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Berry–Robbins Problem

Let Cn(R3) denote the space of configurations of n distinct ordered
points in R3, the Euclidean 3-space.

In their study of the spin-statistic theorem in quantum mechanics,
Berry and Robbins (1997) posed a very natural problem:

Berry-Robbins Problem: To construct, for each n, a continuous
map

fn : Cn(R3) −→ U(n)/U(1)n

compatible with the action of the symmetric group by permutating
the points and the vectors, respectively.

A candidate solution for all n was first presented by Atiyah (2000)
relying upon a certain non-degeneracy conjecture being true.
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Atiyah’s candidate solution

The unitary condition can be relaxed to require a map

Fn : Cn(R3) −→ GL(n,C)/C∗n.

Given (x1, · · · , xn) ∈ Cn(R3), this is equivalent to defining n points
in CPn−1 which are linearly independent:

p1, · · · , pn ∈ CPn−1.

Let us represent a point [c0, c1, · · · , cn−2, cn−1] in CPn−1 via the
nonzero polynomial c0t

n−1 + c1t
n−2 + · · · , cn−2t + cn−1 of degree

≤ n − 1 in a Riemann sphere variable t ∈ CP1. In homogeneous
coordinates t = [z ,w ], this is the homogeneous polynomial

c0z
n−1 + c1z

n−2w + · · ·+ cn−2zw
n−2 + cn−1w

n−1.

In particular, t − t0 with root t0 = [z0,w0] is w0z − z0w .
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Construction of Atiyah’s candidate solution

For each ordered pair i 6= j , we have a unit vector

vij =
xj − xi
|xj − xi |

∈ S2.

In particular, vij + vji = 0.

We identify the unit sphere S2 with the Riemann sphere CP1 via a
fixed stereographic projection.

Let tij ∈ CP1 be identified with vij ∈ S2 for all i 6= j . In particular,

tij 6= tji .

Let pi be the polynomial in t ∈ CP1 with roots tij , j 6= i ; that is,

pi (t) =
∏
j 6=i

(t − tij).
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Atiyah’s Conjecture

Then Atiyah’s candidate map Fn is given by

Fn(x1, · · · , xn) = (p1, · · · , pn).

This map Fn will give a solution to Berry–Robbins Problem if the
following conjecture of Atiyah is true.

Atiyah’s Linear Independence Conjecture (2000)

For every point (x1, · · · , xn) in the configuration space Cn(R3), the
polynomials p1, · · · , pn are C-linearly independent.

Atiyah’s conjecture is clearly equivalent to that the determinant Dn

of the n × n matrix with row vectors formed by the coefficients of
the polynomials p1, · · · , pn is non-vanishing.
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Invariance; Easy cases

Different choices of stereographic projections result in a PSL(2,C)
change of coordinates in CP1.

Proposition. The linear independence in Atiyah’s conjecture is
preserved under a PSL(2,C) change of coordinates in CP1.

Atiyah noticed that his conjecture is true in the following cases:

Case 1. n = 2: Trivial.
In fact, p1(t) = t − t12, p2(t) = t − t21 and D2 = t12 − t21 6= 0.

Case 2. All the points lie on the same line: Almost trivial.
In fact, we may assume that t12 = [0, 1] and t21 = [1, 0]. Then

pi = z i−1wn−i = t i−1, i = 1, · · · , n.

Case 3. n = 3: Non-trivial but ... easy.
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Additional conjectures

To prove Atiyah’s original conjecture (Conjecture 1), Atiyah and
Sutcliffe (2002) amassed strong numerical evidence and proposed
two additional conjectures.

Let Dn(x1, · · · , xn) be suitably normalized determinant.

Conjecture 2 (Atiyah–Sutcliffe) |Dn(x1, · · · , xn)| ≥ 1.

Conjecture 3 (Atiyah–Sutcliffe)

|Dn(x1, · · · , xn)|n−2 ≥
∏n

i=1 |Dn−1(x1, · · · , x̂i · · · , xn)|.

It is east to see that

Conjecture 3 =⇒ Conjecture 2 =⇒ Conjecture 1
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All-but-one collinear; n = 4

Proposition. (Doković, 2002)
Atiyah’s Conjecture 1 is true if the configuration of the n points
has a reflection axis which contains at least n − 2 points.

This is not very difficult to prove.

The next step, n = 4, however, turns out to be very difficult!

Michael Eastwood and Paul Norbury (2002) gave a computer
added proof for Conjecture 1 (n = 4) using Maple.

Mazen Bou Khuzam and Michael Johnson (2014) gave computer
added proofs for Conjectures 2 and 3 (n = 4).
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Hyperbolic version

At the very beginning, Atiyah had notice that there is a hyperbolic
version for Berry–Robbins problem and a similar candidate solution.

For any two distinct points xi and xj in hyperbolic space H3, let
vij ∈ ∂H3 be the point that the ray running from xi to xj hits ∂H3,
the boundary at infinity of H3.

Let tij ∈ CP1 be associated with vij ∈ ∂H3 under the identification
of ∂H3 with CP1 via a fixed stereographic projection. One can
similarly form n polynomials of a CP1 variable of degree ≤ n − 1.

There are hyperbolic versions of Conjectures 1–3 of Atiyah and
Atiyah–Sutcliffe.

Hyperbolic versions of the conjectures are true in the easy cases.
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Progress on hyperbolic version Conjecture 1: n = 4

Proposition. Atiyah’s Conjecture 1 is true if some n − 1 points of
the n points in H3 lie on the same line.

This is not difficult to prove.

Progress on hyperbolic version Conjecture 1 for 4 points:

Joseph Malkoun (2015) obtained a human proof for Conjecture 1
(Hyperbolic 4 points: non-planar ...).

Jiming Ma and Ying Zhang (2016) obtain a (computer-)human
proof for Conjecture 1 (Hyperbolic 4 points: planar).
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Our Proof

Denote

t12 = d , t13 = ∞, t14 = −D;

t21 = −A, t24 = −C , t23 = −E ;

t34 = −B, t31 = 0, t32 = b;

t41 = a, t42 = c , t43 = e,

where the roman letters a, b, c , d , e and A,B,C ,D,E are positive
numbers. Then we have

D4 =

∣∣∣∣∣∣∣∣
0 1 D − d −Dd
1 A + C + E AC + AE + CE ACE
1 B − b −Bb 0
1 −a− c − e ac + ae + ce −ace

∣∣∣∣∣∣∣∣ .
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Our Proof

An easy calculation (using Maple, say) of the polynomial expansion
of D4 gives 16 positive terms and 48 negative terms:

D4 = Bacde + Dabce + ADace + BDacd + BDade + BDcde

+ CDace + DEace + ACDbd + ACEad + ACEcd + ACEde

+ ADEbd + CDEbd + ABCEd + ACDEb

− abcde − Aacde − Babce − Cacde − Dabcd − Dabde

− Dbcde − Eacde − ACace − ADacd − ADade − ADcde

− AEace − BDabd − BDace − BDbcd − BDbde − CDacd

− CDade − CDcde − CEace − DEacd − DEade − DEcde

− ABDbd − ACDad − ACDcd − ACDde − ACEac − ACEae

− ACEbd − ACEce − ADEad − ADEcd − ADEde − BCDbd

− BDEbd − CDEad − CDEcd − CDEde − ABCDd − ABCEb

− ABDEd − ACDEa− ACDEc − ACDEe − BCDEd − ABCDE .
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Our Proof for convex quadrilaterals

We show that in the expansion of D4, there are 16 negative terms
whose sum with the 16 positive terms is negative, hence D4 < 0.

Case 1. Convex quadrilateral: 0 < {a, b} < c < {d , e} and
0 < {A,B} < C < {D,E}. In this case, we have

+Bacde − Cacde + Dabce − Dabde

+ADace − ADade + BDacd − CDacd

+BDade − DEcde + BDcde − CDcde

+CDace − CDade + DEace − DEade

+ACDbd − ACDcd + ACEad − ADEad

+ACEcd − CDEde + ACEde − ADEde

+ADEbd − ADEcd + CDEbd − CDEcd

+ABCEd − ABDEd + ACDEb − ACDEc < 0.
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Our Proof for concave quadrilaterals

Case 2. Concave quadrilateral: 0 < a < b < c < d < e and
0 < A < B < C < D < E where we write t31 = 0, t13 =∞,

a = t32, b = t12, c = t42, d = t41, e = t43
−A = t34, −B = t14, −C = t24, −D = t21, −E = t23.

In this case, we have D4 < 0 since

+Abcde − Dbcde + Bacde − Cbcde

+ABbcd − BDbcd + ABbce − BDbce

+ABbde − BDbde + BCcde − CEcde

+BDcde − CDcde + BEcde − DEcde

+BCDab − BCDbc + BCEab − BCEbc

+BDEab − BDEbc + CDEbc − CDEce

+CDEbd − CDEcd + CDEbe − CDEde

+ACDEb − BCDEd + BCDEa− BCDEc < 0.
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Thanks

THANKS FOR YOUR ATTENTION !
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