Hilbert schemes of points and quiver varieties

Ugo Bruzzo

Scuola Internazionale Superiore di Studi Avanzati (Trieste) Istituto Nazionale di Fisica Nucleare

$$
\begin{aligned}
& \text { Workshop on New Perspectives on } \\
& \text { Moduli Spaces in Gauge Theory } \\
& \qquad 1 \text { - } 5 \text { August } 2016 \\
& \text { Institute for Mathematical Sciences, } \\
& \text { National University of Singapore }
\end{aligned}
$$

joint work with C. Bartocci, V. Lanza and C. Rava

Framed sheaves on Hirzebruch surfaces

n-th Hirzebruch surface $\Sigma_{n}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-n)\right) \subset \mathbb{P}^{1} \times \mathbb{P}^{2}$

$$
\begin{aligned}
& X_{n}=\operatorname{tot} \mathcal{O}_{\mathbb{P}^{1}}(-n) \xrightarrow{\subset} \sum_{n} \\
& H^{2}=n, \quad E^{2}=-n
\end{aligned}
$$

$$
\operatorname{Pic}\left(\Sigma_{n}\right) \simeq \mathbb{Z} H \oplus \mathbb{Z} F
$$

X_{n} is a resolution of $\mathbb{C}^{2} / \mathbb{Z}_{n}$, with \mathbb{Z}_{n} acting as $(x, y) \rightsquigarrow(\omega x, \omega y)$

Monads for sheaves \mathcal{E} in $\mathcal{M}^{n}(r, a, c)$
(framed on H to $\mathcal{O}_{H}^{\oplus r}$, normalized to $0 \leq a \leq r-1$)
$r=r k \mathcal{E}, \quad c_{1}(\mathcal{E})=a E, \quad c=c_{2}(\mathcal{E})$

$$
0 \longrightarrow \mathcal{U} \xrightarrow{\alpha} \mathcal{V} \xrightarrow{\beta} \mathcal{W} \longrightarrow 0
$$

where

$$
\begin{aligned}
& \mathcal{U}:=\mathcal{O}_{\Sigma_{n}}(0,-1)^{\oplus k_{1}}, \mathcal{V}:=\mathcal{O}_{\Sigma_{n}}(1,-1)^{\oplus k_{2}} \oplus \mathcal{O}_{\Sigma_{n}}^{\oplus k_{4}}, \\
& \mathcal{W}:=\mathcal{O}_{\Sigma_{n}}(1,0)^{\oplus k_{3}} \\
& k_{1}=c+\frac{1}{2} n a(a-1), \quad k_{2}=k_{1}+n a, \quad k_{3}=k_{1}+(n-1) a, \quad k_{4}=k_{1}+r-a
\end{aligned}
$$

Theorem

$\mathcal{M}^{n}(r, a, c)$ is a smooth irreducible quasi-projective variety of dimension

$$
2 r \Delta=2 r c_{2}(\varepsilon)-(r-1) c_{1}(\mathcal{E})^{2}=2 r c+(r-1) n a^{2}
$$

It is nonempty if and only if

$$
c+\frac{1}{2} n a(a-1) \geq 0
$$

$$
n \geq 3
$$

For $n \geq 3$ the quiver is not a double. One could expect to have a Poisson - instead of symplectic - structure and a related moment map. However we are not able to implement this and rather explicitly fix an ideal I_{n} in the path algebra.
Generators:

$$
\left\{\begin{array}{l}
a_{1} c_{1}=a_{2} c_{2}, \quad \text { when } n \geq 2, \\
c_{1} a_{1}+i_{1} j=c_{2} a_{2}, \quad a_{1} c_{2}=a_{2} \ell_{1}, \quad c_{2} a_{1}+i_{2} j=\ell_{1} a_{2}, \quad \text { when } n \geq 3 \tag{1}\\
a_{1} \ell_{t}=a_{2} \ell_{t+1}, \quad \ell_{t} a_{1}+i_{t+2} j=\ell_{t+1} a_{2} \quad \text { for } \quad t=1, \ldots, n-3 \\
\quad \text { when } n \geq 4
\end{array}\right.
$$

(We have not only added a framing vertex to Q_{n}, but also "framed" the ideal I_{n})

Define $B_{n}^{\mathrm{fr}}=\mathbb{C} Q_{n}^{\mathrm{fr}} / I_{n}$

Definition

Fix $\vartheta \in \mathbb{R}^{2}$. $A(\vec{v}, w)$-dimensional representation of $B_{n}^{f r}$ is said to be ϑ-semistable if, for any sub-representation $S=\left(S_{0}, S_{1}\right)$, one has:

$$
\begin{gathered}
\text { if } S_{0} \subseteq \text { ker } j \text {, then } \vartheta \cdot\left(\operatorname{dim} S_{0}, \operatorname{dim} S_{1}\right) \leq 0 ; \\
\text { if } S_{0} \supseteq \operatorname{Im} i_{k} \text { for } k=1, \ldots, n-1 \\
\text { then } \vartheta \cdot\left(\operatorname{dim} S_{0}, \operatorname{dim} S_{1}\right) \leq \vartheta \cdot\left(v_{0}, v_{1}\right)
\end{gathered}
$$

A ϑ-semistable representation is ϑ-stable if strict inequality holds in $\left(^{*}\right)$ whenever $S \neq 0$ and in $\left({ }^{* *}\right)$ whenever $S \neq\left(V_{0}, V_{1}\right)$.

Theorem

For every $n, c \geq 1$, the variety $\operatorname{Hilb}^{c}\left(X_{n}\right)$ is isomorphic to an irreducible connected component of the quotient

$$
\operatorname{Rep}\left(B_{n}^{\mathrm{fr}}, \vec{v}_{c}, 1\right)_{\vartheta_{c}}^{s s} / / \vartheta_{c} \mathrm{GL}_{c}(\mathbb{C}) \times \mathrm{GL}_{c}(\mathbb{C})
$$

where $\vec{v}_{c}=(c, c)$ and $\vartheta_{c}=(2 c,-2 c+1)$.

There are new examples of quiver varieties that are not of the Nakajima type

