Hilbert schemes of points and quiver varieties

Ugo Bruzzo

Scuola Internazionale Superiore di Studi Avanzati (Trieste) Istituto Nazionale di Fisica Nucleare

> Workshop on New Perspectives on Moduli Spaces in Gauge Theory

> > 1 - 5 August 2016

Institute for Mathematical Sciences, National University of Singapore

joint work with C. Bartocci, V. Lanza and C. Rava

Framed sheaves on Hirzebruch surfaces

n-th Hirzebruch surface $\Sigma_n = \mathbb{P}(\mathbb{O}_{\mathbb{P}^1} \oplus \mathbb{O}_{\mathbb{P}^1}(-n)) \subset \mathbb{P}^1 imes \mathbb{P}^2$

 $H^2 = n, \qquad E^2 = -n$

$$\operatorname{Pic}(\Sigma_n) \simeq \mathbb{Z} H \oplus \mathbb{Z} F$$

 X_n is a resolution of $\mathbb{C}^2/\mathbb{Z}_n$, with \mathbb{Z}_n acting as $(x, y) \rightsquigarrow (\omega x, \omega y)$

Monads for sheaves \mathcal{E} in $\mathcal{M}^n(r, a, c)$ (framed on H to $\mathfrak{O}_H^{\oplus r}$, normalized to $0 \le a \le r - 1$) $r = \operatorname{rk} \mathcal{E}, \quad c_1(\mathcal{E}) = aE, \quad c = c_2(\mathcal{E})$

$$0 \longrightarrow \mathcal{U} \xrightarrow{\alpha} \mathcal{V} \xrightarrow{\beta} \mathcal{W} \longrightarrow 0$$

where

$$egin{aligned} \mathcal{U} &:= \mathfrak{O}_{\Sigma_n}(0,-1)^{\oplus k_1}, \ \mathcal{V} &:= \mathfrak{O}_{\Sigma_n}(1,-1)^{\oplus k_2} \oplus \mathfrak{O}_{\Sigma_n}^{\oplus k_4}, \ \mathcal{W} &:= \mathfrak{O}_{\Sigma_n}(1,0)^{\oplus k_3} \end{aligned}$$

$$k_1 = c + \frac{1}{2}na(a-1), \quad k_2 = k_1 + na, \quad k_3 = k_1 + (n-1)a, \quad k_4 = k_1 + r - a$$

通 とう きょう うちょう しょう

Theorem

 $\mathcal{M}^{n}(r, a, c)$ is a smooth irreducible quasi-projective variety of dimension

$$2r\Delta = 2rc_2(\mathcal{E}) - (r-1)c_1(\mathcal{E})^2 = 2rc + (r-1)na^2$$

It is nonempty if and only if

$$c+rac{1}{2}$$
na $(a-1)\geq 0$

э

- < ≣ ≻ <

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣

For $n \ge 3$ the quiver is not a double. One could expect to have a Poisson — instead of symplectic — structure and a related moment map. However we are not able to implement this and rather explicitly fix an ideal I_n in the path algebra.

Generators:

$$\begin{cases} a_1c_1 = a_2c_2, & \text{when } n \ge 2, \\ c_1a_1 + i_1j = c_2a_2, & a_1c_2 = a_2\ell_1, & c_2a_1 + i_2j = \ell_1a_2, & \text{when } n \ge 3 \\ a_1\ell_t = a_2\ell_{t+1}, & \ell_ta_1 + i_{t+2}j = \ell_{t+1}a_2 & \text{for } t = 1, \dots, n-3, \\ & \text{when } n \ge 4. \end{cases}$$
(1)

(We have not only added a framing vertex to Q_n , but also "framed" the ideal I_n)

Define $B_n^{\text{fr}} = \mathbb{C} \mathfrak{Q}_n^{\text{fr}} / I_n$

Definition

Fix $\vartheta \in \mathbb{R}^2$. A (\vec{v}, w) -dimensional representation of $B_n^{f_r}$ is said to be ϑ -semistable if, for any sub-representation $S = (S_0, S_1)$, one has:

if $S_0 \subseteq \ker j$, then $\vartheta \cdot (\dim S_0, \dim S_1) \leq 0$;

if
$$S_0 \supseteq \operatorname{Im} i_k$$
 for $k = 1, \dots, n-1$, (*)

then
$$\vartheta \cdot (\dim S_0, \dim S_1) \leq \vartheta \cdot (v_0, v_1)$$
. (**)

A ϑ -semistable representation is ϑ -stable if strict inequality holds in (*) whenever $S \neq 0$ and in (**) whenever $S \neq (V_0, V_1)$.

Theorem

For every $n, c \ge 1$, the variety $Hilb^{c}(X_{n})$ is isomorphic to an irreducible connected component of the quotient

$$\mathsf{Rep}\left(B_n^{\mathsf{fr}}, \vec{v}_c, 1\right)_{\vartheta_c}^{ss} / \!/_{\vartheta_c} \, \mathsf{GL}_c(\mathbb{C}) \times \mathsf{GL}_c(\mathbb{C}),$$

where $\vec{v}_c = (c, c)$ and $\vartheta_c = (2c, -2c+1)$.

There are new examples of quiver varieties that are not of the Nakajima type