)

I Oscillatory surface:
X(θ, φ) =

(
3

20 r(φ) cos θ sinφ, 3
20 r(φ) sin θ sinφ, 3

25 r(φ) cosφ
)
, where

r(φ) =
√

cos2 φ+ 9 sin2 φ+ cos2(4φ).

I Ω = [−2, 2]3, cb = 0.02, σ̃0 = 6× 105, and ∆t = h/16



Figure: Suspended vesicles in quiescent flow. Oblate vesicle (two upper-left
panels); Prolate vesicle (two upper-right panels); Oscillatory vesicle (lower
panels)



A vesicle in shear flow

I Put a prolate vesicle in a simple shear flow u = (z , 0, 0)

I The non-dimensional shear rate χ = µR3
0/cb

I Ω = [−3, 3]3 and a small Reynolds number Re = 10−3 � 1 (Stokes
flow regime)

I The reduced volume ν = 0.8, 0.85, 0.9, 0.95, and 0.975 by fixing the
effective radius R0 = 1



Figure: The simulation setup of a vesicle motion in a shear flow (top) and the
tank-treading motion of a vesicle with ν = 0.8 in a shear flow with χ = 100
(bottom).
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Figure: The plot of the inclination angle (left) and the scaled mean angular
velocity (right) as functions of reduced volume ν for different dimensionless
shear rate χ.

I The frequency ω can be computed using ω = 1
Nv

∑Nv

i=1
|r×v|
|r|2 ,

where r and v are the position and velocity of the vertices projected
on the xz-plane, respectively.



Figure: Tumbling motion of a vesicle with ν = 0.8 and λ = 40 in a shear flow
with χ = 100. The computed time is up to t = 24.

To consider viscosity contrast between the interior and exterior of vesicle,
instead of

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∆u + f, (9)

we use

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∇ ·
[
µ(x)

(
∇u +∇uT

)]
+ f, (10)

where µ(x) is the dimensionless viscosity contrast.
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Figure: The volume relative errors (left) and the surface area relative errors
(right) for the cases of with or without the penalty volume conservation term
Eq. (11). Here, ν = 0.8 and χ = 100. The viscosity contrast λ = 1 and
λ = 40, respectively.

To conserve the vesicle volume, we add

FvdA(X) = −Cv

(
V t − V 0

V 0

)
n dA(X), (11)

where Cv is a sufficiently large constant called a penalty parameter, V t is
the global volume of vesicle at time t, and V 0 is the global volume of
initially given vesicle.



A vesicle under the gravity

I Prolate: X(θ, φ) = (0.5 cos θ sinφ, 0.5 sin θ sinφ, cosφ)

I Oblate: X(θ, φ) = (0.75 cos θ sinφ, 0.75 sin θ sinφ, 0.375 cosφ)

I The prolate vesicle is placed at different tilted angles η = 0, π/4 and
π/2 initially to see how the initial orientation affects the equilibrium
shape

I To model this problem, simply add an interfacial force
FgdA(X) = (ρi − ρe)(g ·X)dA(X)n where ρi and ρe are interior and
exterior fluid densities, respectively, and g = (0, 0,−1)



Figure: The prolate vesicle with three different tilted angles η = 0, π/4, π/2
(first to third column) and oblate (fourth column) vesicle under the gravity. All
the snapshots are taken at the same time.



Future Works

• High-order scheme to compute the curvatures and the Laplace-Beltrami
operator

• Vesicle dynamics in extensional flow or in Poiseuille flow

• Multi-vesicle problems to mimic the behaviors of RBCs in capillary

• Viscosity contrast effects on vesicle dynamics

• Reynolds number effects on vesicle dynamics



Thank you for your attention!
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