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1. Moduli spaces of stable λ-parabolic connectios

1.1. Settings.

•C: a nonsingular projective curve of genus g ≥ 0
• t = {t1, . . . , tn}, a set of n-distinct points on C.

D(t) =
n∑
i=1

ti = t1 + · · · + tn.

•Mg,n = {(C, t) as above}/ ≃: The moduli of (ordered) n-
pointed curves of genus g.

t1 t2 t3
tn

C



1.2. λ-connections. Fix λ ∈ C.

Definition 1.1. (E,∇) is called a λ-connection if

•E : An algebraic vector bundle on C of rank r and of degree d.
• ∇ : E −→ E ⊗ Ω1

C(D(t)): A logarithmic λ-connection. a ∈
OC, σ ∈ E

∇(aσ) = λσ ⊗ da + a∇(σ) λ-twisted Leibniz rule

We denote by

L = Ω1
C(D(t))

the line bundle or the invertible sheaf of meromorphic 1 form on C
having poles on D(t) = t1 + t2 + · · · + tn at most order 1. Later
we may allow the higher order pole D(t) = m1t1+m2t2+ · · ·mntn
with mi ≥ 1. degL = 2g − 2 + n . We assume that n ≥ 1 by a
technical reason.



• λ ̸= 0: linear connection:
(E,∇): λ-connection ⇒ (E, 1λ∇) : a usual connection
Locally near at z = ti, taking a local frame of E near z = ti,
E ≃ O⊕r

C,ti
∋ (ak(z))

r
k=1, A(z)

dz
z−ti

∈ Mr(OC,ti)⊗ Ω1
C(D(t))

∇((ak(z))) = λ(dak(z)) + A(z)(ak(z))
dz

z − ti
• λ = 0: Higgs bundle: Denote ∇ = Φ.

(E,Φ): 0-connection ⇒ (E,Φ) :a Higgs bundle, Φ:Higgs field
Twisted Leibniz rule leads: for a local section a ∈ OC, σ ∈ E

Φ(aσ) = aΦ(σ) an OC-linear hom.

Φ ∈ End(E)⊗L. Locally near z = ti, B(z) dz
z−ti

∈ Mr(OC,ti)⊗
L.

Φ((ak(z))) = B(z)(ak(z))
dz

z − ti



1.3. Residues and Local exponets.

• (E,∇), (E,Φ) as above.
• resti(∇) = A(ti), resti(Φ) = B(ti) ∈ End(E|ti): residue homo-

morphisms. A(ti) = (akl)1≤k,l≤r, B(ti) = (bkl)1≤k,l≤r: com-
plex r × r matrices.

•We put an order of eigenvalues of resti(∇) and resti(Φ) respec-
tively, and denote them as

{ν(i)0 , ν
(i)
1 , · · · , ν(i)r−1}

local exponents of ∇ at ti.

•We denote the local exponents of ∇ and Φ by

ν = (ν
(i)
j )1≤i≤n

0≤j≤r−1



1.4. Fuchs relation.

Lemma 1.1. For a λ-connection (E,∇) ( resp. a Higgs bundle
(E,Φ)), with singularity at D(t) as above, we have the following
relation.

n∑
i=1

(

r−1∑
j=0

ν
(i)
j ) = −λ degE = −λdresp.

n∑
i=1

(

r−1∑
j=0

ν
(i)
j ) = 0


1.5. The space of local exponents of λ-connections.

N n
r,λ(d) :=

ν = (ν
(i)
j )1≤i≤n

0≤j≤r−1 ∈ Cnr

∣∣∣∣∣∣ λd +
∑

1≤i≤n

∑
0≤j≤r−1

ν
(i)
j = 0

 .

N n
r,H = N n

r (0) Higgs bundle case



1.6. Genericity for local exponents.

Definition 1.2. Let ν = {ν(i)j }0≤j≤r−1
1≤i≤n ∈ N n

r,λ(d).

(1) ν is called resonant, if for some i and j1 ̸= j2, ν
(i)
j1

− ν
(i)
j2

∈ λZ.

(2) ν is called reducible if there exists a subset ν ′ = {ν(i)
j′ } of ν such

that for each i, 1 ≤ i ≤ n, the number of ν
(i)
j′ ∈ ν ′ is a fixed

number k, 1 ≤ k ≤ r−1 and
∑

ν ′ ν
(i)
j′ ∈ λZ where the last sum

is taken over ν ′. If ν is not reducible, ν is called irreducible
(3) If ν is neither resonant, nor reducible, we call ν is generic.

Remark 1.1. If a λ-connection (E,∇) has a subconnection (F,∇|F )
is with 0 < rankF < rankE, the local exponents of (E,∇) is re-
ducible.



1.7. Parabolic connections.

Definition 1.3. Fix (C, t) ∈ Mg,n and ν ∈ N n
r (d)

• (E,∇, {l(i)∗ }1≤i≤n): a ν-parabolic connection of rank r and de-
gree d on C

⇐⇒
• (E,∇): a logarithmic connection of rank r and degree d

∇ : E −→ E ⊗ Ω1
C(D(t))

• l(i)∗ : E|ti = l
(i)
0 ⊃ l

(i)
1 ⊃ · · · ⊃ l

(i)
r−1 ⊃ l

(i)
r = 0: a filtration of

E|ti for each i, 1 ≤ i ≤ n such that

(1) dim(l
(i)
j /l

(i)
j+1) = 1 and

(2) (resti(∇)− ν
(i)
j )(l

(i)
j ) ⊂ l

(i)
j+1 for j = 0, 1, · · · , r − 1.



1.8. Parabolic stability. Next, we define α-stability condition on the

ν-parabolic connections (E,∇, {l(i)∗ }1≤i≤n).

• Fix a sequence of rational numbers α = (α
(i)
j )1≤i≤n

1≤j≤r such that

(1) 0 < α
(i)
1 < α

(i)
2 < · · · < α

(i)
r < 1

for i = 1, . . . , n and α
(i)
j ̸= α

(i′)
j′ for (i, j) ̸= (i′, j′).

• (E,∇, {l(i)∗ }1≤i≤n): a ν-parabolic connection.

• 0 ⫋ F ⊂ E,∇(F ) ⊂ F⊗Ω1
C(D(t)). Define integers length(F )

(i)
j

by

(2) length(F )
(i)
j = dim(F |ti ∩ l

(i)
j−1)/(F |ti ∩ l

(i)
j ).

Note that length(E)
(i)
j = dim(l

(i)
j−1/l

(i)
j ) = 1 for 1 ≤ j ≤ r.



Definition 1.4. • A ν-parabolic connection (E,∇, {l(i)∗ }1≤i≤n):
is α-stable

⇐⇒
0 ⫋ F ⫋ E, ∇(F ) ⊂ F ⊗ Ω1

C(D(t)),

degF +
∑n

i=1

∑r
j=1 α

(i)
j length(F )

(i)
j

rankF
<

degE +
∑n

i=1

∑r
j=1 α

(i)
j length(E)

(i)
j

rankE

We can define the notion of:

• a ν-parabolic Higgs bundle (E,Φ, {l(i)∗ }1≤i≤n) and
• the α-stability conditions for a ν-parabolic Higgs bundle as in the
same way above.



1.9. Moduli spaces of stable parabolic connections and stable para-
bolic Higgs bundles.

• Fix (C, t) and ν ∈ N n
r (d). We can define the moduli space

of α-stable parabolic connections

(3) Mα
(C,t)(ν, r, n, d)={(E,∇, {l(i)∗ }1≤i≤n)}/ ≃ .

•Moreover for ν ∈ N n
r,H , we can define the moduli space of α-

stable parabolic Higgs bundles:

(4) Mα
(C,t)(ν, r, n, d)H = {(E,Φ, {l(i)∗ }1≤i≤n)}/ ≃ .



1.10. Existence of algebraic moduli space of α-stable ν-parabolic con-
nections.

Theorem 1.1. (Inaba-Iwasaki-Saito RIMS2006 [6], ASPM2006 [7],
Inaba, JAG2013 [5]). There exists the relative fine moduli scheme

π : Mα
(C,t̃)/M̃g,n×N n

r (d)
(r, d, n) −→ M̃g,n ×N n

r (d)

such that π is smooth and quasi-projective.

Corollary 1.1. For fixed (C, t) and ν ∈ N n
r (d), the moduli space

Mα
(C,t)(ν, r, n, d)

is a smooth quasi-projective algebraic scheme (most case irreducible)
of dimension

2r2(g − 1) + nr(r − 1) + 2 = 2N.

Moreover Mα
(C,t)

(ν, r, n, d) admits the natural algebraic symplectic
structure.



1.11. As in the similar way, we can obtain the existence of algebraic
moduli space of α-stable ν-parabolic Higgs bundles (K(D)-pairs of
Boden and Yokogawa).

Theorem 1.2. There exists the relative fine moduli scheme

π : Mα
(C,t̃)/M̃g,n×N n

r (d)
(r, d, n)H −→ M̃g,n ×N n,H

r

such that π is smooth and quasi-projective.

Corollary 1.2. For fixed (C, t) and ν ∈ N n
r,H , the moduli space

Mα
(C,t)(ν, r, n, d)H

is a smooth quasi-projective algebraic scheme (most case variety) of
dimension

2r2(g − 1) + nr(r − 1) + 2 = 2N.

MoreoverMα
(C,t)

(ν, r, n, d)H admits the natural algebraic symplec-

tic structure.



1.12. Example: Moduli space of connections, Painlevé VI case. Con-
sider the case: C = P1, r = 2, n = 4, d = −1 and a generic ν ∈ N 4

2 (−1). We can
normalize t = {t1, t2, t3, t4} = {0, 1, t,∞} and ν = {±ν1,±ν2,±ν3.ν4, 1 − ν4}.
Then the moduli space M(t,ν) = Mα

(P1,t)
(ν, 2, 4,−1) is an algebraic surface.

dimM(t,ν) = 2N = 4(0 − 1) + 4 × 2 + 2 = 2. M(t,ν) has a nice com-
pactification St,ν = M(t,ν). St,ν is a 8-points blowing up of Σ2 = P(OP1 ⊕
OP1(−2)). The points of blowing up depends on the local exponents ν. See be-
low. The anti-canonical divisor of St,ν is given −KSt,ν = 2Y0+ Y1+ Y2+ Y3+ Y4.

M(t,ν) = St,ν \ Y .

St,ν

Y1 Y2 Y3 Y4

Y0

t1 = 0 t2 = 1 t3 = t t4 = ∞

π

P1

∞-section

Y 2
0 = −2

M(t,ν) = St,ν \ Y
ν4

1− ν4



1.13. Example: Moduli space of parabolic Higgs bundles. Consider
the case: C = P1, r = 2, n = 4, d = −1 and a generic ν ′ ∈ N 4

2 (0). We can
normalize t = {t1, t2, t3, t4} = {0, 1, t,∞} and ν ′ = {±ν1,±ν2,±ν3.±ν4}. Then
M(t,ν ′)H = Mα

(P1,t)
(ν ′, 2, 4,−1)H is also an algebraic surface. dimMH(t,ν

′) =

2N = 4(0 − 1) + 4 × 2 + 2 = 2. MH(t,ν
′) has a nice compactification St,ν ′ =

M(t,ν ′)H. St,ν′ is a 8-points blowing up of Σ2 = P(OP1⊕OP1(−2)). −KSt,ν′
=

2Y0 + Y1 + Y2 + Y3 + Y4. M(t,ν ′)H = St,ν′ \ Y . We can see that algebraic

structures of M(t,ν) and M(t,ν ′)H are different.

St,ν′

Y1 Y2 Y3 Y4

Y0

t1 = 0 t2 = 1 t3 = t t4 = ∞

π

P1

∞-section

Y 2
0 = −2

M(t,ν ′)H = St,ν ′ \ Yν4

−ν4



2. The Riemann-Hilbert correspondence

2.1. Moduli space of representations of π1(C \D(t), ∗). Define:
RPr

(C,t) = Hom(π1(C \D(t), ∗), GLr(C))//Ad(GLr(C))

or
RPr,s

(C,t) = Hom(π1(C \D(t), ∗), SLr(C))//Ad(SLr(C))

By definition, RPr
(C,t) and RPr,s

(C,t) are affine varieties associated to the invariant
ring of matrices.
Replacing T = M′

g,n by a certain finite étale covering u : T ′ −→ T and varying

((C, t), ν) ∈ T ′ ×N (n)
r (d) we can define a morphism

(5) RH : Mα
(C,t)/T ′(r, n, d) −→ RPr

n,T ′

which makes the diagram

(6)

Mα
(C,t̃)/T ′(r, n, d)

RH−−→ RPr
n,T ′

Φr,n,d

y yϕrn

T ′ ×N (n)
r (d)

Id×rh−−−→ T ′ ×A(n)
r

commute.



2.2. Riemann-Hilbert correspondences.

Theorem 2.1. (Inaba-Iwasaki-Saito, RIMS2006 [6], ASPM2006[7], Inaba JAG2013[5]
). Assume that α is generic. The Riemann-Hilbert correspondence

(7) RH : Mα
(C,t̃)/T ′(r, n, d) −→ RPr

n,T ′ ×A(n)
r

N (n)
r

is a proper surjective bimeromorphic analytic morphism. In particular, for each

((C, t),ν) ∈ T ′ ×N (n)
r (d), the restricted morphism

(8) RH((C,t),ν) : Mα
((C,t),ν)(r, n, d) −→ RPr

(C,t),a

gives an analytic resolution of singularities ofRPr
(C,t),a where a = rh(ν) is a image

of small Riemann-Hilbert correspondence rh.



3. General schemes of the geometry of Riemann-Hilbert
correspndences

Consider the following diagram:

M̃
RH−−→ R̃

π̃

y yϕ̃

T̃ ×N
(1×µ)−−−→ T̃ × A.

Theorem 3.1. If the Riemann-Hilbert map

RHt,ν : M̃t,ν −→ R̃t,µ(ν)

is a proper, surjective bimeromorphic holomorphic map for any (t,ν) ∈ T̃ × N .
Then the corresponding isomonodromic differential equations satisifies the geomet-
ric Painlevé property.



Isomonodromic Flows: ν Generic Case

The Riemann-Hilbert correspondence RHν induce an analytic isomorphisms for
all t ∈ T̃n. Pulling back the constant section on the right hand side, we have the
isomonodromic flows on the left hand side. These isomondromic flows satisfy the
Geometric Painlevé property.

t0 tt0 t

Mα
n (t,ν, L)

R(Pn,t0)a

RHν

constant flows = monodromy is constant

Isomonodromic flows = Painlevé or Garnier flows

=

R(Pn,t)a
||

Mα
n (t0,ν, L)

T̃n × {ν} T̃n × {a}

≃

Isomonodromic Flows and Painlevé or Garnier Flows

Figure 1. Riemann-Hilbert correspondence and isomonodromic flows for generic ν



Isomonodromic Flows: Special Case
If ν is special (resonant, reducible), the right hand side have singularity. On the other hand, the left hand side

is always nonsingular, hence RHν gives a simultaneous resolution of singularities. Riccati flows.

t0 tt0 t

Mα
4 (t,ν, L)

R(P4,t0)a

RHν

constant flows = monodromy is constantIsomonodromic flows = Painlevé flows

=

R(P4,t)a
||

Mα
4 (t0,ν, L)

T̃4 × {ν} T̃4 × {a}

RHν contracts (−2)-rational curves onto singular points of type A1.

(−2)-rational curve

Riccati flows are tangent to family of (−2)-curves A1 singularity of R(P4,t0)a.

contraction

Case of Painlevé V I

Figure 2. Riemann-Hilbert correspondence and isomonodromic
flows for special ν



3.1. Geometric Painlevé property of the NDFE arrising from Isomon-
odromic deformation of LODE.

Corollary 3.1. ([6], [7], [5]) Differential equations arrising from
isomonodromic deformations of linear connections with regular singu-
larities over a curve satisfies the geometric Painlevé property.

Remark 3.1.We can extend the above result in the following cases;

• Connections of any rank with generic unramified irregular singu-
larity on smooth projective curves. (Inaba-Saito, KJM2012 [9])

• Logarithmic connections of any rank with fixed spectral type with
multiplicities. (Inaba-Saito, in preparation).



3.2. Moduli spaces of monodromy representations and generalized
Stokes data related to Painlevé equations. Monodromy variety for
Painlevé VI case
Define

RP2,s
4 = Hom(π1(P

1 \ {t1, t2, t3, t4}, SL(2,C))//Ad(SL2(C))

= {(M1,M2,M3,M4) ∈ SL2(C),M1M2M3M4 = I2}//Ad(SL2(C))

= {(M1,M2,M3) ∈ SL2(C)}//Ad(SL2(C))

We can describe the moduli space as follows.
Take Mi ∈ SL2(C) for i = 1, 2, 3 and set

ai = Tr[Mi], i = 1, 2, 3 a4 := Tr[M4] = Tr[M−1
4 ] = Tr[M1M2M3]

For a circle permutation (i, j, k) of (1, 2, 3), set

xi = Tr[MjMk].

Then the invariant ring is given by

C[M1,M2,M3]
SL2(C) = C[x1, x2, x3, a1, a2, a3, a4]/(f (x, a))

where we set the cubic polynomial given by Fricke-Klein, Jimbo and Iwasaki.

f (x, a) = x1x2x3 + x21 + x22 + x23 − θ1(a)x1 − θ2(a)x2 − θ3(a)x3 + θ4(a)



θi(a) = aia4 + ajak, (i, j, k) = a cyclic permutation of (1, 2, 3),

θ4(a) = a1a2a3a4 + a21 + a22 + a23 + a24 − 4.

Theorem 3.2. The monodromy variety of Painlevé VI is isomorphic to the
affine variety

X = RP2,s
4 = SL2(C)3//Ad(SL2(C))

= Spec(C[x1, x2, x3, a1.a2, a3, a4]/(f (x, a))

= {(x, a) ∈ C7, f (x, a) = 0} ⊂ C7

Moreover for a fixed a = (a1, a2, a3, a4) ∈ C4

Xa = RP2,s
4,a = Spec(C[x1, x2, x3]/(f (x, a))) = Xa ⊂ C3 ⊂ P3.

The Riemann-Hilbert correspondence induces an analytic isomorphism for generic
ν = (±νi, i = 1, 2, 3, ν4, 1− ν4). ai = 2 cos(−2πνi).

RHt,ν : M(t,ν)
≃−→ Xa

For special ν, we have a proper bimeromorphic analytic morphism (analytic reso-
lution of singularities).

RHt,ν : M(t,ν)−→Xa



a1 = 2

ai = 2 A4 ≃ C4

X = ∪a∈A4Xa

A1-singularity

∆ = 0



4. Types of Singularities of Linear connetions
Let us list up the types of irregular singular points of lin. connetions of rank

2 on P1 which induces iso-Stokes-Monodromy differential equations (=Lax equa-
tions)isomorphic to the Painlevé equations of the types in the table. This re-
sults follows from original result due to Garnier, Okamoto, Miwa-Jimbo-Ueno and
Ohyama, Kawamuko, Sakai and Okamoto. (Moreover Flaschka and Newell obtained
PII(FN).)

Dynkin Painlevé equation s(0) s(1) s(∞) s(t) no. of parameters

D̃4 PVI 0 0 0 0 4

D̃5 PV 0 0 1 - 3

D̃6 deg PV= PIII(D6) 0 0 1/2 - 2

D̃6 PIII(D6) 1 - 1 - 2

D̃7 PIII(D7) 1/2 - 1 - 1

D̃8 PIII(D8) 1/2 - 1/2 - 0

Ẽ6 PIV 0 - 2 - 2

Ẽ7 PII(FN)=PII 0 - 3/2 - 1

Ẽ7 PII - - 3 - 1

Ẽ8 PI - - 5/2 - 0
Table 1. The type of singularities for linear problems and Pailevé equations



Equations of Moduli space of Stokes-Monodromy data

The following result is due to a joint work with Marius van der Put
([21]).

(1) PVI x1x2x3 + x21 + x22 + x23 − θ1(a)x1 − θ2(a)x2 − θ3(a)x3 + θ4(a) = 0,
θi(a) = aia4 + ajak, (i, j, k) = a cyclic permutation of (1, 2, 3),
θ4(a) = a1a2a3a4 + a21 + a22 + a23 + a24 − 4. with a1, a2, a3, a4 ∈ C.

(2) PV x1x2x3 + x21 + x22 − (s1 + s2s3)x1 − (s2 + s1s3)x2 − s3x3 + s23 + s1s2s3 + 1 = 0
with s1, s2 ∈ C, s3 ∈ C∗.

(3) deg PV x1x2x3 − x21 − x22 + s0x1 + s1x2 − 1 = 0.
with s0, s1 ∈ C.

(4) PIII(D6) x1x2x3 + x21 + x22 + (1 + αβ)x1 + (α + β)x2 + αβ = 0
with α, β ∈ C∗.

(5) PIII(D7) x1x2x3 + x21 + x22 + αx1 + x2 = 0
with α ∈ C∗.

(6) PIII(D8) x1x2x3 + x21 − x22 − 1 = 0.
(7) PIV x1x2x3 + x21 − (s22 + s1s2)x1 − s22x2 − s22x3 + s22 + s1s

3
2

with s1 ∈ C, s2 ∈ C∗.
(8) PII(FN) x1x2x3 + x1 − x2 + x3 + s1 = 0, with s1 ∈ C.
(9) PII x1x2x3 + x1 + x2 + αx3 + α + 1 = 0 with α ∈ C∗.
(10) PI=PI(Ẽ8) x1x2x3 + x1 + x2 + 1 = 0.



4.1. Family (−,−, 5/2) and Painlevé PI. According to Definition and examples 1.10, a dif-
ferential module of this type need not have a solution for the strong Riemann-Hilbert problem. We
deal here with the modules for which there is a solution, i.e., are represented by a matrix differential
equation d

dz + A0 + A1z + A2z
2 with nilpotent A2 which can be normalized into

(
0 1
0 0

)
. The map

z 7→ λz + µ is used to normalize the eigenvalues at ∞ to ±(z5/2 + t
2 · z

1/2). Conjugation with a

constant matrix of the form
(
1 ∗
0 1

)
leads to the normalization

d

dz
+

(
p t + q2

−q −p

)
+

(
0 q
1 0

)
z +

(
0 1
0 0

)
z2 .

The space AnalyticData is given by the formal monodromy and 5 Stokes maps which are on a
basis e1, e2 of the formal solution space at ∞ given by the matrices(

0 − 1

1 0

)
,

(
1 0

a1 1

)
,

(
1 a2
0 1

)
,

(
1 0

a3 1

)
,

(
1 a4
0 1

)
,

(
1 0

a5 1

)
.

Their product is the topological monodromy and thus equal to
(
1 0
0 1

)
. The base change e1, e2 7→

λe1, λe2 does not effect these matrices. Hence the coordinate ring of R is generated by a1, . . . , a5
and their relations are given by the above matrix identity.
After eliminating a2 by a2 = 1 + a4a5 and a1 by a1 = −1− a3a4, one obtains for the remaining

variables a3, a4, a5 just one equation and R is a non singular affine cubic surface with three lines at
infinity, given by a3a4a5 + a3 + a5 + 1 = 0.



4.2. Family (−,−, 5/2) and Painlevé I, PI(Ẽ8). The family of connection with the data can
be written as

The singular points z ∞
Katz invariant 5

2

generalized local exponents ±(z5/2 + t
2z

1/2)

(9) ∇ d
dz
=

d

dz
+ A0 + zA1 + z2A2 =

d

dz
+ A, where

(10) A0 =

(
p q2 + t
−q −p

)
, A1 =

(
0 q
1 0

)
A2 =

(
0 1
0 0

)
,

A =

(
p q2 + zq + z2 + t

z − q −p

)
.

∇ d
dt
=

d

dt
+B

B := B0 + zB1, B0 =

(
0 2q
1 0

)
, B1 =

(
0 1
0 0

)
.



Painlevé I, PI(Ẽ8)

(11)


dq

dt
= 2p

dp

dt
= 3q2 + t

The system (11) is equivalent to the following second order equation.

(12) q′′ = 6q2 + 2t

Ω = dp ∧ dq − dHIE8 ∧ dt, HIE8(p, q, t, θ) = −p2 + q3 + tq(13)

Equation (11) is equivalent to the following Hamiltonian system:

(14)


dq

dt
= −∂HIE8

∂p
,

dp

dt
=

∂HIE8

∂q
.



5. Apparent singularities (a joint work with S. Szabo)

5.1. Apparent singularities of connections and Higgs bundles.

•C, t as before.
•We set L = Ω1

C(t1 + · · · + tn). We assume that n ≥ 1 and
degL = 2g − 2 + n > 0.

Consider the moduli spaces

(15) MDR(ν) = Mα
(C,t)(ν, r, n, d)={(E,∇, {l(i)∗ }1≤i≤n)}/ ≃ .

(16)

MH(ν) = Mα
(C,t)(ν, r, n, d)H = {(E,Φ, {l(i)∗ }1≤i≤n)}/ ≃ .

For simplicity, we assume that ν ∈ N n
r (d) or ν ∈ N n

r,H are non-

resonant and so generic such that all members of moduli spaces are
irreducible.



Proposition 5.1. Assume that ∃σ ∈ H0(C,E)\{0} and degL =
2g − 2 + n ≥ 1 and degD = n ≥ 1. Moreover assume that (E,∇)
(resp. (E,Φ) ) is irreducible. Set

(17) F = ⊕r−1
j=0L

−j = OC ⊕ L−1 ⊕ · · · ⊕ L−(r−1).

∃ a natural embedding F ↪→ E such that H0(C,F ) ≃ Cσ ⊂
H0(C,E). Define the torsion sheaf TA by the exact sequence

(18) 0 −→ F −→ E −→ TA −→ 0,

Then

lengthTA = d− r(g − 1) + r2(g − 1) + n
r(r − 1)

2
.



Definition 5.1. For an irreducible parabolic connection (E,∇, l)
(resp. irreducible parabolic Higgs bundles (E,Φ, l) ) and a non-zero
section σ, we call the support of TA apparent singular points of the
parabolic connection (E,∇, l) (resp. (E,Φ, l)) with the cyclic vector
σ.



Now assume that degE = d = r(g−1)+1. We have dimH0(C,E) =
dimH1(C,E)+1 by Riemann-Roch. If moreover H1(C,E) = 0, we
have a non-zero section σ ∈ H0(C,E) ≃ Cσ unique up to non-zero
scalar multiplications.

Theorem 5.1. Under the same notation and assumption as before,
let us assume that

(19) d = degE = r(g − 1) + 1,

(20) H1(C,E) = 0.

Then we have a natural unique embedding F ↪→ E which yields

(21) 0 −→ F −→ E −→ TA −→ 0.

Then the sheaf TA is a torsion sheaf of length

(22) N = r2(g − 1) + n
r(r − 1)

2
+ 1.



5.2. The case of parabolic Higgs bundles.

• Let (E,Φ, l) be the ν-parabolic Higgs bundles of degree d =
degE = r(g−1)+1 and assume that dimH0(C,E) = 1. Again
we set L = Ω1

C(D).
•We have a canonical exact sequence

0 −→ F −→ E −→ T −→ 0

with F = ⊕r
j=1L

−(j−1) and with apparent singularities

suppT = {q1, · · · , qN}
where

N = r2(g − 1) + n
r(r − 1)

2
+ 1 =

1

2
dimMH(ν)



5.2.1. Spectral curves. Let

p : P = P(OC ⊕ L−1) −→ C

be the P1-bundle over C which is a relative compactification of the total space of
L −→ C. The canonical section x ∈ H0(P,OP (1)⊗ p∗(L)) can be used to define
the spectral curve

Cs : det(xIr − Φ) = xr − s1x
r−1 − s2x

r−2 − · · · sr = 0 ⊂ L ⊂ P

with the natural map π : Cs −→ C and si ∈ H0(C,Li).



P

C

p

C+

C−

x

y

t1 t2 tn

P \ C− ≃ L

Cs

Figure 3. The ruled surface and the curve



P

p

Cs ⊂ L ⊂ P

Cs

C

π

t1 t2 tn

⊂

b
(1)
0

b
(2)
r−1

· · ·

b
(1)
1

b
(1)
r−1

b
(2)
0

b
(2)
1

b
(n)
0

b
(n)
1

b
(n)
r−1

C−

Figure 4. ν-Spectral curve



Proposition 5.2. [BNR, [3]]. Assume that Cs is a smooth and
irreducible Then there exists one to one correspondence

(E,Φ, l) ⇔ (π : Cs −→ C, ξ)

where ξ is a line bundle on Cs. The correspondence ⇐=is given by
π∗ξ = E and the structure of π∗OCs

-algebra.

Since H0(Cs, ξ) = H0(C,E) = C, we see that a unique nonzero
effective diviosr δ such that

OC(δ) ≃ ξ

of degree

deg δ = deg ξ = degE−degF = r(g−1)+1+(2g−2+n)
r(r − 1)

2
= N.

We have the natural exact sequence

0 −→ OCs
−→ ξ −→ T̃ −→ 0

0 −→ π∗OCs
−→ π∗ξ −→ π∗T̃ −→ 0



and π∗OCs
≃ F , π∗ξ = E and π∗T̃ = T .

0 −→ F −→ E −→ T −→ 0

5.3. Higgs case. For (E,Φ, l), take the data of spectral curve and
the line bundle (π : Cs −→ C, ξ).
Since H0(C,E) a nonzero section σ, there exist a non-zero section
σ̃ ∈ H0(Cs, ξ) such that π∗(σ̃) = σ. Let δ = p1 + · · · + pN be the
zero divisor of σ̃. We have the exact sequence of sheaves on Cs

0 −→ OCs

σ̃−→ OCs
(δ) −→ Tδ −→ 0

The pushforward of this sequence

0 −→ π∗OCs
−→ π∗ξ −→ π∗Tδ −→ 0

is isomorphic to

0 −→ F −→ E −→ T −→ 0



So we have

π(δ) =
N∑
ı=1

π(pi) =
N∑
i=1

qi.

0 −→ F −→ E −→ T −→ 0
↓ Φ ↓ Φ ↓ ⊕Φqi

0 −→ F ⊗ L −→ E ⊗ L −→ T ⊗ L −→ 0

The dual coordinates {p1, · · · pN}.
pi = Φ(qi) ∈ Lqi



P

p

Cs ⊂ L ⊂ P

Cs

C

π

q1 q2 qN

⊂

p̃1

p̃2

p̃N
δ ⊂

π∗(δ) ⊂

δ = p̃1 + p̃2 + · · ·+ p̃N

π∗(δ) = q1 + q2 + · · ·+ qN

· · ·
Figure 5. A Spectral curve and a spectral divisor



5.4. Geometric aspects of Higgs cases. Assume that ν is
generic so that all members (E,Φ, l) ∈ MH(ν) are irreducible.

MH(ν)0 = {(E,Φ, l), degE = r(g − 1) + 1, H0(C,E) ≃ C}.

Then we have the following

MH(ν)0 ≃ M0 := {(Cs, ξ = OC(δ))}
ϕ−→ HilbN (L)

↓ ↓ ↓
HilbN (C) |Cs| HilbN (C)

apparent map Hitchin fibration

ϕ((Cs, ξ)) = Iδ : Ideal sheaf of δ ⊂ Cs ⊂ L

In many known cases, we can check that

ϕ is a dominant birational morphism,

and we expect that this statement is always true.
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[8] M. Inaba, K. Iwasaki and M.-H. Saito, Dynamics of the sixth Pailevé Equations , Theories Asymptotiques et Equations de Painleve, Angers, Juin, 2004, ”Seminaires

et Congre” of the Societe Mathematique de France (SMF)14, 2006, 103–167.
[9] M. Inaba and M.-H. Saito, Moduli of unramified irregular singular parabolic connections on a smooth projective curve. Kyoto J. of Math, , 53 (2013), no.2, 433-482.
[10] F. Loray, M.-H. Saito, C. T. Simpson, Foliations on the moduli space of rank two connections on the projective line minus four points. ”Seminaires et Congre” of

the Societe Mathematique de France (SMF), 27, (2013), 115–168. arXiv:1012.3612v2.
[11] F. Loray, M.-H. Saito, Lagrangian fibrations on the moduli space of rank two connections on the projective line minus n points, Int Math Res Notices (2013) doi:

10.1093/imrn/rnt232
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