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1. Moduli spaces of stable A-parabolic connectios

1.1. Settings.
e (: a nonsingular projective curve of genus g > 0
ot = {t1,...,tn}, a set of n-distinct points on C.

n
D(t) =) ti=t1+ - +tn.
i=1

o Mypn ={(C,t) asabove}/ ~:  The moduli of (ordered) n-
pointed curves of genus g.



1.2. A-connections. Fix A € C.

Definition 1.1. (E, V) is called a A-connection if

e [V : An algebraic vector bundle on C' of rank  and of degree d.
oV . F — FER® Q}J(D(t)): A logarithmic A-connection. a €

Oc,0 € b
V(ao) = Ao ® da + aV (o)
We denote by

M-twisted Leibniz rule

L =Q4(D(t))

the line bundle or the invertible sheaf of meromorphic 1 form on C

having poles on D(t) =t +t9 + - -

- + t,, at most order 1. Later

we may allow the higher order pole D(t) = mqt] + moto + - - - mpty,

with m; > 1. |[degL =29 —2+n.

technical reason.

We assume that n > 1 by a



e \ # (: linear connection:
(E,V): A-connection = (E,%V) . a usual connection
Locally near at z = t;, taking a local frame of E near z = {;,
B~ OF) 5 (ay(2)f_y. A=)z € Mr(Ocy) ® OL(D(1)

V((ax(2) = Mdag(2)) + A=) (a(z) ==

& ti
e \ = (0: Higgs bundle: Denote V = J.
(K, ®): 0-connection = (F,®) :a Higgs bundle, $:Higgs field
Twisted Leibniz rule leads: for a local section a € Op,0 € E

P(ac) = ad(o) |an Og-linear hom.
® € End(E)®L. Locally near z = t;, B(z)-%- Mr(Oct,)®

Z—ti




1.3. Residues and Local exponets.

o (E,V), (E,®) as above.

o res;; (V) = A(t;), res;(P) = B(t;) € End(E};): residue homo-
morphisms. A(t;) = (ag)1<k,i<r B(ti) = (0g1)1<k,i<r: com-
plex r X r matrices.

o We put an order of eigenvalues of res; (V) and res; (®) respec-
tively, and denote them as

{VSD,V@'“ ng}
local exponents of V at ¢;.

e \We denote the local exponents of V and ® by
<z‘>>1§z§n

v = (v o<j<r

J



1.4. Fuchs relation.

Lemma 1.1. For a A-connection (F,V) ( resp. a Higgs bundle
(E,®)), with singularity at D(t) as above, we have the following

relation.

—1

ﬁ

S:( Juﬁi)) =3

1=1

.

J

|
o

1.5. The space of local exponents of A-connections.

/

(d) = v = (1)

\

1<i<n
0<y<r-—

Ny = N:(0)

LECT X+ Y Y

1<i<n 0<<r—1

Higgs bundle case

(1) _
J = (

/



1.6. Genericity for local exponents.
Definition 1.2. Let v = {u]@ (Ejg;_l € A/Z,L)\(d)-
(1) v is called resonant, if for some i and j; # jo, Vﬁ) — VJ(-? SPVA

(2) v is called reducible if there exists a subset v/ = {ij)} of v such

that for each 7,1 < ¢ < n, the number of Vﬁf) c v is a fixed

number k, 1 <k <r—1land)_ V<.;é> € A\Z where the last sum
J

is taken over /. If v is not reducible, v is called irreducible
(3) If v is neither resonant, nor reducible, we call v is generic.

Remark 1.1. If a A\-connection (E, V) has a subconnection (F, V‘F)

is with 0 < rank F' < rank F, the local exponents of (E,V) is re-
ducible.



1.7. Parabolic connections.

Definition 1 3. Fix (C,t) € My, and v € N*(d)

o (L,V, {l }1<Z<n)' a v-parabolic connection of rank r and de-
gree d on C

<
o (£/,V): a logarithmic connection of rank r and degree d

V:EHE@Q%;(D( )

o) B, =1 51" 5 51 51 = 0: a filtration of

Em for each 1,1 <4 < n such that
(1) dim( /l +1) = 1 and

(2) (resti(V) — Véz))(l< )) C Z;ll forj=0,1,--- ,r—1.



1.8. Parabolic stability. Next, we d'efine a-stability condition on the
v-parabolic connections (F, V, {Z><I<Z>}1§i§n>-

e Fix a sequence of rational numbers a = (a§z>)%ézg<z such that
(1) 0<a§i><a§i><..-<a§i><1

. ,
fori=1,...,n and oz? + agi) for (1,5) # (i, 5').

o (F,V, {l@}lgign): a v-parabolic connection.
o0 FCEVUF)C F@Qé(D(t)). Define integers 1ength(F)§-Z>
by

(2) length(F)\ = dim(Fly, 0 11 ) /(Fly, 011

Note that length(E)g-o = dim(lgzzl/l§i>) =1for1<j5<r.



Definition 1.4. e A v-parabolic connection (E,V, {lii>}1§i§n):
is a-stable
<

0G FCE, V(F)CF®Q,D(t)),

deg '+ >0, 2;21 ozy) length(F);i) deg B+ > 1, Z;:1 oz;i) 1ength(E)§.i)
<
rank F’ rank £

We can define the notion of: |

e a v-parabolic Higgs bundle (F, P, {lS)}lgign) and

e the ax-stability conditions for a v-parabolic Higgs bundle as in the
same way above.



1.9. Moduli spaces of stable parabolic connections and stable para-
bolic Higgs bundles.

e Fix (C;t) and v € N'(d). We can define the moduli space
of ax-stable parabolic connections

3 %o, (B, VAL <i<n)} =

e Moreover for v € ,,TLH we can define the moduli space of a-

stable parabolic Higgs bundles:

@) My dg = {(B,0 {1 <)} =



1.10. Existence of algebraic moduli space of a-stable v/-parabolic con-
nections.

Theorem 1.1. (Inaba-lwasaki-Saito RIMS2006 [6], ASPM2006 [7],
Inaba, JAG2013 [5]). There exists the relative fine moduli scheme

T M%,’E)/Mg,nx/\/ﬁ(d)(r’ d,n) — Mg x NJM(d)

such that 7 is smooth and quasi-projective.

Corollary 1.1. For fixed (C,t) and v € N/*(d), the moduli space
?O,t)(u’ r,m,d)
is a smooth quasi-projective algebraic scheme (most case irreducible)

of dimension
2%(g — 1) +nr(r —1) +2 = 2N.
Moreover M >(1/,7“,%, d) admits the natural algebraic symplectic

(Ct
structure.



1.11. As in the similar way, we can obtain the existence of algebraic
moduli space of a-stable v-parabolic Higgs bundles (K (D)-pairs of
Boden and Yokogawa).

Theorem 1.2. There exists the relative fine moduli scheme

, o ~ n,H
T . M(C,E)/M%n)(./\/;ﬂ(d)(r’ d7 n>H — ngn X Nfr'

such that 7 is smooth and quasi-projective.

Corollary 1.2. For fixed (C,t) and v € N, the moduli space

?C,t)(y’ r,n,d)g
is a smooth quasi-projective algebraic scheme (most case variety) of
dimension
2%(g — 1) +nr(r —1) +2 = 2N.
Moreover M(aC,t)W’ r,n, d) g admits the natural algebraic symplec-
tic structure.



1.12. Example: Moduli space of connections, Painlevé VI case. Con-
sider the case: C' = P!, r =2,n =4,d = —1 and a generic v € N}(—1). We can
normalize t = {t1,1o,13,t4} = {0,1,¢,00} and v = {£11, 1y, 3.0, 1 — 14}
Then the moduli space M(t,v) = ?P17t>(1/,2,4, —1) is an algebraic surface.
dim M (t,v) = 2N = 40 —-1)+4 x 2+ 2 = 2. M(t,v) has a nice com-
pactification Sy, = M(t,v). Si, is a 8-points blowing up of ¥y = P(Op1 &
Op1(—2)). The points of blowing up depends on the local exponents v. See be-
low. The anti-canonical divisor of S, is given — K, , = 2Yy+ Y1 + Yo + Y3+ Y.

M(t,v) = Se, \ Y|

Y] Y, Y3 Yy oo-section
l 2 _
vy Yo=-2

\“‘ \“‘ \“‘ \“ 1/4
. A S A § M(t,v) = Sip \ Y
t,v RS RS . N
" "'
] ) 9 1 —uy




1.13. Example: Moduli space of parabolic Higgs bundles. Consider
the case: C = Pl,r = 2,n = 4,d = —1 and a generic v/ € N;(0). We can
normalize t = {t1, %o, 13,4} ={0,1,¢,00} and V' = {41, £15, +v3.+14}. Then
M, vy = ?Pl’t)(l/’, 2,4, —1)p is also an algebraic surface. dim My(t,v') =
2N =40 —1)+4 x 242 = 2. Mg(t,v') has a nice compactification Sy, =
M(t, V). Stu is a 8-points blowing up of ¥y = P(Op1 ® Opi(-2)). —Kg, , =
2Yo + Y1+ Yo+ Yo + Yy (M(t,v )y = S; \ Y| We can see that algebraic
structures of M (t,v) and M(t,v')y are different.

Y, Y, Y3 Y,y oo-section
l 2 _
vy Yo=-2

\“‘ \“‘ \“‘ \“ V4 .
51 b b Y| M= s Y
¢ 1) 9 s
T
P! 5

t1=0t=1 t3=t ty = 00



2. The Riemann-Hilbert correspondence

2.1. Moduli space of representations of 71(C'\ D(t), *). Define:

RP ¢y = Hom(m (C'\ D(t), %), GL,(C))//Ad(GL,(C))
or

RP@@ = Hom(m (C'\ D(t),%),SL,.(C))//Ad(SL,.(C))
By definition, RP?(nC,t) and RPE”C‘% are affine varieties associated to the invariant
ring of matrices.

Replacing T = M, , by a certain finite étale covering u : 17" — T and varying

((C,t),v) € T x /\/}(n)(d) we can define a morphism
(5) RH /\/l?é’t)/T,(T, n,d) — RP,, 1

which makes the diagram

o RH ,
M(C,E)/T’(T’ n,d) — RP,p

(6) @,mdl M;

T x NY(d) 220 17 AT

commute.



2.2. Riemann-Hilbert correspondences.

Theorem 2.1. (Inaba-Iwasaki-Saito, RIMS2006 [6], ASPM2006[7], Inaba JAG2013|5]
). Assume that « is generic. The Riemann-Hilbert correspondence

(7) RH /\/loét /T,(r n,d) — RP, X 4 N

is a proper surjective bimeromorphic analytic morphism. In particular, for each
(C,t),v) e T" x ./\/}(n)(d), the restricted morphism
(8) RHct)) : M{{c) )17 d) — RP (04 a

gives an analytic resolution of singularities of RP| ;) , where a = rh(v) is a image
of small Riemann-Hilbert correspondence rh.



3. GENERAL SCHEMES OF THE GEOMETRY OF RIEMANN-HILBERT
CORRESPNDENCES

Consider the following diagram:

Tx N T 7o

Theorem 3.1. If the Riemann-Hilbert map
RH@V X Mt)y — Rt,u(u)

is a proper, surjective bimeromorphic holomorphic map for any (t,v) € T x N.
Then the corresponding isomonodromic differential equations satisifies the geomet-
ric Painlevé property.



Isomonodromic Flows: v Generic Case

The Riemann-Hilbert correspondence RH,, induce an analytic isomorphisms for
all t € Tn. Pulling back the constant section on the right hand side, we have the
isomonodromic flows on the left hand side. These isomondromic flows satisfy the
Geometric Painlevé property.

constant flows = monodromy is constant
Isomonodromic flows = Painlevé or Garnier flows

\ ’ \ REL \j \
—s |~ — R(Put)a
;\/ - 73(7un,to)a

Mg(to,%\K M (t,v, L) \ \

to T, x {v} ¢ B to T, x {a} 't

Isomonodromic Flows and Painlevé or Garnier Flows

Fricure 1. Riemann-Hilbert correspondence and isomonodromic flows for generic v



Isomonodromic Flows: Special Case

If v is special (resonant, reducible), the right hand side have singularity. On the other hand, the left hand side
is always nonsingular, hence RH,, gives a simultaneous resolution of singularities. Riccati flows.

Riccati flows are tangent to family of (—2)-curves Ay singularity of R(Pug,)a-
Isomonodromic flows = Painlevé flows constant flows = monodromy is constant
/—\_/ - . R<P4,t)a

contraction

] |

R(Pas,
Mg (to, v, ’\\)i’ Mf(t,u,L)Q Q

/ to  Tix{v)t - to Tix{a) t

[

(—2)-rational curve

RH,, contracts (—2)-rational curves onto singular points of type A;.

Case of Painlevé VI

reure 2. RlemMann-Hilbert correspondence and isomonodromic
flows for special v



3.1. Geometric Painlevé property of the NDFE arrising from Isomon-
odromic deformation of LODE.

Corollary 3.1.([6], [7], [5]) Differential equations arrising from
iIsomonodromic deformations of linear connections with regular singu-
larities over a curve satisfies the geometric Painlevé property.

Remark 3.1. We can extend the above result in the following cases;
e Connections of any rank with generic unramified irregular singu-
larity on smooth projective curves. (Inaba-Saito, KJM2012 [9])
e Logarithmic connections of any rank with fixed spectral type with
multiplicities. (Inaba-Saito, in preparation).



3.2. Moduli spaces of monodromy representations and generalized
Stokes data related to Painlevé equations. Monodromy variety for
Painlevé VI case

Define

RP>* = Hom(m (P\ {t1,ta,t3,ts}, SL(2,C))//Ad(SLy(C))
= {(Ml, MQ, Mg, M4> < SLQ(C), M1M2M3M4 = ]2}//Ad(SL2<C>)
= {(My, My, M3) € SLy(C)}//Ad(SLy(C))

We can describe the moduli space as follows.
Take M; € SLy(C) for i =1,2,3 and set

a; = Tr[M;),i = 1,2,3  ay := Tr[My] = Tr[M, '] = Tr[M; M, Ms;]
For a circle permutation (i, 7, k) of (1,2, 3), set
z; = Tr[M; My].
Then the invariant ring is given by
C[M;, My, M3)°*C) = Clzy, 29, 23, a1, a2, as, as] /(f(x, a))
where we set the cubic polynomial given by Fricke-Klein, Jimbo and lwasaki.

f(x,a) = 212903 + 2] + 25 + 25 — 01(a)x; — Oy(a)zy — O5(a)xs + O4(a)



0;(a) = ajaq+ajag, (7,7, k) = a cyclic permutation of (1,2, 3),

0ia) = ajasazay + ai+ a3+ a;+ai — 4.

Theorem 3.2. The monodromy variety of Painlevé VI is isomorphic to the
affine variety

X =RP}* = SLy(C)*//Ad(SLy(C))

= Spec(Clx1, 9, T3, a1.a9, a3, aq)/(f(x, a))
= {(x,a) € C', f(x,a) =0} c C”

Moreover for a fized a = (a1, as, a3, ay) € C*

X, = RPZ:Z — Spec(Clzy, 22, 23] /(f(x,a))) = &, € C° C P?.
The Riemann-Hilbert correspondence induces an analytic isomorphism for generic
v=(tv,i=1,2,3,vy,1 —vy). a; = 2cos(—27y;).
RH,, : M(t,v) — X,

For special v, we have a proper bimeromorphic analytic morphism (analytic reso-
lution of singularities).
RHt’V ) M(t, I/>—>Xa



X = UaEA4Xa
Aj-singularity

/LT /]




4. TYPES OF SINGULARITIES OF LINEAR CONNETIONS

Let us list up the types of irregular singular points of lin. connetions of rank
2 on P! which induces iso-Stokes-Monodromy differential equations (=Lax equa-
tions)isomorphic to the Painlevé equations of the types in the table. This re-
sults follows from original result due to Garnier, Okamoto, Miwa-Jimbo-Ueno and
Ohyama, Kawamuko, Sakai and Okamoto. (Moreover Flaschka and Newell obtained

PII(FN).)

Dynkin | Painlevé equation | s(0) | s(1) | s(o0) | s(t) | no. of parameters
Dy PVI 0| 0 0 0 4
Ds PV 0| 0 1 - 3
Ds |degPV=PHI(D6)| 0 | 0 | 1/2 | - 2
Dg PI11(D6) 1 - 1 - 2
Ds PIII(D7) 12 - | 1 | - 1
Dy PI11(D8) 12 - |12 - 0
Eg PIV o - | 2 |- 2
Er PII(FN)=PII 0| - |3/2] - 1
E; Pl - - 3 - 1
Es P - - | 5/2 | - 0

TABLE 1. The type of singularities for linear problems and Pailevé equations



Equations of Moduli space of Stokes-Monodromy data

The following result is due to a joint work with Marius van der Put

([21]).

(1) PVl zymows + 22 + 23 + 23 — 01(a)x; — 0z(a)zs — O3(a)ws + O4(a) = 0,
0;(a) = a;as + ajar, (i,7,k) = a cyclic permutation of (1,2, 3),
04(a) = ajasazay + a3 + a3 + a3 + aj — 4. with a1, as, ag,ay € C.
(2) PV mymox3 + 2] + x5 — (81 + S283)T1 — (S2 + S5183)T2 — S373 + S5 + 818983+ 1 =0
with s1, 59 € C, s3 € C*.
(3) deg PV x1x913 — ZIZ% — ﬂf% + spx1 + s129 — 1 = 0.
with sg, s; € C.
(4) PII(D6)  xywozs + 2% + 25+ (1+ aB)z + (a+ B)xg+af =0
with a, 8 € C*,
(5) PII(D7) Cxlazgxg + 2%+ 25+ ar; +13=0
with a € C*.
(6) PII(D8)  wywoxs + i — 25 —1=0.
(7) PIV  zymoms + 2% — (85 + s189)x1 — S50 — S33 + S5 + 5155
with s1 € C, sy € C*.
(8) PII(FN)  zywows + 21 — 29+ 23+ $1 = 0, with s; € C.
(9) PII T1Tx3 + 21+ T2 + axg+a+ 1 =0 with a € C*.
(10) P|:P|(E8) r1Toxs + 11+ 219+ 1 =0.

8
9



4.1. Family (—,—,5/2) and Painlevé PI. According to Definition and examples 1.10, a dif-
ferential module of this type need not have a solution for the strong Riemann-Hilbert problem. We
deal here with the modules for which there is a solution, i.e., are represented by a matrix differential
equation diz + Ag + Az + Ayz? with nilpotent A5 which can be normalized into (O 1). The map

00
2 +— Az + p is used to normalize the eigenvalues at oo to :t(z5/2 + % : 21/2). Conjugation with a
constant matrix of the form ((1) ’1‘) leads to the normalization

d p t+ ¢ 0 q 01\ o
@*(_q —» ) \10)* " oo0)*

The space AnalyticData is given by the formal monodromy and 5 Stokes maps which are on a
basis e1, eo of the formal solution space at oo given by the matrices

() () GO (o) (07) ()

Their product is the topological monodromy and thus equal to ((1) (1)) The base change e1,e9 —
Aeq, Aey does not effect these matrices. Hence the coordinate ring of R is generated by a4, ..., a5
and their relations are given by the above matrix identity.

After eliminating as by as = 1 + a4as and aq by a; = —1 — agay, one obtains for the remaining

variables ag, a4, a5 just one equation and R is a non singular affine cubic surface with three lines at
infinity, given by asasas + as+ a; + 1 = 0.



4.2. Family (—, —,5/2) and Painlevé I, PI(Es). The family of connection with the data can
be written as

The singular points z 00
Katz invariant g

generalized local exponents :|:(Z5/2 + %zl/z)

d d
0 =——+Ag+ zA; + 2° Ay = — + A, where
dz dZ dZ

2
([ p g+t _(0g (01
o Ao(—q P ) A1<10> A2(0 0)’

A—< p q2+zq+22+t).

(9) v

< —dq —P
d

0 2 01
BZ:BQ+ZBl, B()_(1 Oq),Bl—(OO)



Painlevé I, PI(Ey)

qu
2 _ 9
aw P
(11) <d
p 9
= = 3+t
L dt ¢+

The system (11) is equivalent to the following second order equation.

(12) ¢ = 6q° + 2t

(13) QO =dpAdq—dHg, Ndt, Hig(p,q,t,0) = —p*+¢* +1q

Equation (11) is equivalent to the following Hamiltonian system:

(dg  0Hg

a ~ op

(14) Sa
| dt dq




5. Apparent singularities (a joint work with S. Szabo)

5.1. Apparent singularities of connections and Higgs bundles.
e (' t as before.
o We set [ = Qlc(tl + -+ +ty). We assume that n > 1 and
deg L =29 —2+n > 0.
Consider the moduli spaces

(15) Mpp(v) = Mo (. r.n. d)={(B.V AL Y1<izn)}/ =
(16) |
My (v) = MG v, rm d) g = {(B, @ {1 Y <icn)}/ =

For simplicity, we assume that v € N/'(d) or v € N';; are non-

resonant and so generic such that all members of moduli spaces are
irreducible.



Proposition 5.1. Assume that 30 € H'(C, E)\ {0} and deg L =
2g —2+mn >1and deg D = n > 1. Moreover assume that (E, V)
(resp. (E,®) ) is irreducible. Set

17 F=e_ 7 =0coL e oL Y,
C

3 a natural embedding F' < E such that H)(C,F) ~ Co C
HY(C, E). Define the torsion sheaf T'4 by the exact sequence

(18) 0 — F—F—Ty—0,

Then

r(r — 1).

lengthTa=d—r(g—1)+7°(g—1)+n 5



Definition 5.1. For an irreducible parabolic connection (F,V,I)
(resp. irreducible parabolic Higgs bundles (E, ®,1) ) and a non-zero
section o, we call the support of T’y apparent singular points of the

parabolic connection (E, V., [) (resp. (E, ®,1)) with the cyclic vector
0.



Now assume that deg £ = d = r(g—1)+1. We have dim H'(C, E) =
dim H'(C, E)+1 by Riemann-Roch. If moreover H'(C, E) = 0, we
have a non-zero section o € H'(C, E) ~ Co unique up to non-zero
scalar multiplications.

Theorem 5.1. Under the same notation and assumption as before,
let us assume that

(19) d=degFE =r(g—1)+1,

(20) HY(C,E) =0.

Then we have a natural unique embedding F' — E which yields
(21) 0 —F —F—T4—0.

Then the sheaf T4 is a torsion sheaf of length
r(r—1)

+ 1.
2

(22) N=r’(g—1)+n



5.2. The case of parabolic Higgs bundles.
olet (F,d,l) be the v-parabolic Higgs bundles of degree d =

deg E = r(g—1)+1 and assume that dim H(C, E) = 1. Again
we set [ = Q}](D)
e \We have a canonical exact sequence
0O —F —F—T1T—70
with /' = @gzlL_(j_l) and with apparent singularities
suppl” = {q1," -+, qn}
where

N = 7“2(9 — 1) +n7a(7a — 1)

2

1



5.2.1. Spectral curves. Let
p:P=POc® L") —C
be the P!-bundle over C' which is a relative compactification of the total space of

L — C. The canonical section z € H(P,Op(1) ® p*(L)) can be used to define
the spectral curve

Cs - det(zl, — D) = —sr Tl s P —5,=0CLCP
with the natural map 7 : C;, — C' and s; € H*(C, L").



T
S

tl t2 tn

FI1GURE 3. The ruled surface and the curve



FIGURE 4. v-Spectral curve




Proposition 5.2.[BNR, [3]]. Assume that Cs is a smooth and
irreducible Then there exists one to one correspondence
(E,9,l) < (7m: Cy — C, &)

where £ is a line bundle on Cs. The correspondence <—is given by
m+«§ = I and the structure of m.O¢ -algebra.

Since HY(Cs, &) = HY(C, E) = C, we see that a unique nonzero

effective diviosr 0 such that

Oc(0) ~¢&
of degree

r(r—1) _N

degd = deg& = deg E—deg F = r(g—1)+1+(2g—2+n)
We have the natural exact sequence
0— Oc, —&—T — 0

0 — O, — & — T — 0



and 7'('*008 ~ F m.& = F and W*T:T.

0 —F —FE—T—0

5.3. Higgs case. For (E, ®,1), take the data of spectral curve and
the line bundle (7 : Cs — C§).
Since H)(C, E) a nonzero section &, there exist a non-zero section

6 € H(C, €) such that m4(6) = 0. Let 6 = p; + - - - + px be the
zero divisor of . We have the exact sequence of sheaves on (s

0 — O, -Z5 O (6) — Ty — 0
The pushforward of this sequence

0 — W*OCS — & —> L5y — 0
Is isomorphic to

0 —F —FE—T—0



So we have

N N
T(6) =Y 7(p) =) a.
1=1 1=1
0 — FVF — F — T — 0
1 1o I &g

0 — FQL — EQL — T®L —0
The dual coordinates {p1,---py}.

p; = ®(q;) € Ly,



) C;,cLCP
—
DN >
\\—//
/ ]52\
q1 q2 <o qn

§=p1+Pat e+ N

T0)=q+q@+- - +qn
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m.(d) C C

FI1GURE 5. A Spectral curve and a spectral divisor
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5.4. Geometric aspects of Higgs cases. Assume that v is
generic so that all members (E, ®,1) € My (v) are irreducible.

M) = {(E,®,1),deg E =r(g—1)+ 1, H(C,E) ~ C}.

Then we have the following

Myw)?  ~ MY = {(Cs, € = Op(6))} -2 HILN(L)

J 3 J
Hilb™Y (C) O] Hilb™V (C)
apparent map Hitchin fibration

¢((Cs,&)) = I : Ideal sheaf of 6 C Cs C L

In many known cases, we can check that
@ is a dominant birational morphism,

and we expect that this statement is always true.
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