Schematic Harder-Narasimhan stratification

Nitin Nitsure

School of Mathematics, Tata Institute of Fundamental Research, Mumbai nitsure@math.tifr.res.in

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

A B > A B > A B > B = B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

A B > A B > A B > B = B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

• *G* a split reductive group scheme over a field *k*.

- コット (日) (日) (日) (日)

- *G* a split reductive group scheme over a field *k*.
- We set up a moduli problem for non-semistable principal G-bundles on a projective variety X of arbitrary dimension, of a fixed Harder-Narasimhan type. Definition of a family.

- *G* a split reductive group scheme over a field *k*.
- We set up a moduli problem for non-semistable principal G-bundles on a projective variety X of arbitrary dimension, of a fixed Harder-Narasimhan type. Definition of a family.
- Under suitable hypothesis on *G* and *k*, this moduli problem defines an algebraic stack.

- *G* a split reductive group scheme over a field *k*.
- We set up a moduli problem for non-semistable principal G-bundles on a projective variety X of arbitrary dimension, of a fixed Harder-Narasimhan type. Definition of a family.
- Under suitable hypothesis on *G* and *k*, this moduli problem defines an algebraic stack.
- Main Theorem: In characteristic 0, these stacks give a stratification of the moduli stack of principle *G*-bundles on *X*.

- *G* a split reductive group scheme over a field *k*.
- We set up a moduli problem for non-semistable principal G-bundles on a projective variety X of arbitrary dimension, of a fixed Harder-Narasimhan type. Definition of a family.
- Under suitable hypothesis on *G* and *k*, this moduli problem defines an algebraic stack.
- Main Theorem: In characteristic 0, these stacks give a stratification of the moduli stack of principle *G*-bundles on *X*.

Joint work with Sudarshan Gurjar.

arXiv 0909.0891 (N.N.), 1208.5572, 1505.02236, 1605.08997 (S.G. and N.N.).

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

クへで 3/25

臣

• We talk of semistability in the sense of Gieseker.

イロト イポト イモト イモト 三日

- We talk of semistability in the sense of Gieseker.
- Here we can work over any noetherian base scheme S (can have mixed characteristic).

- We talk of semistability in the sense of Gieseker.
- Here we can work over any noetherian base scheme S (can have mixed characteristic).
- $X \to S$ a projective scheme with relatively very ample $\mathcal{O}_{X/S}(1)$.

- We talk of semistability in the sense of Gieseker.
- Here we can work over any noetherian base scheme S (can have mixed characteristic).
- $X \to S$ a projective scheme with relatively very ample $\mathcal{O}_{X/S}(1)$.
- A coherent sheaf on a fiber *X_s* is **pure** if the supports of all non-zero local sections have the same dimensions.

イロト 不得 トイヨト イヨト 二日

- We talk of semistability in the sense of Gieseker.
- Here we can work over any noetherian base scheme S (can have mixed characteristic).
- $X \to S$ a projective scheme with relatively very ample $\mathcal{O}_{X/S}(1)$.
- A coherent sheaf on a fiber *X_s* is **pure** if the supports of all non-zero local sections have the same dimensions.
- Family of pure coherent sheaves: *F* a coherent sheaf on *X*, flat over *S*, with each *F_s* = *F*|*X_s* pure.

- We talk of semistability in the sense of Gieseker.
- Here we can work over any noetherian base scheme S (can have mixed characteristic).
- $X \to S$ a projective scheme with relatively very ample $\mathcal{O}_{X/S}(1)$.
- A coherent sheaf on a fiber *X_s* is **pure** if the supports of all non-zero local sections have the same dimensions.
- Family of pure coherent sheaves: *F* a coherent sheaf on *X*, flat over *S*, with each *F_s* = *F*|*X_s* pure.
- This gives an open substack $Coh_{X/S}^{pure}$ of the algebraic stack $Coh_{X/S}$.

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

୬ < ୯ 4 / 25

< □ > < @ > < E > < E > < E</p>

A pure *E* admits a unique filtration (called Harder-Narasimhan filtration) by coherent subsheaves 0 = E₀ ⊂ E₁ ⊂ ... ⊂ E_ℓ = E characterized by:

- A pure *E* admits a unique filtration (called Harder-Narasimhan filtration) by coherent subsheaves 0 = E₀ ⊂ E₁ ⊂ ... ⊂ E_ℓ = E characterized by:
- Each *E_i*/*E_{i-1}* is semistable, with support of the same dimension as that of *E* (means deg(*p*(*E_i*/*E_{i-1}, λ*)) = deg(*p*(*E*, λ)) for 1 ≤ *i* ≤ *ℓ*.

- A pure *E* admits a unique filtration (called Harder-Narasimhan filtration) by coherent subsheaves 0 = E₀ ⊂ E₁ ⊂ ... ⊂ E_ℓ = E characterized by:
- Each *E_i*/*E_{i-1}* is semistable, with support of the same dimension as that of *E* (means deg(*p*(*E_i*/*E_{i-1}, λ*)) = deg(*p*(*E*, λ)) for 1 ≤ *i* ≤ *ℓ*.
- For $2 \le i \le \ell$, we have

$$\frac{p(E_{i-1}/E_{i-2},\lambda)}{r(E_{i-1}/E_{i-2})} > \frac{p(E_i/E_{i-1},\lambda)}{r(E_i/E_{i-1})}.$$

- A pure *E* admits a unique filtration (called Harder-Narasimhan filtration) by coherent subsheaves 0 = E₀ ⊂ E₁ ⊂ ... ⊂ E_ℓ = E characterized by:
- Each *E_i*/*E_{i-1}* is semistable, with support of the same dimension as that of *E* (means deg(*p*(*E_i*/*E_{i-1}, λ*)) = deg(*p*(*E*, λ)) for 1 ≤ *i* ≤ *ℓ*.
- For $2 \le i \le \ell$, we have

$$\frac{p(E_{i-1}/E_{i-2},\lambda)}{r(E_{i-1}/E_{i-2})} > \frac{p(E_i/E_{i-1},\lambda)}{r(E_i/E_{i-1})}.$$

 Note that a non-zero, coherent, pure *E* is semistable if and only if ℓ = 1, and its HN-filtration is 0 ⊂ *E*.

イロト 不得 トイヨト イヨト 二日

- A pure *E* admits a unique filtration (called Harder-Narasimhan filtration) by coherent subsheaves 0 = E₀ ⊂ E₁ ⊂ ... ⊂ E_ℓ = E characterized by:
- Each *E_i*/*E_{i-1}* is semistable, with support of the same dimension as that of *E* (means deg(*p*(*E_i*/*E_{i-1}, λ*)) = deg(*p*(*E*, λ)) for 1 ≤ *i* ≤ *ℓ*.
- For $2 \le i \le \ell$, we have

$$\frac{p(E_{i-1}/E_{i-2},\lambda)}{r(E_{i-1}/E_{i-2})} > \frac{p(E_i/E_{i-1},\lambda)}{r(E_i/E_{i-1})}.$$

- Note that a non-zero, coherent, pure *E* is semistable if and only if $\ell = 1$, and its HN-filtration is $0 \subset E$.
- The sequence HN(E) = (p(E₁, λ), ..., p(E_ℓ, λ)) in Q[λ] is called the Harder-Narasimhan type of E. There is a natural partial order on the set of all such sequences in Q[λ]. Semistable type is the minimum for any given p(E, λ).

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

5/25

イロト イロト イモト イモト 一日

• S noetherian, $X \to S$ proper, $\mathcal{O}_{X/S}(1)$ rel. ample line bundle.

A B > A B > A B > B = B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

- S noetherian, $X \to S$ proper, $\mathcal{O}_{X/S}(1)$ rel. ample line bundle.
- Let *E* be a family of pure sheaves on X/S. Let τ be an HN-type.

- S noetherian, $X \to S$ proper, $\mathcal{O}_{X/S}(1)$ rel. ample line bundle.
- Let *E* be a family of pure sheaves on X/S. Let τ be an HN-type.
- For any *T/S*, a relative HN-filtration of type *τ* on the pullback *F_T* is defined to be

<ロト < 回 ト < 三 ト < 三 ト - 三

- S noetherian, $X \to S$ proper, $\mathcal{O}_{X/S}(1)$ rel. ample line bundle.
- Let *E* be a family of pure sheaves on X/S. Let τ be an HN-type.
- For any *T/S*, a relative HN-filtration of type *τ* on the pullback *F_T* is defined to be
- a filtration $0 = E_0 \subset E_1 \subset \ldots \subset E_\ell = E_T$ such that each E_i/E_{i-1} is flat over T and for each $t \in T$, the restriction $0 = E_0 | X_t \subset E_1 | X_t \subset \ldots \subset E_\ell | X_t = E | X_t$ is the HN-filtration of E_t with HN-type τ .

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

6 / 25

イロト イポト イモト イモト 三日

• **Theorem** (arXiv 0909.0891) : There exists a unique structure of a locally closed subscheme $S^{\tau}(E) \subset S$ on $|S|^{\tau}(E) \subset |S|$, such that for any *S*-scheme *T*, the morphism $T \to S$ factors via $S^{\tau}(E) \subset S$ if and only if there exists a relative HN-filtration of E/X/S over *T*, with constant type τ . Moreover, a relative HN-filtration over *T*, if it exists, is unique.

・ロト ・ 同ト ・ ヨト ・ ヨト

- **Theorem** (arXiv 0909.0891) : There exists a unique structure of a locally closed subscheme $S^{\tau}(E) \subset S$ on $|S|^{\tau}(E) \subset |S|$, such that for any *S*-scheme *T*, the morphism $T \to S$ factors via $S^{\tau}(E) \subset S$ if and only if there exists a relative HN-filtration of E/X/S over *T*, with constant type τ . Moreover, a relative HN-filtration over *T*, if it exists, is unique.
- Given an HN-type τ , let $Coh_{X/S}^{\tau}(T) \subset Coh_{X/S}^{pure}(T)$ be the full sub-groupoid consisting of all \mathcal{F} on X_T which admit a relative HN-filtration over T. Clearly, this defines a substack $Coh_{X/S}^{\tau} \subset Coh_{X/S}^{pure}$. As a consequence of the above theorem, $Coh_{X/S}^{\tau}$ is an algebraic stack which is a locally closed substack of $Coh_{X/S}^{pure}$.

・ロト ・回ト ・ヨト ・ヨト

- **Theorem** (arXiv 0909.0891) : There exists a unique structure of a locally closed subscheme $S^{\tau}(E) \subset S$ on $|S|^{\tau}(E) \subset |S|$, such that for any *S*-scheme *T*, the morphism $T \to S$ factors via $S^{\tau}(E) \subset S$ if and only if there exists a relative HN-filtration of E/X/S over *T*, with constant type τ . Moreover, a relative HN-filtration over *T*, if it exists, is unique.
- Given an HN-type τ , let $Coh_{X/S}^{\tau}(T) \subset Coh_{X/S}^{pure}(T)$ be the full sub-groupoid consisting of all \mathcal{F} on X_T which admit a relative HN-filtration over T. Clearly, this defines a substack $Coh_{X/S}^{\tau} \subset Coh_{X/S}^{pure}$. As a consequence of the above theorem, $Coh_{X/S}^{\tau}$ is an algebraic stack which is a locally closed substack of $Coh_{X/S}^{pure}$.
- The above result easily extends (2012, with S.G.) from coherent *O*-modules to *O*-coherent Λ-modules, where Λ is a sheaf of rings of split almost-polynomial differential operators on *X/S* as introduced by Simpson in 1994. Special cases: Higgs bundles, integrable connections, integrable logarithmic connections, etc. Nitin Nitsure (TIFR) Schematic Harder-Narasimhan stratification 6/25

Roots, weights, Weyl chamber, partial order, etc.

We fix the following data and notation for the rest of this talk:

Э

イロト 不得 トイヨト イヨト

Roots, weights, Weyl chamber, partial order, etc.

We fix the following data and notation for the rest of this talk:

- *k* a base field of characteristic zero.
- *G* a reductive group scheme over *k*.
- *T* ⊂ *B* ⊂ *G* a maximal torus and a Borel. We assume that *T* is split over *k*.
- $\Delta \subset X^*(T)$ corresponding set of all simple roots.
- $\omega_{\alpha} \in \mathbb{Q} \otimes X^{*}(T)$ dominant weight corresponding to $\alpha \in \Delta$.
- *I_P* ⊂ Δ the set of inverted simple roots corresponding to any standard parabolic *B* ⊂ *P* ⊂ *G*.
- $\overline{C} \subset \mathbb{Q} \otimes X_*(T)$ closed positive Weyl chamber. Recall that $\overline{C} = \{\mu \in \mathbb{Q} \otimes X_*(T) \mid \langle \alpha, \mu \rangle \ge 0 \text{ for all } \alpha \in \Delta\}.$
- Partial order on C defined by putting μ ≤ ν if ⟨ω_α, μ⟩ ≤ ⟨ω_α, ν⟩ for all α ∈ Δ and χ(μ) = χ(ν) for all χ ∈ Ĝ = Hom(G, G_m).

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

8/25

< □ > < @ > < E > < E > < E</p>

• *G* a split reductive group over a field *k* of char 0. K/k field extension, $(X, \mathcal{O}_X(1))$ a smooth geom. irreducible projective variety over *K*.

- *G* a split reductive group over a field *k* of char 0. K/k field extension, $(X, \mathcal{O}_X(1))$ a smooth geom. irreducible projective variety over *K*.
- *E* a principal *G_K* = *G* ⊗_{*k*} *K*-bundle on *X*. Parabolics in *G_K* that contain *B_K* are exactly the *P_K* where *B* ⊂ *P* ⊂ *G*. For simplicity of notation, we write *G_K*, *P_K*, *B_K*, *T_K* etc simply as *G*, *P*, *B*, *T* etc. Note that *G_K* = *G*, *P_K* = *P*, etc. as *T* is already split over *k*.

- *G* a split reductive group over a field *k* of char 0. K/k field extension, $(X, \mathcal{O}_X(1))$ a smooth geom. irreducible projective variety over *K*.
- *E* a principal *G_K* = *G* ⊗_{*k*} *K*-bundle on *X*. Parabolics in *G_K* that contain *B_K* are exactly the *P_K* where *B* ⊂ *P* ⊂ *G*. For simplicity of notation, we write *G_K*, *P_K*, *B_K*, *T_K* etc simply as *G*, *P*, *B*, *T* etc. Note that *G_K* = *G*, *P_K* = *P*, etc. as *T* is already split over *k*.
- A rational reduction of *E* is a pair (P, σ) where *P* is a standard parabolic and σ is a section of $E/P \rightarrow X$ over an open subscheme *U*, such that *U* is the unique maximal open subscheme over which σ can be prolonged. By valuative criterion for properness, *U* is **big**, that is, dim $(X U) \leq \dim(X) 2$.

- *G* a split reductive group over a field *k* of char 0. K/k field extension, $(X, \mathcal{O}_X(1))$ a smooth geom. irreducible projective variety over *K*.
- *E* a principal *G_K* = *G* ⊗_{*k*} *K*-bundle on *X*. Parabolics in *G_K* that contain *B_K* are exactly the *P_K* where *B* ⊂ *P* ⊂ *G*. For simplicity of notation, we write *G_K*, *P_K*, *B_K*, *T_K* etc simply as *G*, *P*, *B*, *T* etc. Note that *G_K* = *G*, *P_K* = *P*, etc. as *T* is already split over *k*.
- A rational reduction of *E* is a pair (*P*, σ) where *P* is a standard parabolic and σ is a section of $E/P \rightarrow X$ over an open subscheme *U*, such that *U* is the unique maximal open subscheme over which σ can be prolonged. By valuative criterion for properness, *U* is **big**, that is, dim $(X U) \leq \dim(X) 2$.
- *E* is called **semistable** if for each rational *P*-reduction (*U*, σ) and character χ ∈ *P*, we have deg(χ_{*}σ^{*}E) ≤ 0. Here, σ^{*}E is a principal *P*-bundle on *U*, χ_{*}σ^{*}E is its associated line bundle, and its degree is defined using O_X(1). This makes sense as *U* is big.
The type $\mu_{(P,\sigma)}(E)$ of a rational reduction of *E*

We have natural decompositions

$$\begin{split} \mathbb{Q} \otimes X^*(T) &= (\mathbb{Q} \otimes \widehat{P}|_{\mathcal{T}}) \oplus (\oplus_{\alpha \in I_{\mathcal{P}}} \mathbb{Q}\alpha), \text{ where, in turn,} \\ \mathbb{Q} \otimes \widehat{P}|_{\mathcal{T}} &= (\oplus_{\alpha \in \Delta - I_{\mathcal{P}}} \mathbb{Q}\omega_{\alpha}) \oplus (\mathbb{Q} \otimes \widehat{G}|_{\mathcal{T}}). \end{split}$$

イロト イポト イモト イモト 三日

The type $\mu_{(P,\sigma)}(E)$ of a rational reduction of *E*

We have natural decompositions

$$\begin{array}{lll} \mathbb{Q}\otimes X^*(T) &=& (\mathbb{Q}\otimes \widehat{P}|_{\mathcal{T}})\oplus (\oplus_{\alpha\in I_{\mathcal{P}}}\mathbb{Q}\alpha), \text{ where, in turn,} \\ \mathbb{Q}\otimes \widehat{P}|_{\mathcal{T}} &=& (\oplus_{\alpha\in\Delta-I_{\mathcal{P}}}\mathbb{Q}\omega_{\alpha})\oplus (\mathbb{Q}\otimes \widehat{G}|_{\mathcal{T}}). \end{array}$$

Hence it makes sense to define the type of (P, σ) as the unique element $\mu_{(P,\sigma)}(E) \in \mathbb{Q} \otimes X_*(T)$ such that

$$\langle \chi, \mu_{(P,\sigma)}(E) \rangle = \begin{cases} \deg(\chi_* \sigma^* E) & \text{if } \chi \in \widehat{P}|_T, \\ 0 & \text{if } \chi \in I_P. \end{cases}$$

Nitin Nitsure (TIFR)

<ロト < 同ト < 三ト < 三ト < 三ト < 三 </p>

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

つへで 10/25

1

《曰》《曰》《曰》《曰》

 A canonical reduction (P, σ) of E is a rational reduction σ : U → E/P to a standard parabolic P such that:

3

- A canonical reduction (P, σ) of *E* is a rational reduction $\sigma: U \rightarrow E/P$ to a standard parabolic *P* such that:
- If $\rho: P \to L$ is the Levi quotient of *P* (by its unipotent radical) then the principal *L*-bundle $\rho_*\sigma^*E$ is a semistable principal *L*-bundle defined on the big open subscheme *U* (note that the definition of semistability makes sense also for a principal bundle defined on any big open subscheme of *X*).

・ロト ・ 同ト ・ ヨト ・ ヨト

- A canonical reduction (P, σ) of *E* is a rational reduction $\sigma: U \to E/P$ to a standard parabolic *P* such that:
- If $\rho: P \to L$ is the Levi quotient of *P* (by its unipotent radical) then the principal *L*-bundle $\rho_*\sigma^*E$ is a semistable principal *L*-bundle defined on the big open subscheme *U* (note that the definition of semistability makes sense also for a principal bundle defined on any big open subscheme of *X*).
- For any non-trivial character $\chi \in \widehat{P}$ whose restriction to the chosen maximal torus $T \subset B \subset P$ has the form $\sum n_i \alpha_i$ with $\alpha_i \in \Delta$, where $n_i \geq 0$, and at least one $n_i \neq 0$, we have $\deg(\chi_*\sigma^*E) > 0$.

イロト イポト イヨト イヨト 二日

Harder-Narasimhan type

Given *E*, there exists a unique canonical reduction (*P*, σ). Its type μ_(P,σ) is called the Harder-Narasimhan type, denoted by HN(*E*).

3

くロ と く 戸 と く 三 と 一

Harder-Narasimhan type

- Given *E*, there exists a unique canonical reduction (*P*, σ). Its type $\mu_{(P,\sigma)}$ is called the **Harder-Narasimhan type**, denoted by HN(*E*).
- We have HN(E) ∈ C ⊂ Q ⊗ X_{*}(T). In fact, ⟨α, HN(E)⟩ > 0 for all α ∈ Δ − I_P and ⟨β, HN(E)⟩ = 0 for all β ∈ I_P, so it lies in the face of C corr. to P. The open face corr. to P = B, and the vertex 0 ∈ C corr. to P = G, which is case when E is semistable.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Harder-Narasimhan type

- Given *E*, there exists a unique canonical reduction (*P*, σ). Its type $\mu_{(P,\sigma)}$ is called the **Harder-Narasimhan type**, denoted by HN(*E*).
- We have HN(E) ∈ C ⊂ Q ⊗ X_{*}(T). In fact, ⟨α, HN(E)⟩ > 0 for all α ∈ Δ − I_P and ⟨β, HN(E)⟩ = 0 for all β ∈ I_P, so it lies in the face of C corr. to P. The open face corr. to P = B, and the vertex 0 ∈ C corr. to P = G, which is case when E is semistable.
- **Maximality** Given any other rational parabolic reduction (Q, τ) of *E*, we have

 $\mu_{(Q,\tau)} \leq \operatorname{HN}(E)$

w.r.t. the natural partial ordering on \overline{C} .

イロト イポト イヨト イヨト 二日

 Let X → S a smooth projective morphism of noetherian schemes over k, each fiber geometrically connected, O_{X/S}(1) relatively ample line bundle.

3

・ロト ・ 同ト ・ ヨト ・ ヨト

- Let X → S a smooth projective morphism of noetherian schemes over k, each fiber geometrically connected, O_{X/S}(1) relatively ample line bundle.
- *E* a principal *G*-bundle over *S*. We get a function $|S| \rightarrow \overline{C} : s \mapsto HN(E_s)$. We show that this function is upper semi-continuous (this was already known at least when $X \rightarrow S$ has relative dimension 1).

・ロト ・ 同ト ・ ヨト ・ ヨト

- Let X → S a smooth projective morphism of noetherian schemes over k, each fiber geometrically connected, O_{X/S}(1) relatively ample line bundle.
- *E* a principal *G*-bundle over *S*. We get a function $|S| \rightarrow \overline{C} : s \mapsto HN(E_s)$. We show that this function is upper semi-continuous (this was already known at least when $X \rightarrow S$ has relative dimension 1).
- In particular, for each $\tau \in \overline{C}$ we have a locally closed subset $|S|^{\tau}(E) \subset |S|$ where $HN(E_s) = \tau$.

イロト イロト イモト イモト 二日

- Let X → S a smooth projective morphism of noetherian schemes over k, each fiber geometrically connected, O_{X/S}(1) relatively ample line bundle.
- *E* a principal *G*-bundle over *S*. We get a function $|S| \rightarrow \overline{C} : s \mapsto HN(E_s)$. We show that this function is upper semi-continuous (this was already known at least when $X \rightarrow S$ has relative dimension 1).
- In particular, for each $\tau \in \overline{C}$ we have a locally closed subset $|S|^{\tau}(E) \subset |S|$ where $HN(E_s) = \tau$.
- We want to make each $|S|^{\tau}(E) \subset |S|$ a locally closed subscheme $S^{\tau}(E) \subset S$, which has an appropriate universal property:

イロト イポト イヨト イヨト 二日

- Let X → S a smooth projective morphism of noetherian schemes over k, each fiber geometrically connected, O_{X/S}(1) relatively ample line bundle.
- *E* a principal *G*-bundle over *S*. We get a function $|S| \rightarrow \overline{C} : s \mapsto HN(E_s)$. We show that this function is upper semi-continuous (this was already known at least when $X \rightarrow S$ has relative dimension 1).
- In particular, for each $\tau \in \overline{C}$ we have a locally closed subset $|S|^{\tau}(E) \subset |S|$ where $HN(E_s) = \tau$.
- We want to make each $|S|^{\tau}(E) \subset |S|$ a locally closed subscheme $S^{\tau}(E) \subset S$, which has an appropriate universal property:
- A morphism *T* → *S* should factor via *S*^τ(*E*) → *S* if and only if the pullback *E*_T over *X*_T admits a '**relative canonical reduction**' of constant type *τ*. Also, a rel. can. red., if it exists, should be unique.

イロト イポト イヨト イヨト 二日

- Let X → S a smooth projective morphism of noetherian schemes over k, each fiber geometrically connected, O_{X/S}(1) relatively ample line bundle.
- *E* a principal *G*-bundle over *S*. We get a function $|S| \rightarrow \overline{C} : s \mapsto HN(E_s)$. We show that this function is upper semi-continuous (this was already known at least when $X \rightarrow S$ has relative dimension 1).
- In particular, for each $\tau \in \overline{C}$ we have a locally closed subset $|S|^{\tau}(E) \subset |S|$ where $HN(E_s) = \tau$.
- We want to make each $|S|^{\tau}(E) \subset |S|$ a locally closed subscheme $S^{\tau}(E) \subset S$, which has an appropriate universal property:
- A morphism *T* → *S* should factor via *S*^τ(*E*) → *S* if and only if the pullback *E*_T over *X*_T admits a '**relative canonical reduction**' of constant type *τ*. Also, a rel. can. red., if it exists, should be unique.
- Question How does one define a relative canonical reduction?

イロト イポト イヨト イヨト

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

つへで 13/25

1

イロト イロト イヨト イヨト

Special case: suppose that X → S is of fiber dimension 1. So, each X_s is a geometrically connected, smooth projective curve over k(s). Let E be a principal G-bundle on X.

イロト 不同ト イヨト イヨト

- Special case: suppose that X → S is of fiber dimension 1. So, each X_s is a geometrically connected, smooth projective curve over k(s). Let E be a principal G-bundle on X.
- The only big open subscheme of X_s is X_s itself. So any rational *P*-reduction of E_s , in particular, the canonical reduction of E_s , is defined over all of X_s .

くロ と く 戸 と く 三 と 一

- Special case: suppose that X → S is of fiber dimension 1. So, each X_s is a geometrically connected, smooth projective curve over k(s). Let E be a principal G-bundle on X.
- The only big open subscheme of X_s is X_s itself. So any rational *P*-reduction of E_s , in particular, the canonical reduction of E_s , is defined over all of X_s .
- A *P*-reduction of *E* defined over an *S*-scheme *T* → *S* will mean a section *σ* : *X_T* → *E_T*/*P*. We will say that (*P*, *σ*) is a canonical reduction of *E* over *T* if for each *t* ∈ *T*, the restriction *σ_t* : *X_t* → *E_t*/*P* is a canonical reduction of *E_t* over *X_t*.

イロト イポト イヨト イヨト 二日

- Special case: suppose that X → S is of fiber dimension 1. So, each X_s is a geometrically connected, smooth projective curve over k(s). Let E be a principal G-bundle on X.
- The only big open subscheme of X_s is X_s itself. So any rational *P*-reduction of E_s , in particular, the canonical reduction of E_s , is defined over all of X_s .
- A *P*-reduction of *E* defined over an *S*-scheme *T* → *S* will mean a section *σ* : *X_T* → *E_T*/*P*. We will say that (*P*, *σ*) is a canonical reduction of *E* over *T* if for each *t* ∈ *T*, the restriction *σ_t* : *X_t* → *E_t*/*P* is a canonical reduction of *E_t* over *X_t*.
- Theorem (arXiv 1208.5572) : S has a stratification by locally closed subschemes S^τ(E) indexed by (C̄, ≤), such that a base change E_T admits a relative canonical reduction of constant HN-type τ if and only if T → S factors via S^τ(E) → S. Moreover, a relative canonical reduction over T, when it exists, is unique.

イロト 不同ト イヨト イヨト

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

14/25

Э

< = > < @ > < = > < = >

• Now we come to the general case where $\dim(X_s) \ge 2$.

イロト イポト イモト イモト 三日

- Now we come to the general case where $\dim(X_s) \ge 2$.
- For any standard parabolic *P*, the anti-canonical bundle $\omega_{G/P}^{-1}$ is very ample on *G*/*P*.

<ロト < 回 > < 回 > < 回 > < 回 > <

- Now we come to the general case where $\dim(X_s) \ge 2$.
- For any standard parabolic *P*, the anti-canonical bundle $\omega_{G/P}^{-1}$ is very ample on *G*/*P*.
- We get an embedding $G/P \hookrightarrow \mathbf{P}(V_P)$ where V_P is the *G*-rep $H^0(G/P, \omega_{G/P}^{-1})^{\vee}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Now we come to the general case where $\dim(X_s) \ge 2$.
- For any standard parabolic *P*, the anti-canonical bundle $\omega_{G/P}^{-1}$ is very ample on *G*/*P*.
- We get an embedding $G/P \hookrightarrow \mathbf{P}(V_P)$ where V_P is the *G*-rep $H^0(G/P, \omega_{G/P}^{-1})^{\vee}$.
- Given *E* over *S*, we get an associated vector bundle $E(V_{\lambda})$ over *X*, and a closed imbedding $E/P \hookrightarrow \mathbf{P}(E(V_P))$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Now we come to the general case where $\dim(X_s) \ge 2$.
- For any standard parabolic *P*, the anti-canonical bundle $\omega_{G/P}^{-1}$ is very ample on *G*/*P*.
- We get an embedding $G/P \hookrightarrow \mathbf{P}(V_P)$ where V_P is the *G*-rep $H^0(G/P, \omega_{G/P}^{-1})^{\vee}$.
- Given *E* over *S*, we get an associated vector bundle $E(V_{\lambda})$ over *X*, and a closed imbedding $E/P \hookrightarrow \mathbf{P}(E(V_P))$.
- If *σ* : *U* → *E_s*/*P* is a rational *P*-reduction of *E_s* = *E*|*X_s* for some *s* ∈ *S*, then we get a line subbundle *L'* ⊂ *E*(*V_λ*)|*U* over *U*. This uniquely up to unique isomorphism extends to a line bundle *L* on *X_s* with a homomorphism *L* → *E*(*V_λ*). This inspires our definition of a relative rational reduction.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

୬ < ୯ 15 / 25

Definition A relative rational *P*-reduction of *E* over an *S*-scheme *T* is a pair (*U*, *σ*) where

イロト 不得 トイヨト イヨト 二日

- Definition A relative rational *P*-reduction of *E* over an *S*-scheme *T* is a pair (*U*, *σ*) where
- U ⊂ X is an open subscheme which is relatively big over S (means, for each s ∈ S, the restriction U_s ⊂ X_s is big).

- ロトス団トスヨトスヨト

- Definition A relative rational *P*-reduction of *E* over an *S*-scheme *T* is a pair (*U*, *σ*) where
- U ⊂ X is an open subscheme which is relatively big over S (means, for each s ∈ S, the restriction U_s ⊂ X_s is big).
- σ : U → E/P is section of E/P → X (a reduction of structure group from G to P over U), such that the following condition is satisfied.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Definition A relative rational *P*-reduction of *E* over an *S*-scheme
 T is a pair (*U*, σ) where
- U ⊂ X is an open subscheme which is relatively big over S (means, for each s ∈ S, the restriction U_s ⊂ X_s is big).
- σ : U → E/P is section of E/P → X (a reduction of structure group from G to P over U), such that the following condition is satisfied.
- Let $i : E/P \hookrightarrow \mathbf{P}(E(V_P))$ be the closed embedding induced by $G/P \hookrightarrow \mathbf{P}(V_P)$, and let L' be the line bundle on U which is the pullback of the relative tautological line bundle $\mathcal{O}(-1)$ on $\mathbf{P}(E(V_P))$ via $i \circ \sigma : U \to E/P \hookrightarrow \mathbf{P}(E(V_P))$.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

- Definition A relative rational *P*-reduction of *E* over an *S*-scheme *T* is a pair (*U*, *σ*) where
- U ⊂ X is an open subscheme which is relatively big over S (means, for each s ∈ S, the restriction U_s ⊂ X_s is big).
- σ : U → E/P is section of E/P → X (a reduction of structure group from G to P over U), such that the following condition is satisfied.
- Let $i : E/P \hookrightarrow \mathbf{P}(E(V_P))$ be the closed embedding induced by $G/P \hookrightarrow \mathbf{P}(V_P)$, and let L' be the line bundle on U which is the pullback of the relative tautological line bundle $\mathcal{O}(-1)$ on $\mathbf{P}(E(V_P))$ via $i \circ \sigma : U \to E/P \hookrightarrow \mathbf{P}(E(V_P))$.
- We require that *L'* admits a prolongation to a line bundle on *X*.

イロト イボト イヨト イヨト

- Definition A relative rational *P*-reduction of *E* over an *S*-scheme *T* is a pair (*U*, *σ*) where
- U ⊂ X is an open subscheme which is relatively big over S (means, for each s ∈ S, the restriction U_s ⊂ X_s is big).
- σ : U → E/P is section of E/P → X (a reduction of structure group from G to P over U), such that the following condition is satisfied.
- Let $i : E/P \hookrightarrow \mathbf{P}(E(V_P))$ be the closed embedding induced by $G/P \hookrightarrow \mathbf{P}(V_P)$, and let L' be the line bundle on U which is the pullback of the relative tautological line bundle $\mathcal{O}(-1)$ on $\mathbf{P}(E(V_P))$ via $i \circ \sigma : U \to E/P \hookrightarrow \mathbf{P}(E(V_P))$.
- We require that *L'* admits a prolongation to a line bundle on *X*.
- If $T = \operatorname{Spec} K$ for any field K over S, then note that the above definition reduces to the usual definition over X_K . Also, it reduces to the earlier definition when X/S is of relative dimension 1.

イロト 不同ト イヨト イヨト

Prolonging line bundles from big open subschemes

- Question. Let X → S be smooth, projective. Let U ⊂ X be relatively big open subscheme over S. Then does every line bundle L' on U admit a prolongation to X?
- This is certainly true for $S = \operatorname{Spec} k$ for any field k. For L' will be defined by a Weil divisor D on U, and we can define $L = \mathcal{O}_X(\overline{D})$ where \overline{D} is the closure of D in X.
- While framing the definition of a rel rational *P*-reduction, we expected that in general the above question has a negative answer, even in relative dimension 2. This is indeed so, as shown by the following.
- **Example** (Najmuddin). Let $S = \operatorname{Spec} k[\epsilon]/(\epsilon^2)$. Let $X = \mathbf{P}_S^2$. Let $U = X \{x\} \subset X$ be the complement of any *k*-valued closed point $x \in \mathbf{P}_k^2$. As $H^1(\mathbf{P}_k^2 \{x\}, \mathcal{O}) \neq 0$, the trivial line bundle $\mathcal{O}_{\mathbf{P}_k^2 \{x\}}$ admits a nontrivial infinitesimal deformation parameterized by *S*, which defines a nontrivial line bundle L' on *U*. But as $H^1(\mathbf{P}_k^2, \mathcal{O}) = 0$, L' does not prolong to *X*.

Uniqueness of prolongation when it exists

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

うへで 17/25

э

<ロト < 回 > < 回 > < 回 > < 回 > <

Uniqueness of prolongation when it exists

Lemma Let $\pi : X \to S$ be a smooth morphism where *S* is noetherian, let $j : U \hookrightarrow X$ be an open subscheme which is relatively big over *S*, and let \mathcal{E} be a locally free \mathcal{O}_X -module. Then the homomorphism $\mathcal{E} \to j_*(\mathcal{E}|U)$ is an isomorphism.

イロト イポト イヨト イヨト 二日
Uniqueness of prolongation when it exists

Lemma Let $\pi : X \to S$ be a smooth morphism where *S* is noetherian, let $j : U \hookrightarrow X$ be an open subscheme which is relatively big over *S*, and let \mathcal{E} be a locally free \mathcal{O}_X -module. Then the homomorphism $\mathcal{E} \to j_*(\mathcal{E}|U)$ is an isomorphism.

Proof. For any $z \in Z = X - U$, if $\pi(z) = s \in S$, then $depth(\mathcal{O}_{X_s,z}) \ge 2$ as $\mathcal{O}_{X_s,z}$ is a regular local ring of dimension ≥ 2 . By EGA IV₂ Proposition 6.3.1, we have $depth(\mathcal{O}_{X,z}) = depth(\mathcal{O}_{S,s}) + depth(\mathcal{O}_{X_s,z})$, hence $depth(\mathcal{O}_{X,z}) \ge 2$. Therefore, $depth_Z(\mathcal{O}_X) = \inf_{z \in Z} depth(\mathcal{O}_{X,z}) \ge 2$. Hence the desired conclusion follows from EGA IV₂ Theorem 5.10.5.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

つへで 18/25

э

イロト イロト イヨト イヨト

• Applying the above lemma gives an alternative form of the definition:

3

イロト 不得 トイヨト イヨト

- Applying the above lemma gives an alternative form of the definition:
- **Definition** A relative rational *P*-reduction of *E* over an *S*-scheme *T* is a pair (*L*, *f*) where

イロト イポト イヨト イヨト 二日

- Applying the above lemma gives an alternative form of the definition:
- **Definition** A relative rational *P*-reduction of *E* over an *S*-scheme *T* is a pair (*L*, *f*) where
- L is a line bundle on X_T , and

Э

・ロト ・ 同ト ・ ヨト ・ ヨト

- Applying the above lemma gives an alternative form of the definition:
- **Definition** A relative rational *P*-reduction of *E* over an *S*-scheme *T* is a pair (*L*, *f*) where
- L is a line bundle on X_T , and
- *f* : *L* → *E*(*V_P*) is an injective *O_{X_T}*-linear homomorphism of sheaves, such that the following two conditions are satisfied.

- ロトス団トスヨトスヨト

- Applying the above lemma gives an alternative form of the definition:
- **Definition** A relative rational *P*-reduction of *E* over an *S*-scheme *T* is a pair (*L*, *f*) where
- L is a line bundle on X_T , and
- *f* : *L* → *E*(*V_P*) is an injective *O*_{X_T}-linear homomorphism of sheaves, such that the following two conditions are satisfied.
- 1. The open subscheme U ⊂ X_T which consists of all x such that the fiber map f_x is injective (that is, the transpose map f* : E(V_P)* → L* is surjective on stalks at x) is **relatively big** over T, that is, each U ∩ X_t is big in X_t.

イロト イポト イヨト イヨト 二日

- Applying the above lemma gives an alternative form of the definition:
- **Definition** A relative rational *P*-reduction of *E* over an *S*-scheme *T* is a pair (*L*, *f*) where
- L is a line bundle on X_T , and
- *f* : *L* → *E*(*V_P*) is an injective *O*_{X_T}-linear homomorphism of sheaves, such that the following two conditions are satisfied.
- 1. The open subscheme U ⊂ X_T which consists of all x such that the fiber map f_x is injective (that is, the transpose map f* : E(V_P)* → L* is surjective on stalks at x) is **relatively big** over T, that is, each U ∩ X_t is big in X_t.
- 2. The section σ : U → P(E(V_P)) defined by the line subbundle L|U ⊂ E(V_P)|U factors via the closed subscheme (E/P)|U ⊂ E(V_P)|U.

イロト イボト イヨト イヨト

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

୬ < ୍ 19 / 25

1

ヘロト 人間 ト 人主 ト 人主 ト

• **Theorem** (arXiv 1505.02236) : For any principal *G*-bundle *E* on *X*, the scheme *S* has a stratification by locally closed subschemes $S^{\tau}(E)$ indexed by \overline{C} , such that for any $T \to S$, the base change E_T admits a relative canonical reduction of constant HN-type τ if and only if $T \to S$ factors via $S^{\tau}(E) \hookrightarrow S$. Moreover, a relative canonical reduction over *T*, when it exists, is unique.

・ロト ・ 同ト ・ ヨト ・ ヨト

- **Theorem** (arXiv 1505.02236) : For any principal *G*-bundle *E* on *X*, the scheme *S* has a stratification by locally closed subschemes $S^{\tau}(E)$ indexed by \overline{C} , such that for any $T \to S$, the base change E_T admits a relative canonical reduction of constant HN-type τ if and only if $T \to S$ factors via $S^{\tau}(E) \hookrightarrow S$. Moreover, a relative canonical reduction over *T*, when it exists, is unique.
- **Corollary** If *S* is reduced and $HN(E_s)$ is constant over *S*, then there exists a relative canonical reduction over *S*. In particular, there exists a relatively big open $U \subset X$ over *S*, and a parabolic reduction over *U* which restricts to the canonical reduction on each fiber.

イロト イポト イヨト イヨト 二日

- **Theorem** (arXiv 1505.02236) : For any principal *G*-bundle *E* on *X*, the scheme *S* has a stratification by locally closed subschemes $S^{\tau}(E)$ indexed by \overline{C} , such that for any $T \to S$, the base change E_T admits a relative canonical reduction of constant HN-type τ if and only if $T \to S$ factors via $S^{\tau}(E) \hookrightarrow S$. Moreover, a relative canonical reduction over *T*, when it exists, is unique.
- **Corollary** If *S* is reduced and $HN(E_s)$ is constant over *S*, then there exists a relative canonical reduction over *S*. In particular, there exists a relatively big open $U \subset X$ over *S*, and a parabolic reduction over *U* which restricts to the canonical reduction on each fiber.
- Note that the statement above **does not** refer to our new definition of a relative rational reduction.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

- **Theorem** (arXiv 1505.02236) : For any principal *G*-bundle *E* on *X*, the scheme *S* has a stratification by locally closed subschemes $S^{\tau}(E)$ indexed by \overline{C} , such that for any $T \to S$, the base change E_T admits a relative canonical reduction of constant HN-type τ if and only if $T \to S$ factors via $S^{\tau}(E) \hookrightarrow S$. Moreover, a relative canonical reduction over *T*, when it exists, is unique.
- **Corollary** If *S* is reduced and $HN(E_s)$ is constant over *S*, then there exists a relative canonical reduction over *S*. In particular, there exists a relatively big open $U \subset X$ over *S*, and a parabolic reduction over *U* which restricts to the canonical reduction on each fiber.
- Note that the statement above **does not** refer to our new definition of a relative rational reduction.
- The result is new even for G = GL_n, as it refers to μ-semistability, not Gieseker semistability.

くロ と く 戸 と く 三 と 一

Stacky formulation

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

うへで 20/25

1

ヘロト 人間 ト 人主 ト 人主 ト

Stacky formulation

Corollary For any τ ∈ C, let Bun^τ_{X/S}(G) be the S-groupoid which associates to any T → S the category whose objects principal G-bundles E on X_T together with a relative canonical reduction (U, σ) of type τ, and whose morphisms are isomorphisms of principal bundles. Then Bun^τ_{X/S}(G) is an algebraic stack which is a locally closed substack of the stack Bun_{X/S}(G) of all principal G-bundles on X/S.

くロ と く 戸 と く 三 と 一

Stacky formulation

- Corollary For any τ ∈ C, let Bun^τ_{X/S}(G) be the S-groupoid which associates to any T → S the category whose objects principal G-bundles E on X_T together with a relative canonical reduction (U, σ) of type τ, and whose morphisms are isomorphisms of principal bundles. Then Bun^τ_{X/S}(G) is an algebraic stack which is a locally closed substack of the stack Bun_{X/S}(G) of all principal G-bundles on X/S.
- Proof: An easy descent argument shows that Bun^τ_{X/S}(G) is a stack. The Main Theorem shows that the forgetful 1-morphism Bun^τ_{X/S}(G) → Bun_{X/S}(G) is relatively representable by a locally closed embedding.

・ロト ・ 同ト ・ ヨト ・ ヨト

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

୬ < ୯ 21 / 25

1

<ロト < 回 > < 回 > < 回 > < 回 > <

• If *k* is of arbitrary finite characteristic, we need the following assumption:

3

<ロト < 回 > < 回 > < 回 > < 回 > <

- If k is of arbitrary finite characteristic, we need the following assumption:
- Preservation of canonical reductions under field extensions: If L/K/k are extension fields of k, if $H = P/R_u(P)$ where P is a standard parabolic in G and if E a semistable principal H-bundle on a geometrically irreducible smooth projective curve X over K, then the base change E_L is a semistable principal H-bundle on X_L .

・ロト ・ 同ト ・ ヨト ・ ヨト

- If *k* is of arbitrary finite characteristic, we need the following assumption:
- Preservation of canonical reductions under field extensions: If L/K/k are extension fields of k, if $H = P/R_u(P)$ where P is a standard parabolic in G and if E a semistable principal H-bundle on a geometrically irreducible smooth projective curve X over K, then the base change E_L is a semistable principal H-bundle on X_L .
- Under this hypothesis, Bun^τ_{X/S}(G) can be shown to be algebraic stacks for *k* of any characteristic (see arXiv:1605.08997).
 However, they may not embed into Bun_{X/S}(G).

- ロトス団トスヨトスヨト

- If *k* is of arbitrary finite characteristic, we need the following assumption:
- Preservation of canonical reductions under field extensions: If L/K/k are extension fields of k, if $H = P/R_u(P)$ where P is a standard parabolic in G and if E a semistable principal H-bundle on a geometrically irreducible smooth projective curve X over K, then the base change E_L is a semistable principal H-bundle on X_L .
- Under this hypothesis, Bun^τ_{X/S}(G) can be shown to be algebraic stacks for *k* of any characteristic (see arXiv:1605.08997).
 However, they may not embed into Bun_{X/S}(G).
- The proof of the above uses the universal property of the projectivization of Grothendieck's Q-sheaf.

イロト イポト イヨト イヨト 二日

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

୬ ଏ (୦ 22 / 25

1

イロト イロト イヨト イヨト

 The proof of the theorem on HN-stratifications for coherent pure sheaf relies on a simple deformation theoretic argument.

3

くロ と く 戸 と く 三 と 一

- The proof of the theorem on HN-stratifications for coherent pure sheaf relies on a simple deformation theoretic argument.
- The theorem on HN-stratifications for principal bundles in relative dimension 1 is proved by regarding reductions as certain closed subschemes (being sections), and then the proof relies on deformation theory on Hilbert schemes.

・ロト ・ 同ト ・ ヨト ・ ヨト

- The proof of the theorem on HN-stratifications for coherent pure sheaf relies on a simple deformation theoretic argument.
- The theorem on HN-stratifications for principal bundles in relative dimension 1 is proved by regarding reductions as certain closed subschemes (being sections), and then the proof relies on deformation theory on Hilbert schemes.
- The proof of the Main Theorem in higher dimensions uses standard techniques from projective geometry (Grothendieck complex, flattening stratifications, Castelnuovo-Mumford regularity, Quot schemes, existence and properties of relative Picard schemes, relative duality, cohomology vanishing result of the Enriques-Severi-Zariski kind, etc).

Э

ヘロア 人間 アメヨア 人口 ア

- The proof of the theorem on HN-stratifications for coherent pure sheaf relies on a simple deformation theoretic argument.
- The theorem on HN-stratifications for principal bundles in relative dimension 1 is proved by regarding reductions as certain closed subschemes (being sections), and then the proof relies on deformation theory on Hilbert schemes.
- The proof of the Main Theorem in higher dimensions uses standard techniques from projective geometry (Grothendieck complex, flattening stratifications, Castelnuovo-Mumford regularity, Quot schemes, existence and properties of relative Picard schemes, relative duality, cohomology vanishing result of the Enriques-Severi-Zariski kind, etc).
- The proof is by induction on the rel. dim. of X/S. For the inductive step we proved the following result, an ingredient of which is an analog for principal bundles of the semistable restriction theorem of Mehta-Ramanathan for μ -semistable torsion-free sheaves.

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

うへで 23/25

1

イロト イロト イヨト イヨト

Proposition Let (X, O_X(1)) be a smooth connected projective variety over an extension field K of k, of dimension ≥ 2. Given E on X, there exists m₀ ≥ 1 s.t. for any general smooth hypersurface Y ⊂ X where Y ∈ |O_X(m)| where m ≥ m₀, we have

 $m \cdot \operatorname{HN}(E) = \operatorname{HN}(E|Y).$

Moreover, if $\sigma : U \to E/P$ is the canonical reduction of *E* then $U \cap Y$ is big in *Y*, and $\sigma | (U \cap Y)$ is the canonical reduction of E | Y.

イロト イポト イヨト イヨト 二日

• **Proposition** Let $(X, \mathcal{O}_X(1))$ be a smooth connected projective variety over an extension field *K* of *k*, of dimension ≥ 2 . Given *E* on *X*, there exists $m_0 \geq 1$ s.t. for any general smooth hypersurface $Y \subset X$ where $Y \in |\mathcal{O}_X(m)|$ where $m \geq m_0$, we have

 $m \cdot \operatorname{HN}(E) = \operatorname{HN}(E|Y).$

Moreover, if $\sigma : U \to E/P$ is the canonical reduction of *E* then $U \cap Y$ is big in *Y*, and $\sigma | (U \cap Y)$ is the canonical reduction of E | Y.

• For an arbitrary smooth $Y \in |\mathcal{O}_X(m)|$ (not necessarily 'general'), we have $m \cdot HN(E) \leq HN(E|Y)$.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Nitin Nitsure (TIFR)

Schematic Harder-Narasimhan stratification

୬ ୯.୦° 24 / 25

1

< = > < @ > < = > < = >

With all these ingredients, the method of the proof of semicontinuity of HN(*E_s*), of uniqueness of a rel. can. red. whenever it exists, and of the Main Theorem, involves taking any point *s* ∈ *S*, finding a 'good' hypersurface *H* for restricting *E_s* to it, then spreading *H* to a smooth relative hypersurface *Y* in a neighbourhood *W* of *s* ∈ *S*.

- With all these ingredients, the method of the proof of semicontinuity of HN(*E_s*), of uniqueness of a rel. can. red. whenever it exists, and of the Main Theorem, involves taking any point *s* ∈ *S*, finding a 'good' hypersurface *H* for restricting *E_s* to it, then spreading *H* to a smooth relative hypersurface *Y* in a neighbourhood *W* of *s* ∈ *S*.
- Note that even if $Y_s = H \subset X_s$ is general for E_s , we cannot assume that $Y_t \subset X_t$ is general for E_t for all t in some sufficiently small neighbourhood of s in S.

イロト イポト イヨト イヨト 二日

- With all these ingredients, the method of the proof of semicontinuity of HN(*E_s*), of uniqueness of a rel. can. red. whenever it exists, and of the Main Theorem, involves taking any point *s* ∈ *S*, finding a 'good' hypersurface *H* for restricting *E_s* to it, then spreading *H* to a smooth relative hypersurface *Y* in a neighbourhood *W* of *s* ∈ *S*.
- Note that even if Y_s = H ⊂ X_s is general for E_s, we cannot assume that Y_t ⊂ X_t is general for E_t for all t in some sufficiently small neighbourhood of s in S.
- The argument proceeds by comparing the canonical reductions of E_t and $E_t|Y_t$ for $t \in W$, comparing the relative Picard schemes of X_W/W and Y/W, and then trying to lift the relative reduction over the stratification for E|Y to E over X by 'shrinking' the strata as little as possible.

Thank you for your kind attention!

< □ ト < □ ト < 三 ト < 三 ト - 三</p>