Asymptotic behaviour of certain families of harmonic bundles on Riemann surfaces

Takuro Mochizuki

RIMS, Kyoto University
2016 August

Introduction

Harmonic bundles
Let X be a Riemann surface. Let $\left(E, \bar{\partial}_{E}, \theta\right)$ be a Higgs bundle on X, i.e., $\left(E, \bar{\partial}_{E}\right)$ is a holomorphic vector bundle on X with $\theta \in H^{0}\left(X, \operatorname{End}(E) \otimes \Omega_{X}^{1}\right)$.
Let h be a Hermitian metric of E.

- the Chern connection ∇_{h} determined by $\bar{\partial}_{E}$ and h.
- the adjoint θ_{h}^{\dagger} of θ with respect to h.

Definition h is called harmonic metric of $\left(E, \bar{\partial}_{E}, \theta\right)$ if

$$
\nabla_{h} \circ \nabla_{h}+\left[\theta, \theta_{h}^{\dagger}\right]=0 \quad \text { (Hitchin equation). }
$$

$\left(\Longleftrightarrow\right.$ the connection $\mathbb{D}_{h}^{1}:=\nabla_{h}+\theta+\theta_{h}^{\dagger}$ is flat $)$
$\left(E, \bar{\partial}_{E}, \theta, h\right)$ is called harmonic bundle.

Basic examples
Rank 1 case If $\operatorname{rank} E=1$,

$$
\underset{\text { harmonic bundle }}{\left(E, \bar{\partial}_{E}, \theta, h\right)} \Longleftrightarrow \Longleftrightarrow\left\{\begin{array}{l}
\theta \in H^{0}\left(X, \Omega_{X}^{1}\right) \\
h \text { is flat, i.e., } \nabla_{h} \circ \nabla_{h}=0
\end{array}\right.
$$

Complex variation of Hodge structure
A harmonic bundle $\left(E, \bar{\partial}_{E}, \theta, h\right)$ is called complex variation of Hodge structure if

- $E=\bigoplus E^{i}$ (orthogonal decomposition)
- $\theta\left(E^{i}\right) \subset E^{i-1} \otimes \Omega_{X}^{1}$

Example
When $f: Y \longrightarrow X$ is a smooth projective fibration, the cohomology groups $H^{j}\left(f^{-1}(x), \mathbb{C}\right)(x \in X)$ gives a flat bundle on X, which is naturally a complex variation of Hodge structure.

Fundamental theorem

A harmonic bundle has the underlying Higgs bundle and the underlying flat bundle

$$
\left(E, \bar{\partial}_{E}, \theta\right) \longleftarrow\left(E, \bar{\partial}_{E}, \theta, h\right) \longrightarrow\left(E, \mathbb{D}^{1}\right)
$$

Theorem (Corlette-Donaldson-Hitchin-Simpson)
When X is compact, we have the following homeomorphisms moduli of
Higgs bundles (polystable, $\operatorname{deg}=0$)

$$
\left.\begin{array}{c}
\text { moduli of } \\
\text { flat bundles } \\
\text { (semisimple) }
\end{array}\right)
$$

The induced family parametrized by \mathbb{C}^{*}
Suppose X is compact.

$$
\binom{\text { moduli of }}{\text { Higgs bundles }} \stackrel{\simeq}{\leftrightarrows}\binom{\text { moduli of }}{\text { harmonic bundles }} \stackrel{\sim}{\simeq}\binom{\text { moduli of }}{\text { flat bundles }}
$$

Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ is a harmonic bundle on X. We have the obvious deformation of Higgs bundle $\left(E, \bar{\partial}_{E}, t \theta\right)\left(t \in \mathbb{C}^{*}\right)$.

$$
\begin{array}{cccc}
\text { Higgs bundles } & & \text { harmonic bundles } & \\
\begin{array}{c}
\text { flat bundles } \\
\left(E, \bar{\partial}_{E}, t \theta\right) \\
\left(t \in \mathbb{C}^{*}\right)
\end{array} & \longleftrightarrow & \left(E, \bar{\partial}_{E}, t \theta, h_{t}\right) & \longleftrightarrow \\
\left(E, \nabla_{h_{t}}+t \theta+\bar{t} \theta_{h_{t}}^{\dagger}\right) \\
\left(t \in \mathbb{C}^{*}\right) & & \left(t \in \mathbb{C}^{*}\right)
\end{array}
$$

This gives a \mathbb{C}^{*}-action on the moduli spaces.

Easy examples

Rank 1 case If $\operatorname{rank} E=1$,

Higgs bundles

$$
\left(E, \bar{\partial}_{E}, t \theta\right)
$$

harmonic bundles
$\left(E, \bar{\partial}_{E}, t \theta, h\right)$
flat bundles
$\left(E, \nabla_{h}+2 \operatorname{Re}(t \theta)\right)$

Complex variation of Hodge structure (CVHS)
If $\left(E, \bar{\partial}_{E}, \theta, h\right)$ is CVHS, $\left(E, \bar{\partial}_{E}, t \theta\right) \simeq\left(E, \bar{\partial}_{E}, \theta\right)$ for any $t \neq 0$.

Higgs bundles

$$
\left(E, \bar{\partial}_{E}, t \theta\right)
$$

harmonic bundles
flat bundles
$\left(E, \bar{\partial}_{E}, \theta, h\right) \longleftrightarrow\left(E, \nabla_{h}+\theta+\theta_{h}^{\dagger}\right)$
(CVHS \Longleftrightarrow fixed point of the moduli)

If $\left(E, \bar{\partial}_{E}, \theta, h\right)=\oplus\left(L_{i}, \bar{\partial}_{L_{i}}, \varphi_{i}, h_{L_{i}}\right) \otimes\left(E_{i}, \bar{\partial}_{E_{i}}, \theta_{i}, h_{E_{i}}\right),\left(\operatorname{rank} L_{i}=1,\left(E_{i}, \bar{\partial}_{E_{i}}, \theta_{i}, h_{E_{i}}\right)\right.$ CVHS $)$, then

$$
\begin{gathered}
\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right) \simeq \bigoplus\left(L_{i}, \bar{\partial}_{L_{i}}, t \varphi_{i}, h_{L_{i}}\right) \otimes\left(E_{i}, \bar{\partial}_{E_{i}}, \theta_{i}, h_{E_{i}}\right) \\
\left(E, \mathbb{D}_{h_{t}}^{1}\right) \simeq \bigoplus\left(L_{i}, \nabla_{L_{i}}+2 \operatorname{Re}\left(t \varphi_{i}\right)\right) \otimes\left(E_{i}, \mathbb{D}_{h_{E_{i}}}^{1}\right)
\end{gathered}
$$

General issue
In general, it is very difficult to describe the families $\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right)$ and $\mathbb{D}_{h_{t}}^{1}$.
We are interested in the behaviour of $\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right)(t \rightarrow \infty)$.

The behaviour $\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right)(t \rightarrow 0)$ was studied by Hitchin and Simpson.

$$
\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right) \xrightarrow{t \rightarrow 0} \quad \begin{aligned}
& \text { complex variation of Hodge structure } \\
& \text { (fixed point of the moduli) }
\end{aligned}
$$

More recently, the behaviour $\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right)(t \rightarrow \infty)$ has been studied by several groups of mathematicians from several viewpoints.

It is motivated by the interest to the asymptotic of various structures of the moduli spaces around infinity. For instance, it is interesting and challenging to study the asymptotic of the homeomorphism

$$
\binom{\text { moduli of }}{\text { Higgs bundles }} \xrightarrow{\Phi}\binom{\text { moduli of }}{\text { flat bundles }}
$$

It might be useful to see how the family $\left(E, \bar{\partial}_{E}, t \theta\right)$ is transformed by Φ.

Mazzeo-Swoboda-Weiss-Witt

The important contributions were given by Mazzeo, Swoboda, Weiss and Witt.

Asymptotic decoupling

$$
\begin{aligned}
\nabla_{h} \circ \nabla_{h}+\left[\theta, \theta_{h}^{\dagger}\right] & =0 & & \text { (Hitchin equation) } \\
\nabla_{h} \circ \nabla_{h}=0,\left[\theta, \theta_{h}^{\dagger}\right] & =0 & & \text { (decoupled Hitchin equation) }
\end{aligned}
$$

decoupled Hitchin equation $\Longrightarrow\left(E, \bar{\partial}_{E}, \theta, h\right) \stackrel{\text { loc }}{=} \bigoplus\left(L_{i}, \bar{\partial}_{L_{i}}, \varphi_{i}, h_{L_{i}}\right) \quad\left(\operatorname{rank} L_{i}=1\right)$.
When t is large, $\nabla_{h_{t}} \circ \nabla_{h_{t}}$ and $\left[t \theta, \bar{t} \theta_{h_{t}}^{\dagger}\right]$ should be close to 0 on $X \backslash D(E, \theta)$ (under some assumption), i.e., $\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right) \stackrel{\text { loc }}{\sim} \oplus\left(L_{i}, \bar{\partial}_{L_{i}}, t \theta_{i}, h_{L_{i}, t}\right)$ on $X \backslash D(E, \theta)$

Limiting configuration $\lim _{t \rightarrow \infty} h_{L_{i}}$ should exist (after gauge transformations).
It is desirable to have explicit descriptions of the limiting configuration.

They established the case where $\operatorname{rank} E=2$ and the spectral curve of $\left(E, \bar{\partial}_{E}, \theta\right)$ is smooth.

Katzarkov-Noll-Pandit-Simpson
A completely different viewpoint was given by Katzarkov, Noll, Pandit and Simpson. They are interested in the asymptotic behaviour of the parallel transports of $\mathbb{D}_{h_{t}}^{1}$

$$
\Pi_{\gamma, t}: E_{\gamma(0)} \longrightarrow E_{\gamma(1)} \quad(t \rightarrow \infty)
$$

along a path $\gamma:[0,1] \longrightarrow X$ (Hitchin-WKB problem).
They proposed a conjectural estimate on how $\Pi_{\gamma, t}$ are far from unitary (under some assumption on γ and θ).

Let $\widetilde{X} \longrightarrow X$ be a universal covering. The family of harmonic bundles $\left(E, \bar{\partial}_{E}, t \boldsymbol{\theta}, h_{t}\right)$ induces a family of harmonic maps

$$
\varphi_{t}: \widetilde{X} \longrightarrow \mathscr{H}_{r}:=\mathrm{GL}(r, \mathbb{C}) / U(r) \quad(r=\operatorname{rank} E)
$$

Katzarkov-Pandit-Noll-Simpson proved that the estimate implies that any sequence $\varphi_{t_{i}}$ contains a subsequence which converges to a harmonic map from \widetilde{X} to the affine building of A_{r-1}-type.

Collier-Li

Collier and Li closely studied the asymptotic of some cyclic type harmonic bundles.

- They established the asymptotic decoupling and the convergence to the limiting configuration. They also described the limit metric precisely.
- They applied their result to the Hitchin-WKB problem.

Our results
Asymptotic decoupling

- OK in any rank case.

We do not need the compactness of X, the smoothness and the irreducibility of the spectral curve.

We need the eigenvalues of the Higgs field are generically multiplicity-free.

- We can apply it to the Hitchin-WKB problem, and obtain the conjectural estimate.

Limiting configuration

- OK in the rank 2 case
- We have a rather explicit description of the limiting configuration.

We shall explain our result in the case $\operatorname{rank} E=2$.

Asymptotic decoupling

Preliminary

Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a harmonic bundle of rank 2 on a compact Riemann surface X.

$$
\begin{gathered}
\Sigma(E, \theta)=\text { the spectral curve of }(E, \theta) \subset T^{*} X \\
\Sigma(E, \theta)_{P}=\Sigma(E, \theta) \times_{X}\{P\}=\{\text { eigenvalue of } \theta \text { at } P\}
\end{gathered}
$$

We have two cases. (Note $\# \Sigma(E, \theta)_{P} \leq 2$ if $\operatorname{rank} E=2$.)
(i) $\# \Sigma(E, \theta)_{P}=1$ for any $P \in X$
(ii) We have a finite subset $D(E, \theta) \subset X$ (the discriminant of (E, θ)), and $\# \Sigma(E, \theta)_{P}=2$ for any $P \in X \backslash D(E, \theta)$.
(i) $\# \Sigma(E, \theta)_{P}=1$ for any $P \in X$

The case (i) is easy.

$$
\begin{aligned}
\left(E, \bar{\partial}_{E}, \theta, h\right)= & \left(L, \bar{\partial}_{L}, \varphi, h_{L}\right) \otimes\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, \theta^{\prime}, h^{\prime}\right) \quad\left(\operatorname{rank} L=1, \theta^{\prime} \text { nilpotent }\right) \\
& \left(E, \bar{\partial}_{E}, t \theta, h_{t}\right)=\left(L, \bar{\partial}_{L}, t \varphi, h_{L}\right) \otimes\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, t \theta^{\prime}, h_{t}^{\prime}\right)
\end{aligned}
$$

Because θ^{\prime} is nilpotent, the family $\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, t \theta^{\prime}, h_{t^{\prime}}\right)$ is convergent when $t \rightarrow \infty$:

$$
\lim _{t \rightarrow \infty}\left(E^{\prime}, \bar{\partial}_{E^{\prime}}, t \theta^{\prime}, h_{t^{\prime}}\right)=\text { complex variation of Hodge structure }
$$

Hence,

$$
\begin{gathered}
\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right) \sim\left(L, \bar{\partial}_{L}, t \varphi, h_{L}\right) \otimes(\text { a CVHS }) \\
\left(E, \nabla_{t}+t \theta+t \theta_{h}^{\dagger}\right) \sim\left(L, \nabla_{h_{L}}+2 \operatorname{Re}(t \varphi)\right) \otimes \text { (a flat bundle) }
\end{gathered}
$$

We are more interested in the case (ii) $\# \Sigma(E, \theta)_{P}=2(\forall P \in X \backslash D(E, \theta))$

We have a ramified covering $p: X^{\prime} \longrightarrow X$ such that

$$
\Sigma\left(p^{*}(E, \theta)\right)=\operatorname{Im}\left(\phi_{1}\right) \cup \operatorname{Im}\left(\phi_{2}\right), \quad\left(\phi_{1}, \phi_{2} \in H^{0}\left(X^{\prime}, \Omega_{X^{\prime}}^{1}\right), \phi_{1} \neq \phi_{2}\right)
$$

the asymptotic behaviour of

$$
\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right)(t \rightarrow \infty)
$$

the asymptotic behaviour of
$p^{*}\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right)(t \rightarrow \infty)$

Assumption (inessential)
We may assume $\Sigma(E, \theta)=\operatorname{Im}\left(\phi_{1}\right) \cup \operatorname{Im}\left(\phi_{2}\right) \quad\left(\phi_{1}, \phi_{2} \in H^{0}\left(X, \Omega_{X}^{1}\right), \quad \phi_{1} \neq \phi_{2}\right)$

We have $D(E, \theta)=\left\{\right.$ zero of $\left.\phi_{1}-\phi_{2}\right\}$ and

$$
\left(E, \bar{\partial}_{E}, \theta\right)_{\mid X \backslash D(E, \theta)}=\bigoplus_{i=1,2}\left(E_{i}, \bar{\partial}_{E_{i}}, \phi_{i} \mathrm{id}_{E_{i}}\right)
$$

Asymptotic decoupling

Theorem

Fix a Kähler metric g_{X} of X. For any neighbourhood N of $D(E, \theta)$, we have positive constants C_{1}, ε_{1} such that the following holds on $X \backslash N$.

- Let v_{i} be local sections of $E_{i}(i=1,2)$.

$$
\begin{gathered}
\left|h_{t}\left(v_{1}, v_{2}\right)\right| \leq C_{1} \exp \left(-\varepsilon_{1}|t|\right)\left|v_{1}\right|_{h_{t}} \cdot\left|v_{2}\right|_{h_{t}} \quad \text { (Asymptotic orthogonality) } \\
\left(\Longleftrightarrow\left|\left[t \theta, \bar{t} \theta_{h_{t}}^{\dagger}\right]\right|_{h_{t}, g_{X}}=\left|\nabla_{h_{t}} \circ \nabla_{h_{t}}\right|_{h_{t}, g_{X}}=O\left(\exp \left(-\varepsilon_{1}|t|\right)\right)\right)
\end{gathered}
$$

We also have the estimate of the derivatives.

- Let $h_{t, E_{i}}$ denote the restriction of h_{t} to E_{i}.

$$
\left|\nabla_{h_{t, E_{i}}} \circ \nabla_{h_{t, E_{i}}}\right|_{h_{t}, g_{X}} \leq C_{1} \exp \left(-\varepsilon_{1}|t|\right)
$$

$\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right)(t \gg 0)$ is close to a direct sum of rank one harmonic bundles.
(OK in the higher rank case if (E, θ) is generically regular semisimple.)

Mazzeo, Swoboda, Weiss, Witt: the case $\operatorname{rank} E=2$ and $\Sigma(E, \theta)$ smooth Collier-Li: some cyclic type harmonic bundles

Simpson's main estimate
Let $\Delta(R):=\{z \in \mathbb{C}| | z \mid<R\}$. Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a harmonic bundle on $\Delta(R)$.

We have $\theta=f d z(f \in \operatorname{End}(E))$.

- $|f|_{h} \leq C_{2}$ on $\Delta\left(R_{1}\right)\left(R_{1}<R\right)$, where
C_{2} depends on R, R_{1}, rank E the eigenvalues of f.
Suppose $\left(E, \bar{\partial}_{E}, \theta\right)=\bigoplus\left(E_{i}, \bar{\partial}_{E_{i}}, \theta_{i}\right)$. Let π_{i} denote the projection of E onto E_{i}.
- $\left|\pi_{i}\right|_{h}^{2}-\operatorname{rank} E_{i} \leq \exp \left(-C_{3}\right)$ on $\Delta\left(R_{2}\right)\left(R_{2}<R_{1}\right)$, where
C_{3} depends on $R, R_{1}, R_{2}, \operatorname{rank} E$ and the eigenvalues of f.
When the difference of the eigenvalues are large, C_{3} are large.

Application to Hitchin-WKB problem
We have the flat connections $\mathbb{D}_{h_{t}}^{1}$ associated to $\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right)$.
For any C^{∞}-path $\gamma:[0,1] \longrightarrow X$, we have the parallel transport of $\mathbb{D}_{h_{t}}^{1}$:

$$
\Pi_{\gamma, t}: E_{\mid \gamma(0)} \longrightarrow E_{\mid \gamma(1)}
$$

Katzarkov-Noll-Pandit-Simpson asked how $\Pi_{\gamma, t}$ are far from unitary.
"vector distance" of metrics
Let V be an r-dimensional vector space over \mathbb{C}.
Let h_{1} and h_{2} be two Hermitian metrics of V.
$\exists e_{1}, \ldots, e_{r}$ basis of V, orthogonal with respect to both h_{1} and h_{2}.
We set

$$
\kappa_{j}:=\log \left|e_{j}\right|_{h_{2}}-\log \left|e_{j}\right|_{h_{1}}
$$

We impose $\kappa_{1} \geq \kappa_{2} \geq \cdots \geq \kappa_{r}$.
(vector distance) We set $\vec{d}\left(h_{1}, h_{2}\right):=\left(\kappa_{1}, \ldots, \kappa_{r}\right) \in \mathbb{R}^{r}$.
KNPS proposed an conjectural estimate for $\vec{d}\left(h_{t \mid E_{\mid \gamma(0)}}, \Pi_{\gamma, t}^{*} h_{t \mid E_{\gamma(1)}}\right)(t \rightarrow \infty)$.

We have $\left(E, \bar{\partial}_{E}, \theta\right)_{\mid X \backslash D(E, \theta)}=\oplus_{i=1,2}\left(E_{i}, \bar{\partial}_{E_{i}}, \phi_{i} \mathrm{id}_{E_{i}}\right)$.
$\gamma:[0,1] \longrightarrow X \backslash D(E, \theta)$ non-critical $\stackrel{\text { def }}{\Longrightarrow} \gamma^{*} \operatorname{Re}\left(\phi_{1}-\phi_{2}\right)$ is nowhere vanishing on [0, 1]. We may assume $-\int_{\gamma} \operatorname{Re}\left(\phi_{1}\right)>-\int_{\gamma} \operatorname{Re}\left(\phi_{2}\right)$.

Theorem

Suppose γ is non-critical. Then, $\exists C_{10}, \varepsilon_{10}>0$ depending only on $X, \gamma, \phi_{1}, \phi_{2}$ such that

$$
\left|\frac{1}{t} \vec{d}\left(h_{t \mid \gamma(0)}, \Pi_{t, \gamma}^{*} h_{t \mid \gamma(1)}\right)-\left(-2 \int_{\gamma} \operatorname{Re}\left(\phi_{1}\right),-2 \int_{\gamma} \operatorname{Re}\left(\phi_{2}\right)\right)\right| \leq C_{10} \exp \left(-\varepsilon_{10} t\right)
$$

(OK in the higher rank case if (E, θ) is generically regular semisimple.)
Katzarkov-Noll-Pandit-Simpson: conjectured, Collier-Li: verified some interesting cases asymptotic decoupling, singular perturbation theory \Longrightarrow this estimate

We have the harmonic maps $\varphi_{t}(t>0)$ from the universal covering \widetilde{X} to $\mathrm{GL}(2) / U(2)$. Any sequence $\varphi_{t_{i}}$ contains a subsequence which is convergent to a harmonic map from \widetilde{X} to the affine building of A_{1}-type. (KNPS+our estimate)

Limiting configurations

Recall $\left(E, \bar{\partial}_{E}, \theta, h\right)$ is a harmonic bundle of rank 2 on a compact Riemann surface X.

$$
\left(E, \bar{\partial}_{E}, \theta\right)_{\mid X \backslash D(E, \theta)}=\bigoplus_{i=1,2}\left(E_{i}, \bar{\partial}_{E_{i}}, \phi_{i} \mathrm{id}_{E_{i}}\right)
$$

We have the family $\left(E, \bar{\partial}_{E}, t \boldsymbol{\theta}, h_{t}\right)\left(t \in \mathbb{C}^{*}\right)$. Let $h_{t, i}$ denote the restriction of h_{t} to E_{i}.

- $E_{i \mid X \backslash D(E, \theta)}$ are asymptotically orthogonal with respect to $h_{t}(t \gg 0)$.
- $h_{t, i \mid X \backslash D(E, \theta)}(t \gg 0)$ are almost flat

Theorem (rough statement)

$$
\exists \lim _{t \rightarrow \infty} h_{t, i}=: h_{i}^{\text {lim }} \quad \text { on } X \backslash D(E, \theta) \text { (after gauge transform). }
$$

The limit is a flat metric.
Mazzeo-Swoboda-Weiss-Witt: $\operatorname{rank} E=2, \Sigma(E, \theta)$ smooth.
Collier-Li: some cyclic type harmonic bundles.

$$
\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right) \sim \bigoplus_{i=1,2}\left(E_{i}, \bar{\partial}_{E_{i}}, t \phi_{i}, h_{i}^{\lim }\right), \quad\left(E, \mathbb{D}_{h_{t}}^{1}\right) \sim \bigoplus_{i=1,2}\left(E_{i}, \nabla_{h_{i}^{\lim }}+2 \operatorname{Re}\left(t \phi_{i}\right)\right)
$$

Expression of $\lim _{t \rightarrow \infty} h_{t, i}$
Preliminary We may assume $\phi_{1}=\omega$ and $\phi_{2}=-\omega$, where $\omega \in H^{0}\left(X, \Omega_{X}^{1}\right), \omega \neq 0$.
We have the line bundles L_{i} on X and an inclusion $l: E \longrightarrow L_{1} \oplus L_{2}$ such that

- $\boldsymbol{l}_{\mid X \backslash D(E, \theta)}$ is an isomorphism, and satisfies

$$
\boldsymbol{l}_{\mid X \backslash D(E, \theta)} \circ \theta=\left(\omega \operatorname{id}_{E_{1}} \oplus(-\omega) \operatorname{id}_{E_{2}}\right) \circ \boldsymbol{l}_{\mid X \backslash D(E, \theta)}
$$

- The induced morphisms $E \longrightarrow L_{i}$ are surjective.

The limit $h_{i}^{\lim }$ should be Hermitian flat metrics on L_{i} which are singular at $D(E, \theta)$. Such metrics are determined by the "parabolic weights" at the points of $D(E, \theta)$.

Let L be a holomorphic line bundle on X. Let $\boldsymbol{b}=\left(b_{P} \mid P \in D(E, \theta)\right) \in \mathbb{R}^{D(E, \theta)}$ such that $\sum b_{P}=\operatorname{deg}(L)$. Then, we have a flat metric $h_{L}^{\boldsymbol{b}}$ of $L_{\mid X \backslash D(E, \theta)}$ such that

- Let P be any point of $D(E, \theta)$. Take a local coordinate z_{P} such that $z_{P}(P)=0$. Then, $\left|z_{P}\right|^{2 b_{P}} h_{L}^{b}$ gives a C^{∞}-metric of L around P.
Such h_{L}^{b} is essentially unique.
Any flat metric of $L_{\mid X \backslash D(E, \theta)}$ is expressed in this way.

To describe $h_{i}^{\text {lim }}$, it is enough to explain the rule to determine the parabolic weights of L_{i} at the points of $Z(\omega)$.

Parabolic weights Set $d_{i}:=\operatorname{deg}\left(L_{i}\right)$. We may assume $d_{1} \leq d_{2}$. To any $P \in D(E, \theta)=\{$ zero of $\omega\}$, two integers m_{P} and ℓ_{P} are attached.

- m_{P} denotes the order of zero of ω at P.
i.e., $\omega=z^{m_{P}} d z$ for an appropriate coordinate z around P with $z(P)=0$.
- ℓ_{P} denotes the length of the cokernel $\operatorname{Cok}\left(\operatorname{det}(E) \longrightarrow L_{1} \otimes L_{2}\right)$ at P.

Let $\chi_{P}: \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}_{\leq 0}$ be given as follows.

$$
\chi_{P}(a):= \begin{cases}\left(m_{P}+1\right) a-\ell_{P} / 2 & \left(a \leq \ell_{P} / 2\left(m_{P}+1\right)\right) \\ 0 & \left(a \geq \ell_{P} / 2\left(m_{P}+1\right)\right)\end{cases}
$$

Lemma $\exists 1 a_{E, \theta} \in \mathbb{R}$ such that

$$
0 \leq a_{E, \theta} \leq \max _{P \in Z(\omega)}\left\{\ell_{P} / 2\left(m_{P}+1\right)\right\}, \quad d_{1}+\sum_{P \in Z(\omega)} \chi_{P}\left(a_{E, \theta}\right)=0
$$

Example If $d_{1}=d_{2}$, we have $a_{E, \theta}=0$ and $-\chi_{P}\left(a_{E, \theta}\right)=\chi_{P}\left(a_{E, \theta}\right)+\ell_{P}=\ell_{P} / 2$.
The parabolic weights of L_{1} and L_{2} at P are given by $-\chi_{P}\left(a_{E, \theta}\right)$ and $\chi_{P}\left(a_{E, \theta}\right)+\ell_{P}$.

Expression of $\lim _{t \rightarrow \infty} h_{t, i}$
We have Hermitian metrics $h_{L_{i}}^{\text {lim }}$ satisfying the following conditions.

- $\left(L_{i \mid X \backslash D(E, \theta)}, h_{L_{i}}^{\lim }\right)$ are flat.
- For each $P \in D(E, \theta)$, take a holomorphic coordinate $\left(U_{P}, z\right)$ with $z(P)=0$.
- $|z|^{-2 \chi_{P}\left(a_{E, \theta}\right)} h_{L_{1}}^{\lim }$ is a C^{∞}-metric of L_{1} around P.
- $|z|^{2 \chi_{P}\left(a_{E, \theta}\right)+2 \ell_{P}} h_{L_{2}}^{\lim }$ is a C^{∞}-metric of L_{2} around P.

Theorem $\lim _{t \rightarrow \infty} h_{t, i}=h_{L_{i}}^{\text {lim }}$ after gauge transform.

How the condition for the parabolic weights appear?
We fix a Kähler metric g_{X} of X. Take any sequence $t_{j} \rightarrow \infty$.

Key step for the proof
We construct a family of Hermitian metrics $h_{t_{j}}^{0}$ of E satisfying the following condition.

- For an appropriate $p>1$, the L^{p}-norm of $\nabla_{h_{t_{j}}^{0}} \circ \nabla_{h_{t_{j}}^{0}}+\left|t_{j}\right|^{2}\left[\theta, \theta_{h_{t_{j}^{0}}^{0}}^{\dagger}\right]$ are bounded with respect to g_{X} and $h_{t_{j}}^{0}$.

Take a neighbourhood N of $D(E, \theta)$.

- Construction on $X \backslash N$
- Construction on N.
- Gluing

Construction on $X \backslash N$
Take parabolic weights $\boldsymbol{b}_{i}:=\left(b_{i, P} \mid P \in D(E, \theta)\right) \in \mathbb{R}^{D(E, \theta)}$ of L_{i} at $D(E, \theta)$. We have the conditions

$$
b_{1, P}+b_{2, P}=\ell_{P}, \quad d_{i}-\sum_{P \in D(E, \theta)} b_{i, P}=0(i=1,2)
$$

We have the singular flat Hermitian metrics $h_{L_{i}}^{\boldsymbol{b}_{i}}$ of L_{i}.
Take $a>0$. We consider a Hermitian metric

$$
h_{t, \boldsymbol{b}, a}:=t^{a} h_{L_{1}}^{\boldsymbol{b}_{1}} \oplus t^{-a} h_{L_{2}}^{\boldsymbol{b}_{2}}
$$

on $\left(L_{1} \oplus L_{2}\right)_{\mid X \backslash D(E, \theta)}=E_{\mid X \backslash D(E, \theta)}$. We have

$$
\nabla_{h_{1, t}} \circ \nabla_{h_{1, t}}=0, \quad\left[\theta, \theta_{h_{1, t}}^{\dagger}\right]=0 .
$$

We shall impose some more conditions on b_{i} and a.

Construction on N (expression)
Around $P \in D(E, \theta)$, we take a holomorphic coordinate $\left(U_{P}, z\right)$ such that $\omega= \pm d\left(z^{m_{P}+1}\right)$.
We take local frames v_{i} of L_{i} around P satisfying the following conditions.

- $e_{1}:=v_{1}+v_{2}$ and $e_{2}:=z^{\ell_{P}} v_{2}$ give a frame of $E_{\mid U_{P}}$.
- $\left|e_{1} \wedge e_{2}\right|_{h_{\operatorname{det}(E)}}=1$. (We fix a flat metric on $\operatorname{det}(E)$.)

By setting $\alpha=m_{P}+1$, we have a canonical expression of $t \theta$:

$$
t \boldsymbol{\theta}\left(e_{1}, e_{2}\right)=\left(e_{1}, e_{2}\right)\left(\begin{array}{cc}
t \alpha z^{m_{P}} d z & 0 \\
-2 t \alpha z^{m_{P}-\ell_{P}} d z & -\alpha t z^{m_{P}} d z
\end{array}\right)
$$

$$
\text { (We have } 0 \leq \ell_{P} \leq m_{P} \text {) }
$$

Construction on N (rescaling)
By rescaling, we consider the following Higgs bundles on \mathbb{C}, or meromorphic Higgs bundles on $\left(\mathbb{P}^{1}, \infty\right)$.

$$
\begin{gathered}
\widetilde{V}=\mathscr{O}_{\mathbb{P}^{1}}(* \infty) \widetilde{v}_{1} \oplus \mathscr{O}_{\mathbb{P}^{1}}(* \infty) \widetilde{v}_{2}, \quad \widetilde{\theta}_{P}\left(\widetilde{v}_{1}, \widetilde{v}_{2}\right)=\left(\widetilde{v}_{1}, \widetilde{v}_{2}\right)\left(\begin{array}{cc}
\alpha \zeta^{m_{P}} d \zeta & 0 \\
0 & -\alpha \zeta^{m_{P}} d \zeta
\end{array}\right) \\
\widetilde{E}_{P}=\left\langle\widetilde{e}_{1}, \widetilde{e}_{2}\right\rangle, \quad \widetilde{e}_{1}=\widetilde{v}_{1}+\widetilde{v}_{2}, \quad \widetilde{e}_{2}=\zeta^{\ell_{P}} \widetilde{v}_{2}
\end{gathered}
$$

Because $\widetilde{\theta}_{P}\left(\widetilde{E}_{P}\right) \subset \widetilde{E}_{P} \otimes \Omega^{1}$, we obtain the Higgs bundle $\left(\widetilde{E}_{P}, \widetilde{\theta}_{P}\right)$ on $\left(\mathbb{P}^{1},\{\infty\}\right)$.
We take $\varphi_{P, t}: U_{P} \longrightarrow \mathbb{C}$ by $\varphi_{P, t}(z)=t^{1 /\left(m_{P}+1\right)} z$.
We have $\varphi_{P, t}^{*}\left(\widetilde{E}_{P}, \widetilde{\theta}_{P}\right) \simeq(E, t \theta)_{\mid U_{P}}$ given by the following:

$$
t^{\ell_{P} / 2\left(m_{P}+1\right)} \varphi_{P, t}^{*}\left(\widetilde{e}_{1}\right) \longleftrightarrow, e_{1}, \quad t^{-\ell_{P} / 2\left(m_{P}+1\right)} \varphi_{P, t}^{*}\left(\widetilde{e}_{2}\right) \longleftrightarrow, e_{2}
$$

Construction on N (Kobayashi-Hitchin correspondence)
Theorem (Biquard-Boalch)
The Kobayashi-Hitchin correspondence for harmonic bundles with wild singularity on compact Riemann surfaces.

By using it, we would like to take a harmonic metric for $\left(\widetilde{E}_{P}, \widetilde{\theta}_{P}\right)_{\mid \mathbb{C}}$. We need to take parabolic weights at ∞. Let $c_{P, i}$ be the parabolic weights of \widetilde{v}_{i}.

- Because the parabolic degree is 0 , we have the condition $c_{P, 1}+c_{P, 2}+\ell_{P}=0$.
- For the stability, we have $-\ell_{P}<c_{P, i}<0$.

For such \boldsymbol{c}_{P}, we have the harmonic metric $h_{t, P}^{\boldsymbol{c}_{P}}$ for $\left(\widetilde{E}_{P}, \widetilde{\theta}_{P}\right)_{\mid \mathbb{C}}$.
Recall we have $\varphi_{P, t}: U_{P} \longrightarrow \mathbb{C}$ and $\varphi_{P, t}^{*}\left(\widetilde{E}_{P}, \widetilde{\theta}_{P}\right) \simeq(E, t \theta)_{\mid U_{P}}$.
For the harmonic metrics $h_{t, P}^{c_{P}}$, we have

$$
\begin{aligned}
& \varphi_{P, t}^{*} h_{t, P}^{c_{P}}\left(v_{1}, v_{1}\right) \sim t^{2 \ell_{P} / 2\left(m_{P}+1\right)} \cdot t^{2 c_{1} /\left(m_{P}+1\right)} \\
& \varphi_{P, t}^{*} h_{t, P}^{c_{P}}\left(v_{2}, v_{2}\right) \sim t^{-2 \ell_{P} / 2\left(m_{P}+1\right)} \cdot t^{2 c_{2} /\left(m_{P}+1\right)}
\end{aligned}
$$

Condition for gluing

For the gluing of $h_{t, \boldsymbol{b}, a}$ on $X \backslash N$ and $\varphi_{P, t}^{*} h_{t, P}^{\boldsymbol{c}}$ on N, we should have the following relations on the parameters $\boldsymbol{b} \in \mathbb{R}^{D(E, \theta)}, a \in \mathbb{R}$ and $\boldsymbol{c}_{P} \in \mathbb{R}^{2}(P \in D(E, \theta))$,
(growth order with respect to t) $\quad a=c_{P, 1} /\left(m_{P}+1\right)+\ell_{P} / 2\left(m_{P}+1\right)$
(comparison of the parabolic structure at P) $\quad b_{1, P}=-c_{P, 1}$

We already have the following relation:
(parabolic degree is 0) $\quad d_{1}-\sum_{P} b_{1, P}=0$

Hence, we should have the following equation for a :

$$
d_{1}+\sum_{P}\left(\left(m_{P}+1\right) a-\ell_{P} / 2\right)=0
$$

This determines $a_{E, \theta}^{\prime}$.

But, $c_{P, 1}=\left(m_{P}+1\right) a_{E, \theta}^{\prime}-\ell_{P} / 2<0$ are not necessarily satisfied! So, we need to modify the condition. We should replace $\left(m_{P}+1\right) a-\ell_{P} / 2$ with $\chi_{P}(a)$.

Expectation in the higher rank case

Let $\left(E, \bar{\partial}_{E}, \theta, h\right)$ be a harmonic bundle on X with $\operatorname{rank} E>2$.
(After pulling back by a ramified covering,) we have the following decomposition on $X \backslash \widetilde{D}(E, \theta)$:

$$
\Sigma(E, \theta)=\bigcup_{i=1}^{m} \operatorname{Im}\left(\phi_{i}\right) \quad\left(\phi_{i} \in H^{0}\left(X, \Omega_{X}^{1}\right)\right)
$$

Set $\widetilde{D}(E, \theta)=\bigcup_{i \neq j}\left\{\right.$ zero of $\left.\phi_{i}-\phi_{j}\right\}$.
It seems natural(?) to expect

$$
\left(E, \bar{\partial}_{E}, t \theta, h_{t}\right)_{\mid X \backslash \widetilde{D}(E, \theta)} \sim \bigoplus_{i=1}^{m}\left(L_{i}, \bar{\partial}_{L_{i}}, t \phi_{i}, h_{L_{i}}\right) \otimes\left(E_{i}, \bar{\partial}_{E_{i}}, \theta_{i}, h_{E_{i}}\right)
$$

- $\left(L_{i}, \bar{\partial}_{L_{i}}, t \phi_{i}, h_{L_{i}}\right)$ are harmonic bundles of rank 1 on $X \backslash \widetilde{D}(E, \theta)$.
- $\left(E_{i}, \bar{\partial}_{E_{i}}, \theta_{i}, h_{E_{i}}\right)$ are complex variations of Hodge structure on $\widetilde{D}(E, \theta)$.

