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Solid-State Dewetting

Most thin films are metastable in as-deposited state and dewet to
form particles (C.V. Thompson, Annu. Rev. Mater. Res., 2012).

The dewetting can occur well below the melting temperature of the
material, i.e., which is still in the solid-state.
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Physical Experiments

Dewetting Patterned Films: Ni(110) Square Patches1

1J. Ye & C.V. Thompson. PRB, 2010.
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Physical Experiments

Dewetting on SOI system:

Figure: Abbarchi et al., ACS Nano, 2014.
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Solid-State Dewetting of Thin Films

♠ Intrinsic Physics:

Is driven by capillarity effects.
Occurs through surface self-diffusion controlled mass transport.
There exist moving contact lines in the thin film - substrate - vapor
interface.
Surface diffusion+Moving Contact Line.

♠ Applications:

Play an important role in microelectronics processing.
A common method to produce nano-particles.
Catalyst for the growth of carbon nanotubes & semiconductor
nanowires.

♠ Phenomena Observed from Experiments2:

Pinch-off, Mass-shedding Instability, Geometric Complexity,
Corner-induced Instability, Rayleigh Instability...
Crystalline Anisotropy, Edge Faceting...

2C.V. Thompson. Annu. Rev. Mater. Res., 2012.
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Solid-State Dewetting: Theoretical Models

The Discrete Models. (Carter et al., Acta Metall. Mater, 1995;
Zucker et al., JAP, 2013; Comp. Rend. Phys., 2013; Dornel et al.,
PRB, 2006.)

Kinetic Monte Carlo Method. (Pierre-Louis et al., EPL,2009; PRL,
2009 & 2011.)

Continuum Models based on PDEs. (Srolovitz et al., JAP, 1986;
Jiang et al. Acta Mater., 2012; PRB, 2015; Scripta Mater., 2016.)

Others...

Wei Jiang (WHU) Solid-State Dewetting June 1st, 2016 9 / 38



Outline

1 Introduction

2 Theoretical Studies
Equilibrium Problems
Dynamical Problems

3 Dynamical Models with Anisotropic Surface Energies
Weakly Anisotropic Cases
Strongly Anisotropic Cases

4 Stable Equilibrium Shapes

5 Summary and Future Works

Wei Jiang (WHU) Solid-State Dewetting June 1st, 2016 10 / 38



Sharp Interface Model – Equilibrium Problem

♠ Total Interfacial Free Energy:

W (Γ) =

∫
Γ

γ(N ) dΓ + (γFS − γVS)ΣFS︸ ︷︷ ︸
Wall Energy

.

γ(N ) – The energy (density) of the film-vapor interface.

ΣFS – interface length (2D) or surface area (3D) of the film-substrate
interface.

♠ Equilibrium configuration:

Min W (Γ)
Subject to

∫
ω
dω = Const.

Substrate

Thin Film

Vapor

γV S γFS

γFV

ω
θs
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Equilibrium Problems

Wulff Construction: not considering the wall energy. (C. Herring, W.
Mullins, J. Taylor, I. Fonseca...)

Winterbottom Construction: considering the wall energy. (Kaishew,
Commun. Bulg. Acad. Sci., 1950; Winterbottom, Acta Metall.,
1967.)

Problem: The classical Winterbottom does not address the problem
about multiple equilibrium shapes, which have been observed in the
experiments (e.g., Malyi et. al., Acta Mater., 2011; Kovalenko,
Scripta Mater., 2015).
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Sharp Interface Model: Dynamical Problem

Assumption: The surface energy is isotropic. 3 4

♠ Sharp Interface Model:

dX(t)

dt
= VnN with Vn = B∆sκ

Substrate

− X(t) = (x(t), y(t), z(t)): moving front surface in 3D (curve in 2D).

− N : unit outward normal direction. Vn = B ∂2κ
∂s2 (in 2D)

− Vn: normal velocity of the moving interface.

− B: material constant. κ = −∂2y
∂s2

∂x
∂s + ∂2x

∂s2
∂y
∂s

− ∆s : surface Laplacian or Laplace-Beltrami operator.

− κ: mean curvature of the surface.

3D.J. Srolovitz & S.A. Safran, JAP, 1986.
4H. Wong et al., Acta Mater., 2000.
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Sharp Interface Model: Dynamical Problem

In 2D, X(t) = (x(s, t), y(s, t)) s – Arc length
Boundary Conditions: (2D)

I Contact Point Condition (BC1)

y(xc , t) = 0

Substrate

Thin Film

Vapor

γV S γFS

γFV

ω
θs

I Contact Angle Condition (BC2)

∂y/∂s

∂x/∂s
(xc , t) = tan θi ,

θi – isotropic Young contact angle.

σ := cos(θi ) =
γVS − γFS

γFV

I Zero-Mass Flux Condition (BC3)

∂κ

∂s
(xc , t) = 0.

Total mass conservation of the film. No
mass flux at the contact point– no mass
diffuses under the thin film at the
film/substrate interface.
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Questions arising from Equilibrium and Dynamical
Problems

We try to address the following questions by our research:

I (Q1): How to derive sharp-interface dynamical models, which include
the surface energy anisotropy, to describe the dewetting evolution of
solid thin films?

I (Q2): How to derive a mathematical theory to connect with the
equilibrium and dynamical problems?

I (Q3): What conditions should the stable equilibrium shapes satisfy?

I (Q4): How to construct stable equilibrium shapes of the solid-state
dewetting problem?
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Thermodynamic Variation: The First Variation

Consider a two-dimensional thin solid film rested on a smooth and flat rigid
substrate. The total interfacial free energy of the system can be written as:

W =

∫
Γ
γ(θ) dΓ +

(
γFS − γVS

)
(x r

c − x l
c),

Film

Substrate

Vapor

x l
c

x r
c

Γ

Γ
ǫ = Γ + ǫϕ(s)N + ǫψ (s)T

T

N
θ

Perturb the interface Γ in both the normal and tangent directions;
ψ(s) is an arbitrary function, and ϕ(s) satisfies:

∫ L
0 ϕ(s)ds = 0.
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Thermodynamic Variation: The First Variation

The two components of the new curve Γε(t) can be expressed as follows:

Γε(t) = (xε(s, t), y ε(s, t))

= (x(s, t) + εu(s, t), y(s, t) + εv(s, t)), (1)

where the two component increments along the x−aixs and y−axis are
defined as {

u(s, t) = xs(s, t)ψ(s)− ys(s, t)ϕ(s),

v(s, t) = xs(s, t)ϕ(s) + ys(s, t)ψ(s),
(2)

and the increments along the y−axis at the two contact points must be
zero, i.e.,

v(0, t) = v(L, t) = 0. (3)
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Thermodynamic Variation: The First Variation

The total interfacial energy W of the curve Γ(t) before perturbation is:

W =

∫
Γ
γ(θ) dΓ + (γFS − γVS)(x r

c − x l
c)

=

∫ L

0
γ(θ) ds + (γFS − γVS)(x r

c − x l
c).

The total interfacial energy W ε of the new curve Γε(t) after perturbation
is:

W ε =

∫
Γε

γ(θε) dΓε +
(
γFS − γVS

)[(
x r
c + εu(L, t)

)
−
(
x l
c + εu(0, t)

)]
=

∫ L

0
γ
(

arctan
(ys + εvs

xs + εus

))√
(xs + εus)2 + (ys + εvs)2 ds

+
(
γFS − γVS

)[(
x r
c + εu(L, t)

)
−
(
x l
c + εu(0, t)

)]
. (4)
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Thermodynamic Variation: The First Variation

dW ε

dε

∣∣∣
ε=0

= lim
ε→0

W ε −W

ε

=

∫ L

0

(
γ ′′(θ) + γ(θ)

)
κ ϕ ds

−
[
γ(θld) cos θld − γ ′(θld) sin θld +

(
γFS − γVS

)]
u(0, t)

+
[
γ(θrd) cos θrd − γ ′(θrd) sin θrd +

(
γFS − γVS

)]
u(L, t).
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dW ε

dε

∣∣∣
ε=0
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W ε −W

ε
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γFS − γVS
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Chemical potential:

µ = Ω0
δW

δΓ
= Ω0

(
γ(θ) + γ ′′(θ)

)
κ,

Normal velocity of the interface:

Vn =
DsνΩ0

kBTe

∂2µ

∂s2
.
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Thermodynamic Variation: The First Variation

dW ε

dε

∣∣∣
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Boundary conditions for moving contact points:

dx l
c(t)

dt
= −η δW

δx l
c

= η
[
γ(θld) cos θld − γ ′(θld) sin θld +

(
γFS − γVS

)]
,

dx r
c (t)

dt
= −η δW

δx r
c

= −η
[
γ(θrd) cos θrd − γ ′(θrd) sin θrd +

(
γFS − γVS

)]
.
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Sharp-Interface Model: Weakly Anisotropic

According to the thermodynamic variation, we can obtain the following
dimensionless sharp-interface model for simulating dewetting evolution of
thin solid films with weakly anisotropic surface energies5:

∂X

∂t
= VnN =

∂2µ

∂s2
N =

∂2

∂s2

[(
γ(θ) + γ ′′(θ)

)
κ
]
N , (5)

Remark: γ̃(θ) := γ(θ) + γ ′′(θ) represents the surface stiffness, and if{
γ̃(θ) > 0, ∀θ ∈ [−π, π], Weakly anisotropic cases;

Otherwise, Strongly anisotropic cases.

5Wang-Jiang-Srolovitz-Bao, PRB, 2015.
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Sharp-Interface Model: Weakly Anisotropic

1 Contact Point Condition (BC1)

y(x l
c , t) = 0, y(x r

c , t) = 0. (6)

2 Relaxed Contact Angle Condition (BC2)

dx l
c

dt
= ηf (θld),

dx r
c

dt
= −ηf (θrd), (7)

where

f (θ) := γ(θ) cos θ − γ ′(θ) sin θ − σ, with σ :=
γVS − γFS

γ0
.

f (θ) = 0 is the anisotropic Young equation, which determines
equilibrium contact angles.

3 Zero-Mass Flux Condition (BC3)

∂µ

∂s
(x l

c , t) = 0,
∂µ

∂s
(x r

c , t) = 0. (8)

Wei Jiang (WHU) Solid-State Dewetting June 1st, 2016 24 / 38



Sharp-Interface Model: Weakly Anisotropic

Theorem (Mass conservation and energy dissipation)

Under the above proposed governing equation (5) and boundary
conditions (6-8), the total mass of the thin film conserves and the total
interfacial energy always decreases during the evolution in the weakly
anisotropic case.

Remark: The above properties ensure that the evolution process converges
to one of the minimizers of the total interfacial energy functional.
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Sharp-Interface Model: Strongly Anisotropic

1 In the strongly anisotropic case, γ̃(θ) := γ(θ) + γ ′′(θ) may become
negative for some θ, which causes sharp corners in the equilibrium
shape.

2 The proposed governing equation (5) becomes ill-posed in the
strongly anisotropic case:

∂X

∂t
=

∂2

∂s2

[(
γ(θ) + γ ′′(θ)

)
κ
]
N ,

3 In order to regularize the equation, a high order regularization term
can be added to the free energy:6

Wr =
ε2

2

∫
Γ
κ2 dΓ

4 The effect of the regularization is highly localized at near corners
in the interface and tends to smooth the corners.

6A. Carlo et al., SIAM J. Appl. Math., 52:1111, 1992.
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Sharp-Interface Model: Strongly Anisotropic

Following with the above similar derivation, we can obtain the following
dimensionless sharp-interface continuum model for simulating dewetting
evolution of thin solid films with strongly anisotropic surface energies 7:

∂X

∂t
= VnN =

∂2µ

∂s2
N =

∂2

∂s2

[(
γ(θ)+γ ′′(θ)

)
κ−ε2

(
∂2κ

∂s2
+
κ3

2

)]
N , (9)

7Jiang et al., Scripta Mater., 2016.
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Sharp-Interface Model: Strongly Anisotropic

1 Contact Point Condition (BC1)

y(x l
c , t) = 0, y(x r

c , t) = 0. (10)

2 Relaxed Contact Angle Condition (BC2)

dx l
c

dt
= ηfε(θ

l
d),

dx r
c

dt
= −ηfε(θ

r
d), (11)

where fε(θ) := γ(θ) cos θ − γ ′(θ) sin θ − σ−ε2∂κ

∂s
(θ) sin θ.

3 Zero-Mass Flux Condition (BC3)

∂µ

∂s
(x l

c , t) = 0,
∂µ

∂s
(x r

c , t) = 0. (12)

4 Zero-curvature Condition (BC4)

κ(x l
c , t) = 0, κ(x r

c , t) = 0. (13)
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Sharp-Interface Model: Strongly Anisotropic

Theorem (Mass conservation and energy dissipation)

Under the proposed governing equation (9) and boundary conditions
(10-13), the total mass of the thin film conserves and the total interfacial
energy always decreases during evolution in the strongly anisotropic case.
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Anisotropic Young Equation & Multiple Roots

Recall that the Anisotropic Young equation is

f (θ) = γ(θ) cos θ − γ ′(θ) sin θ − σ = 0, θ ∈ [0, π].

It may have multiple roots in the strongly anisotropic case since f ′(θ)
changes sign when there exist some θ ∈ [0, π] for which γ̃(θ) < 0:

f ′(θ) = −γ̃(θ) sin θ = −
(
γ(θ) + γ ′′(θ)

)
sin θ.

This implies that there may exist multiple roots (or multiple equilibrium
shapes) in the strongly anisotropic case.
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Necessary Conditions

Theorem

If a piecewise C 2 curve Γe :=
(
x(s), y(s)

)
, s ∈ [0, L] be a stable

equilibrium shape (without scaling) of the solid-state dewetting problem
with surface energy density γ(θ) ∈ C 2[−π, π], then the following three
conditions are simultaneously satisfied a:

µ(s) = γ̃(θ(s))κ(s) ≡ C , a.e. s ∈ [0, L], (C1)

γ̃(θ(s)) ≥ 0, a.e. s ∈ [0, L], (C2)

f (θ) = 0, θ = θla, θ
r
a, (C3)

where C is a constant, and θla, θ
r
a are respectively the left and right

equilibrium contact angles of the equilibrium shape Γe .

aJiang et al., submitted, 2016

Remark: The conditions (C1) and (C3) come from the first variation,
while the condition (C2) comes from the second variation.
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Generalized Winterbottom Construction

Example: γ(θ) = 1 + 0.3 cos(4θ), and material constant σ = −0.5.
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Generalized Winterbottom Construction

By condition (C1), µ(s) = γ̃(θ(s))κ(s) ≡ C , a.e. s ∈ [0, L].
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Generalized Winterbottom Construction

By condition (C2), γ̃(θ(s)) ≥ 0, a.e. s ∈ [0, L].
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Generalized Winterbottom Construction

By condition (C3), f (θ) = γ(θ) cos θ − γ ′(θ) sin θ − σ = 0, θ = θla, θ
r
a.
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Generalized Winterbottom Construction

We obtain four possible stable equilibrium shapes.
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Numerical Verification

Figure: The equilibrium shapes of thin film with different initial states under the
same parameters: γ(θ) = 1 + 0.3 cos(4θ), σ = −0.5, where the solid black lines
show the different numerical equilibrium shapes, and the dashed blue lines
represent the Wulff shape truncated by the flat substrate.
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Summary and Future Works

Summary:

I Introduce a mathematical analysis to understand the thermodynamic
variation of solid-state dewetting problems.

I Propose the sharp-interface model including surface energy anisotropy
effects.

I Give necessary conditions for stable equilibrium shapes.

I Propose a generalized Winterbottom construction to predict multiple
stable equilibrium shapes.

Future Works:

� Investigate the important roles of surface energy anisotropy.

� Mathematical analysis of the models.

� Develop accurate and efficient numerical methods for solving 3D
solid-state dewetting problems.

� Compare with experiments & guide new experiments.
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Thank You for Your Attention!
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