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Suppose that M is a compact four dimensional Riemannian
manifold and E is a vector bundle over M.
For each connection DA, the Yang-Mills functional is defined by

YM(A;M) =

∫
M
|FA|2 dv ,

where FA is the curvature of DA.

In local trivialization,

DA = d + A, FA = dA + A ∧ A.

where A ∈ Γ(EndE ⊗ T ∗M) is the connection matrix one form.

We say that a connection DA is a Yang-Mills connection if DA

satisfies the Yang-Mills equation

D∗AFA = 0 . (1)
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Yang-Mills equations

I Yang-Mills equations originated from the theory of classical
fields in particle physics. Self-dual Yang-Mills connections are
called ‘instantons’ in physics.

I Atiyah, Hitchin, Drinfel’d and Manin in 1978 established the
fundamental existence result of instantons on S4.

I Uhlenbeck (CMP 1982) proved the removal singularity
theorem for Yang-Mills connections on 4-manifolds.

I Uhlenbeck (CMP 1982) used a gauge fixing theorem on
4-manifolds to establish a weak compact theorem.

I Donaldson (JDG 1983) successfully applied Yang-Mills theory
to four dimensional geometric topology.
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The Yang-Mills flow

The Yang-Mills flow equation is

∂DA

∂t
= −D∗AFA (2)

with DA(0) = D0, where D0 is a given smooth connection.

I Atiyah and Bott (Phil. Trans. Roy. Soc. London A 1982)
suggested to use the method of the Yang-Mills flow to
establish the existence of Yang-Mills connections.

I Donaldson (Proc. Lond. Math. Soc. 1985) proved the global
existence of Yang-Mills flow and used the flow to prove that
an irreducible holomorphic vector bundle E over a compact
Kähler surface X admits a unique Hermitian-Einstein
connection if and only if it is stable.

I Uhlenbeck-Yau (CPAM 1986) established the result in the
case of holomorphic vector bundles over compact Kähler
manifolds, which is now called the Donaldson-Uhlenbeck-Yau
theorem
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Moreover, the Donaldson-Uhlenbeck-Yau theorem has been
generalized by many authors.

I Simpson (JAMS 1988) generalized the
Donaldson-Uhlenbeck-Yau theorem in holomorphic bundles E
over non-compact manifolds X satisfying certain assumptions.

I Hong (Ann. Global Anal. Geom. 2001) generalized the result
to the Yang-Mills-Higgs flow in holomorphic vector bundles
over compact Kähler manifolds.

I Ni (Trans. Amer. Math. 2001) generalized the result to the
Yang-Mills flow in holomorphic vector bundles over some
complete Kähler manifolds.

I Later, X. Zhang (Canad. J. Math. 2005) generalized the
result to the Yang-Mills-Higgs flow in holomorphic vector
bundles over some complete Kähler manifolds.
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In the case of holomorphic vector bundles are not stable,

I Hong and Tian (Math. Ann. 2004) established asymptotic
behaviour of the Yang-Mills flow and proved the existence of a
singular Hermitian Yang-Mills connection in a holomorphic
vector bundle E over a Kähler manifold X , where the
Hermitian Yang-Mills connection is smooth of codimension 2.

I Using the Yang-Mills flow, Daskalopous and Wentworth
(2004) settled a conjecture of Bando and Siu on the relation
between the limiting Yang-Mills flow and the
Harder-Narashimhan filtration on Kähler surface.

I Recently, by using this flow, Jacob (2015) and Sibley (2015)
settled the conjecture of Bando and Siu on Kähler manifolds.
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Without the holomorphic structure of the bundle E , it is a very
interesting question to establish the global existence of the
Yang-Mills flow on Riemannian manifolds.

I In some special cases, Schlatter, Struwe and Tahvildar-Zadeh
(Amer. J. Math. 1998) proved the global existence of the
SO(4)-equivariant Yang-Mills flow on R4.

I Hong and Tian (CAG 2004) proved the global existence of the
m-equivariant Yang-Mills flow on R4.

I Recently, Waldron [?] established global existence of the
smooth solution to the Yang-Mills flow when ‖F+

A0
‖L2(M) is

sufficiently small.

In general cases, it is still open whether the Yang-Mills flow in four
dimensional manifolds develop a singularity at finite time.
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The weak solution of the Yang-Mills flow

Struwe (CVPDE 1994) proved the existence of a weak solution to
the Yang-Mills flow in vector bundles on four manifolds with initial
value in H1, where the weak solution is gauge-equivalent to a
smooth solution of the flow on M × (0,T ) for a maximal existence
time T > 0.

Moreover, as t → T the solution A(t) converges, up-to gauge
transformations, to a connection A(T ), smoothly away from at
most finitely many points. Schlatter [?] did some blow-up analysis
of the Yang-Mills flow at the singular time T , but there is no result
concerning the energy identity of the Yang-Mills flow at the time
T .
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Recently, Hong and Schabrun (Preprint) establish an energy
identity for the Yang-Mills flow as follows:

Theorem 1
Let A(t) be a solution to the Yang-Mills flow in M × [0,T ), where
T ∈ (0,∞] is the maximal existence time, and A(t) converges
weakly as t → T to a connection A(T ). Then there are a finite
number of bubble bundles E1, · · · ,El over S4 and Yang-Mills
connections Ã1,∞, · · · , Ãl ,∞ such that

lim
t→T

YM(A(t)) = YM(A(T )) +
l∑

i=1

YM(Ãi ,∞).
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The Yang-Mills α-functional

Following a similar strategy of Sacks and Uhlenbeck for harmonic
maps, Hong, Tian and Yin (CMH 2015) consider an α-Yang-Mills
functional

YMα(A;M) =

∫
M

(1 + |FA|2)αdv

for any α > 1.

DA = D0 + A is a critical point of the α-Yang-Mills functional if it
satisfies the Euler-Lagrange equation

D∗A

(
(1 + |FA|2)α−1FA

)
= 0, (3)
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Yang-Mills α-flow

Hong, Tian and Yin introduced the Yang-Mills α-flow

∂A

∂t
= −D∗AFA + (α− 1)

∗(d |FA|2 ∧ ∗FA)

1 + |FA|2
(4)

with initial condition A(0) = A0.

I the Yang-Mills α-flow admits a global smooth solution, whose
limit set contains a smooth critical point of the Yang-Mills
α-functional.

I By considering the limit α→ 1, the authors were then able to
obtain existence results for Yang-Mills connections and its
flow.

I Use the Yang-Mills α-flow to modify a new minimizing
sequence, which converges to the same limit in the smooth
topology up to gauge transformation away from finite singular
points, which improved the Sedlacek result (CMP 1982).
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Uhlenbeck’s compactness theorem

By the gauge transformation S , a connection DA = d + A can be
transformed to a new connection

D̄A = S∗(DA) = S−1 ◦ DA ◦ S = d + S−1dS + S−1AS ,

we have
FD̄A

= S−1FAS .

Uhlenbeck established the fundamental compactness results that
for a sequence of connections Ai in E over M with a uniform
bound of YM(Ai ;M), there exists a subsequence Ai , a sequence of
gauge transformation S∗i and a finite set of singularities {xl}Nl=1

such that S∗i (DAi
) weakly converges to DA in H1(M\{xl}Nl=1).
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Theorem 2
( Uhlenbeck’s gauging fixing theorem) Assume that there exist a
sufficiently small ε0 and a positive r0 such that∫

Br0 (x0)
|FA|2dv ≤ ε0.

Then there is a gauge transformations S = eu and a new
connection Da = S∗(DA) = d + a such that

d∗a = 0 in Br0(x0), a · ν = 0 on ∂Br0(x0),

satisfying∫
Br0 (x0)

1

rp0
|a(t)|p + |∇a(t)|p dx ≤ C

∫
Br0 (x0)

|Fa(t)|p dx

for 2 ≤ p < 4.
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A parabolic gauging fixing theorem

From now on, let DA = d + A be a smooth solution of the
Yang-Mills flow in M × [0, t1] for some t1 > 0. i.e.

∂DA

∂t
= −D∗AFA (5)

with initial condition DA(0) = D0, where D0 is a given connection
on E .

More recently, I established a parabolic gauge fixing theorem for
Yang-Mills flow. More precisely, we have:
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Theorem 3
Assume that there exist a sufficiently small ε0 and a positive r0
such that sup0≤t≤t1

supx0∈M
∫
Br0 (x0) |FA(x , t)|2dv ≤ ε0. Then there

are a gauge transformations S(t) = eu(t) and a new connection
Da = S∗(DA) = d + a satisfying

∂a

∂t
= −D∗aFa + Das, in Br0(x0)× [0, t1), (6)

d∗a(t) = 0 in Br0(x0), a(t) · ν = 0 on ∂Br0(x0),∫
Br0 (x0)

1

rp0
|a(t)|p + |∇a(t)|p dx ≤ C

∫
Br0 (x0)

|Fa(t)|p dx∫ t1

0

∫
Br0 (x0)

|Das|2 + |∂a
∂t
|2 dx dt ≤ C

∫ t1

0

∫
Br0 (x0)

|∇aFa|2 dx dt,

for 2 ≤ p < 4 and all t ∈ [0, t1], where s(t) = S−1(t) ◦ d
dtS(t).
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As an application of Theorem 3, we have

Theorem 4
Let DAi

be a sequence of smooth solutions of the Yang-Mills flow
(5) in M × [0,Ti ) for Ti ≥ T with smooth initial values
Ai (0) ∈ H1, where Ai (0) strongly converges to A0 in H1. Then,
the solution DAi

converges to a connection DA, which is a weak
solution of the Yang-Mills flow in M × [0,T ] with initial value A0.
The weak solution of the Yang-Mills flow in M × [0,T ] with initial
value A0 in H1 is smooth for 0 < t ≤ T.

Remark: Theorem 7 provide a new proof of the local existence of
the Yang-Mills flow with initial value A0 ∈ H1 and slightly
improved the local existence. In fact, Struwe only proved the
existence of a weak solution is gauge-equivalent to a smooth
smooth of the flow for 0 < t < T .
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Proof of Theorem 3

For simplicity, we assume that x0 = 0. For any small constant
ε > 0, there is a constant r0 > 0 such that for all t ∈ [0, t1] and∫

Br0

|FA(t)|2 dx ≤ ε.

At t = 0, it follows from Uhlenbeck’s gauge fixing theorem that
there is a smooth gauge transformation S0 = S(0) and a
connection Da(0) = S∗0 (DA(0)) = d + a(0) satisfying

d∗a(0) = 0 in Br0 , a(0) · ν = 0 on ∂Br0

and ∫
Br0

|a(0)|p

rp0
+ |∇a(0)|p ≤ C

∫
Br0

|Fa(0)|p dx

for any p ≥ 2.
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Next, we follow the procedure of Uhlenbeck to fix a Coulomb
gauge in a neighborhood of t = 0.
Using the gauge transformation S0,

Ã(t) = S−1
0 dS0 + S−1

0 A(t)S0.

The new connection DÃ(t) = S∗(0)(DA(t)) = d + Ã(t) is also a

smooth solution the Yang-Mills flow in Ū × [0, t1] with
a(0) = Ã(0).

However, Ã(t) does not satisfy the boundary condition of A · ν = 0
on ∂U, so we cannot apply Lemma 2.7 of Uhlenbeck [?] to fix a
Columbus gauge for Ã(t) near t = 0.
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To sort out this issue of the boundary condition, it follows from
Lemma 2.6 of Uhlenbeck [?] to get that there are gauge
transformations eu1(t) such that

(e−u1(t))∗(DÃ(t)) = e−u1(t) ◦ (d + Ã(t)) ◦ eu1(t) = d + a1(t)

with a1(t) := Ã(0) + λ(t) and

λ(t) = −Ã(0) + e−u1(t)deu1(t) + e−u1(t)(Ã(t))eu1(t). (7)

In fact, it can be chosen that

u1(t) = ϕ(
∂

∂r
−∆S3)−1(x · (Ã(t)− Ã(0))) (8)

with u1(t)|∂U = 0, where ϕ(r) is a smooth cut-off function in [0, 1]
with ϕ(r) = 1 near 1 and ϕ(r) = 0 near 0.
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Lemma 5
For a given function, let v be a solution of the heat equation on
S3 × [0, 1] satisfying

∂rv = ∆S3v + f

with v(θ, 1) = 0 on S3. Let ϕ(r) be a smooth cut-off function in
[0, 1] with ϕ(r) = 1 near 1 and ϕ(r) = 0 for [0, δ] with δ > 0.
Then we have

‖ϕv‖W 1,p(S3×[0,1]) ≤ C‖f ‖Lp(S3×[0,1])

and
‖ϕv‖W 2,p(S3×[0,1]) ≤ C‖f ‖W 1,p(S3×[0,1])

for all p > 1.
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More precisely, u1(t) = 0, deu1(t) = du1(t) on ∂U for all
t ∈ [0, δ1], which implies ν · λ(t) = 0 on ∂U, which implies that
the new connection a1(t) satisfies the required boundary condition
a1(t) · ν = 0 in Lemma 2.7 of Uhlenbeck’s paper [?].

Moreover, differentiating equation (8) in t yields

∂u1(t)

∂t
= ϕ(

∂

∂r
−∆S3)−1(x · ∂Ã

∂t
).

By applying the Lp-estimate in Lemma 5 again, we have∫
U
|∇∂u1(t)

∂t
|2 dx ≤ C

∫
U
|∂A
∂t
|2(·, t) dx ≤ C

∫
U
|∇FA|2(·, t) dx

for any t ∈ [0, δ1].
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By a lemma, we can prove

|∇s1(t)| ≤ C |∇∂u1

dt
|+ C |∇u1| |

∂u1

dt
|

for all t ∈ [0, δ1] for a sufficiently small δ1 > 0. By the Sobolev
inequality and noticing that u1(t) = 0 on ∂U, we have∫

U
|∇s1(t)|2 dx

≤ C

∫
U
|∇∂u1

dt
|2 dx + (

∫
U
|∇u1|4 dx)1/2(

∫
U
|∂u1

dt
|4 dx)1/2

≤ C

∫
U
|∇∂u1

dt
|2 dx ≤ C

∫
U
|∇FA|2 dx .
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For any small constant ε > 0, there is a δ1 > 0 such that for any
t ∈ [0, δ1] we have∫

U
|∇(Ã(t)− Ã(0))|p + |Ã(t)− Ã(0)|p dx ≤ εp (9)

for p ∈ (2, 4]. By the Lp-estimate, we have

‖u1(t)‖W 2,p(U) ≤ C‖Ã(t)− Ã(0)‖W 1,p(U) ≤ Cε

for all t ∈ [0, δ1] and hence |u1(t)| ≤ Cε for all t ∈ [0, δ1]. We
note that

λ(t) = e−u1(t)Ã(0)eu1(t) − Ã(0) + e−u1(t)deu1(t)

+e−u1(t)(Ã(t)− Ã(0))eu1(t).

Then
‖λ(t)‖W 1,p(U) ≤ C‖Ã(t)− Ã(0)‖W 1,p(U) ≤ Cε.
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Without loss of generality, we assume that Dref = d and
U = Br0 = B1. Our proofs are heavily relied on Lemma 2.7 of
Uhlenbeck’s paper [?]:

Lemma 6
Let A(0) be a connection with d∗A = 0 in U with A · ν = 0 on ∂U
and satisfy

‖A‖L4(U) ≤ k(n)

for a small constant k(n). Then there is a small constant ε > 0
such that if ‖λ‖W 1,p(U) ≤ Cε for some p > 2 and λ · ν = 0, then
there is a gauge transformation S = eu to solve

d∗a = d∗(S−1dS + S−1(Ã + λ)S) = 0 (10)

in U with a · ν = 0 on ∂U.
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By using Lemma 2.7 of Uhlenbeck [?], there is a small constant
ε > 0 such that if ‖λ(t)‖W 1,p(U) ≤ Cε, then there is a gauge

transformation S2(t) = eu2(t) to solve

d∗a = d∗(S−1
2 dS2 + S−1

2 (Ã(0) + λ(t))S2) = 0

in U with a · ν = 0 on ∂U, where Da = S∗2 (Da1) satisfies

∂a

∂t
= −D∗aFa + Das (11)

with s = S−1
2 (t)s1(t)S2(t) + S−1

2 (t) ◦ dS2
dt .

In fact, during the existence proof of u2(t) in Lemma 2.7 of
Uhlenbeck [?], it can be chosen that ∇u2 · ν = 0 on ∂U and∫
U u2(t) dx = 0 for all t ∈ [0, δ1].
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In fact, It follows from Lemma 2.7 of [?] that we choose the norm
‖∇u2(t)‖W 1,q(U) for q > 4 is bounded since ‖λ(t)‖W 1,p(U) is very

small. Since
∫
U u2(t) dx = 0, we have

∫
U
∂u2
∂t dx = 0. Since∫

U |∇u2|4 can be chosen to be small,∫
U
|∇∂u2

∂t
|2 dx ≤ C

∫
U
|∇s2(t)|2 + |∇u2|2 |

∂u2

∂t
|2 dx

≤ C

∫
U
|∇s2(t)|2 dx + C

(∫
U
|∇u2|4

)1/2(∫
U
|∂u2

∂t
|4 dx

)1/2

≤ C

∫
U
|∇s2(t)|2 dx +

1

2

∫
U
|∇∂u2

∂t
|2 dx .

It implies that∫
U
|s2(t)|2 dx ≤ C

∫
U
|∂u2

∂t
|2 dx ≤

∫
U
|∇∂u2

∂t
|2 dx ≤ C

∫
U
|∇s2(t)|2 dx .
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Using the fact that d∗a = 0 in U and a · ν = 0 on ∂U, it implies
from Lemma 2.5 of [?] that for all t ∈ [0, δ1]∫

U
|a(·, t)|2 + |∇a(·, t)|2 ≤ C

∫
U
|Fa(·, t)|2 ≤ Cε.

Recalling s(t) = S−1
2 (t)s1(t)S2(t) + s2(t), we have∫

U

〈
ds,

∂a

∂t

〉
=

∫
U

〈
∂s

∂xk
,
∂ak
∂t

〉
=

∫
U

〈
s,
∂d∗a

∂t

〉
+

∫
∂U
〈s, ∂ta · ν〉 = 0.

Then ∫
U

〈
Das,

∂a

∂t

〉
dx

=

∫
U

〈
ds,

∂a

∂t

〉
+

〈
[a, S−1

2 (t)s1(t)S2(t) + s2(t)],
∂a

∂t

〉
dx

≤ 1

4

∫
U
|∂a
∂t
|2 dx + Cε

∫
U
|∇s1|2 + |∇s2|2 dx .
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Using above, we have∫
U
|Das −

∂a

∂t
|2 dx ≤ C

∫
U
|∇aFa|2 dx .

Since s(t) = S−1
2 (t)s1(t)S2(t) + s2(t), we note

|∇s2| ≤ |Das|+ |∇s1|+ C |∇S2| |s1|+ |a|(|s1|+ |s2|).

Note that ‖∇S2‖H1(U) can be bounded. Then∫
U
|∇s2|2 ≤ C

∫
U
|Das|2 + |∇s1|2 + |∇S2|2 |s1|2 + |a|2(|s1|2 + |s2|2)

≤ C

∫
U
|Das|2 + |∇s1|2 + C (

∫
U
|∇S2|4)1/2(

∫
U
|s1|4 dx)1/2

+C (

∫
U
|a|4)1/2(

∫
U

(|s1|4 + |s2|4))1/2

≤ C

∫
U
|Das|2 + |∇s1|2 + Cε

∫
U
|∇s2|2 dx .
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Choosing ε sufficiently small, we obtain∫
U
|s|2 + |Das|2 + |∂a

∂t
|2 dx ≤ C

∫
U
|∇aFa|2 dx

for any t ∈ [0, δ1].
For the above choices of δ1, we must assume that δ1 ≤ t1. If
δ1 < t1, then we repeat the above the procedure starting at t = δ1

instead of at t = 0; i.e. at t = δ1, there is a gauge transformation
S̃ = S(δ1) such that Da = d + a = S̃∗(DA) is a smooth in Ū such
that at t = δ1

d∗a = 0, in U, a · ν = 0 on ∂U.
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Since S̃ is a fixed smooth transformation, S̃∗(DA) is also a smooth
solution of Yang-Mills flow. Repeating above procedure, there is
the same constant δ1 > 0 such that we define new smooths ũ1(t)
and ũ2(t) on [δ1, 2δ1] starting at t = δ1 with ũ2(δ1) = 0.
More precisely, there is a new δ2 > 0 and gauge transformation
S1(t) = eu1(t) and S̃2(t) = e ũ2(t) for any t ∈ [δ1, 2δ1], with initial
values u1(δ1) = 0 and u2(δ1) = 0, and the new connection

Da(t) = S(t)∗(DA(t)) = (eu2(t))∗ ◦ (eu1(t))∗ ◦ (S̃∗(DA(t)))

for t ∈ [δ1, 2δ1] satisfying the same equation (2.19) (or (2.22)) in
U × [δ1, 2δ1] with initial values ũ2(δ1) = 0 and ũ2(δ1) = 0. We can
continue this procedure to [0, t1] as required.
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Proof of Theorem 7

Let A0 in H1,2(M) be a weak connection. There is a sequence of
{Ai (0)}, which converges strongly to A0 in H1,2(M). Let
DAi

= d + Ai be a sequence of smooth solutions of the Yang-Mills
flow in M × [0, t1] with initial values Ai (0). By the local existence
theorem with smooth initial data, there is a uniform T > 0 such
that

sup
0≤t≤T

∫
U
|FAi (t)|2 ≤ ε.

By the above result, there are gauge transformations Si (t) = eui (t)

and connections Dai = S∗i (DAi
) = d + ai such that

d∗ai = 0 in Br0(x0), a · ν = 0 on ∂Br0(x0),

satisfying that all t ∈ [0,T ),∫
U
|ai (t)|2 + |∇ai (t)|2 dx ≤ C

∫
U
|Fai (t)|2 dx .
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Dai is a smooth solution of the equation

∂ai
∂t

= −D∗aiFai + Dai si (12)

in Br0(x0)× [0,T ], where

si (t) = S−1
i (t) ◦ d

dt
Si (t).

Then we have∫ T

δ

∫
U
|Dai si (t)|2 + |∂ai

∂t
|2 dx dt ≤ C

∫ T

δ

∫
U
|∇aiFai |

2 dx dt

for any δ > 0
As i →∞ and then δ → 0, Theorem 7 is proved.
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The uniqueness of weak solutions of the Yang-Mills flow

It is known that Struwe [?] proved the uniqueness of weak
solutions of the Yang-Mills flow under an extra condition that A0 is
irreducible; i.e. for all s ∈ Ω0(adE )

‖s‖L2(M) ≤ C‖DA0s‖L2(M).

It has been an open problem about the uniqueness of the weak
solution of the Yang-Mills flow in four manifolds with initial data in
H1. We would like to point out that the weak solution constructed
by Struwe in [?] is a weak limit of smooth solutions.
In this sense, we solve the problem to prove:
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Theorem 7
The weak solution of the Yang-Mills flow (??) with initial value A0

in H1 is unique.

For the proof of Theorem 7, we need a kind of parabolic gauge
fixing for the Yang-Mills flow. However, in Theorem 2, d∗a = 0 in
U with Nuemann boundary condition a · ν = 0 on ∂U is not unique.
To overcome this difficulty, we improve a key lemma of Uhlenbeck
(Lemma 2.7 of [?]) from the Neumann boundary condition to the
Dirichlet boundary condition. By a covering of M, we glue local
connections to a global connection on the whole manifold M to
prove the uniqueness of weak solutions of the Yang-Mills flow.
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Thank you very much!!!
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