On Atiyah's Linear Independence Conjecture for Four Points in a Hyperbolic Plane

Ying Zhang
Soochow University

Joint work with Jiming Ma

Workshop on Moduli Spaces of Geometric Structures 15-19 August 2016, IMS, NUS

Berry-Robbins Problem

Let $\mathcal{C}_{n}\left(\mathbf{R}^{3}\right)$ denote the space of configurations of n distinct ordered points in \mathbf{R}^{3}, the Euclidean 3-space.

In their study of the spin-statistic theorem in quantum mechanics, Berry and Robbins (1997) posed a very natural problem:

Berry-Robbins Problem: To construct, for each n, a continuous map

$$
f_{n}: \mathcal{C}_{n}\left(\mathbf{R}^{3}\right) \longrightarrow U(n) / U(1)^{n}
$$

compatible with the action of the symmetric group by permutating the points and the vectors, respectively.

A candidate solution for all n was first presented by Atiyah (2000) relying upon a certain non-degeneracy conjecture being true.

Atiyah's candidate solution

The unitary condition can be relaxed to require a map

$$
F_{n}: \mathcal{C}_{n}\left(\mathbf{R}^{3}\right) \longrightarrow \mathrm{GL}(n, \mathbf{C}) / \mathbf{C}^{* n}
$$

Given $\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right) \in \mathcal{C}_{n}\left(\mathbf{R}^{3}\right)$, this is equivalent to defining n points in $\mathbf{C} P^{n-1}$ which are linearly independent:

$$
p_{1}, \cdots, p_{n} \in \mathbf{C} P^{n-1}
$$

Let us represent a point $\left[c_{0}, c_{1}, \cdots, c_{n-2}, c_{n-1}\right]$ in $\mathbf{C} P^{n-1}$ via the nonzero polynomial $c_{0} t^{n-1}+c_{1} t^{n-2}+\cdots, c_{n-2} t+c_{n-1}$ of degree $\leq n-1$ in a Riemann sphere variable $t \in \mathbf{C} P^{1}$. In homogeneous coordinates $t=[z, w]$, this is the homogeneous polynomial

$$
c_{0} z^{n-1}+c_{1} z^{n-2} w+\cdots+c_{n-2} z w^{n-2}+c_{n-1} w^{n-1}
$$

In particular, $t-t_{0}$ with root $t_{0}=\left[z_{0}, w_{0}\right]$ is $w_{0} z-z_{0} w$.

Construction of Atiyah's candidate solution

For each ordered pair $i \neq j$, we have a unit vector

$$
\mathbf{v}_{i j}=\frac{\mathbf{x}_{j}-\mathbf{x}_{i}}{\left|\mathbf{x}_{j}-\mathbf{x}_{i}\right|} \in S^{2} .
$$

In particular, $\mathbf{v}_{i j}+\mathbf{v}_{j i}=\mathbf{0}$.
We identify the unit sphere S^{2} with the Riemann sphere $\mathbf{C} P^{1}$ via a fixed stereographic projection.

Let $t_{i j} \in \mathbf{C} P^{1}$ be identified with $\mathbf{v}_{i j} \in S^{2}$ for all $i \neq j$. In particular,

$$
t_{i j} \neq t_{j i} .
$$

Let p_{i} be the polynomial in $t \in \mathbf{C} P^{1}$ with roots $t_{i j}, j \neq i$; that is,

$$
p_{i}(t)=\prod_{j \neq i}\left(t-t_{i j}\right) .
$$

Atiyah's Conjecture

Then Atiyah's candidate map F_{n} is given by

$$
F_{n}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)=\left(p_{1}, \cdots, p_{n}\right)
$$

This map F_{n} will give a solution to Berry-Robbins Problem if the following conjecture of Atiyah is true.

Atiyah's Linear Independence Conjecture (2000)

For every point $\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)$ in the configuration space $\mathcal{C}_{n}\left(\mathbf{R}^{3}\right)$, the polynomials p_{1}, \cdots, p_{n} are C-linearly independent.

Atiyah's conjecture is clearly equivalent to that the determinant D_{n} of the $n \times n$ matrix with row vectors formed by the coefficients of the polynomials p_{1}, \cdots, p_{n} is non-vanishing.

Invariance; Easy cases

Different choices of stereographic projections result in a PSL(2, C) change of coordinates in $\mathbf{C} P^{1}$.

Proposition. The linear independence in Atiyah's conjecture is preserved under a $\operatorname{PSL}(2, \mathbf{C})$ change of coordinates in $\mathbf{C} P^{1}$.

Atiyah noticed that his conjecture is true in the following cases:
Case 1. $n=2$: Trivial.
In fact, $p_{1}(t)=t-t_{12}, p_{2}(t)=t-t_{21}$ and $D_{2}=t_{12}-t_{21} \neq 0$.
Case 2. All the points lie on the same line: Almost trivial. In fact, we may assume that $t_{12}=[0,1]$ and $t_{21}=[1,0]$. Then

$$
p_{i}=z^{i-1} w^{n-i}=t^{i-1}, i=1, \cdots, n .
$$

Case 3. $n=3$: Non-trivial but ... easy.

Additional conjectures

To prove Atiyah's original conjecture (Conjecture 1), Atiyah and Sutcliffe (2002) amassed strong numerical evidence and proposed two additional conjectures.

Let $\mathbf{D}_{n}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)$ be suitably normalized determinant.
Conjecture 2 (Atiyah-Sutcliffe) $\left|\mathbf{D}_{n}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)\right| \geq 1$.
Conjecture 3 (Atiyah-Sutcliffe)

$$
\left|\mathbf{D}_{n}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)\right|^{n-2} \geq \prod_{i=1}^{n}\left|\mathbf{D}_{n-1}\left(\mathbf{x}_{1}, \cdots, \hat{\mathbf{x}}_{i} \cdots, \mathbf{x}_{n}\right)\right| .
$$

It is east to see that

$$
\text { Conjecture } 3 \Longrightarrow \text { Conjecture } 2 \Longrightarrow \text { Conjecture } 1
$$

All-but-one collinear; $n=4$

Proposition. (Doković, 2002)
Atiyah's Conjecture 1 is true if the configuration of the n points has a reflection axis which contains at least $n-2$ points.

This is not very difficult to prove.
The next step, $n=4$, however, turns out to be very difficult!
Michael Eastwood and Paul Norbury (2002) gave a computer added proof for Conjecture $1(n=4)$ using Maple.

Mazen Bou Khuzam and Michael Johnson (2014) gave computer added proofs for Conjectures 2 and $3(n=4)$.

Hyperbolic version

At the very beginning, Atiyah had notice that there is a hyperbolic version for Berry-Robbins problem and a similar candidate solution.
For any two distinct points \mathbf{x}_{i} and \mathbf{x}_{j} in hyperbolic space \mathbf{H}^{3}, let $\mathbf{v}_{i j} \in \partial \mathbf{H}^{3}$ be the point that the ray running from \mathbf{x}_{i} to \mathbf{x}_{j} hits $\partial \mathbf{H}^{3}$, the boundary at infinity of \mathbf{H}^{3}.
Let $t_{i j} \in \mathbf{C} P^{1}$ be associated with $\mathbf{v}_{i j} \in \partial \mathbf{H}^{3}$ under the identification of $\partial \mathbf{H}^{3}$ with $\mathbf{C} P^{1}$ via a fixed stereographic projection. One can similarly form n polynomials of a $\mathbf{C} P^{1}$ variable of degree $\leq n-1$.

There are hyperbolic versions of Conjectures 1-3 of Atiyah and Atiyah-Sutcliffe.

Hyperbolic versions of the conjectures are true in the easy cases.

Progress on hyperbolic version Conjecture 1: $n=4$

Proposition. Atiyah's Conjecture 1 is true if some $n-1$ points of the n points in \mathbf{H}^{3} lie on the same line.

This is not difficult to prove.
Progress on hyperbolic version Conjecture 1 for 4 points:
Joseph Malkoun (2015) obtained a human proof for Conjecture 1 (Hyperbolic 4 points: non-planar ...).

Jiming Ma and Ying Zhang (2016) obtain a (computer-)human proof for Conjecture 1 (Hyperbolic 4 points: planar).

Our Proof

Denote

$$
\begin{aligned}
& t_{12}=d, \quad t_{13}=\infty, \quad t_{14}=-D ; \\
& t_{21}=-A, \quad t_{24}=-C, \quad t_{23}=-E ; \\
& t_{34}=-B, \quad t_{31}=0, \quad t_{32}=b ; \\
& t_{41}=a, \quad t_{42}=c, \quad t_{43}=e,
\end{aligned}
$$

where the roman letters a, b, c, d, e and A, B, C, D, E are positive numbers. Then we have

$$
\mathbf{D}_{4}=\left|\begin{array}{cccc}
0 & 1 & D-d & -D d \\
1 & A+C+E & A C+A E+C E & A C E \\
1 & B-b & -B b & 0 \\
1 & -a-c-e & a c+a e+c e & -a c e
\end{array}\right|
$$

Our Proof

An easy calculation (using Maple, say) of the polynomial expansion of \mathbf{D}_{4} gives 16 positive terms and 48 negative terms:
$\mathbf{D}_{4}=B a c d e+$ Dabce + ADace $+B D a c d+B D a d e+B D c d e$

+ CDace + DEace + ACDbd + ACEad + ACEcd + ACEde
+ ADEbd + CDEbd + ABCEd + ACDEb
- abcde - Aacde - Babce - Cacde - Dabcd - Dabde
- Dbcde - Eacde - ACace - ADacd - ADade - ADcde
- AEace - BDabd - BDace - BDbcd - BDbde - CDacd
- CDade - CDcde - CEace - DEacd - DEade - DEcde
- ABDbd - ACDad - ACDcd - ACDde - ACEac - ACEae
- ACEbd - ACEce - ADEad - ADEcd - ADEde - BCDbd
- BDEbd - CDEad - CDEcd - CDEde - ABCDd - ABCEb
- ABDEd - ACDEa - ACDEc - ACDEe - BCDEd - ABCDE .

Our Proof for convex quadrilaterals

We show that in the expansion of \mathbf{D}_{4}, there are 16 negative terms whose sum with the 16 positive terms is negative, hence $\mathbf{D}_{4}<0$.

Case 1. Convex quadrilateral: $0<\{a, b\}<c<\{d, e\}$ and $0<\{A, B\}<C<\{D, E\}$. In this case, we have

$$
\begin{aligned}
& \text { +Bacde - Cacde + Dabce - Dabde } \\
& + \text { ADace }-A D a d e+B D a c d-C D a c d \\
& \text { +BDade - DEcde + BDcde - CDcde } \\
& + \text { CDace - CDade + DEace - DEade } \\
& + \text { ACDbd - ACDcd + ACEad - ADEad } \\
& + \text { ACEcd - CDEde }+ \text { ACEde }- \text { ADEde } \\
& + \text { ADEbd - ADEcd + CDEbd - CDEcd } \\
& +A B C E d-A B D E d+A C D E b-A C D E c<0 .
\end{aligned}
$$

Our Proof for concave quadrilaterals

Case 2. Concave quadrilateral: $0<a<b<c<d<e$ and $0<A<B<C<D<E$ where we write $t_{31}=0, t_{13}=\infty$,

$$
a=t_{32}, b=t_{12}, c=t_{42}, d=t_{41}, e=t_{43}
$$

$$
-A=t_{34},-B=t_{14},-C=t_{24},-D=t_{21},-E=t_{23}
$$

In this case, we have $\mathbf{D}_{4}<0$ since

$$
\begin{aligned}
& +A b c d e-D b c d e+B a c d e ~-~ C b c d e ~ \\
+ & A B b c d-B D b c d+A B b c e-B D b c e \\
& +A B b d e-B D b d e+B C c d e-C E c d e \\
& +B D c d e-C D c d e+B E c d e-D E c d e \\
+ & B C D a b-B C D b c+B C E a b-B C E b c \\
+ & B D E a b-B D E b c+C D E b c-C D E c e \\
+ & C D E b d-C D E c d+C D E b e-C D E d e \\
+ & A C D E b-B C D E d+B C D E a-B C D E c<0 .
\end{aligned}
$$

Thanks

THANKS FOR YOUR ATTENTION !

