Boolean valued second order logic

Daisuke Ikegami Tokyo Denki University

Joint work with Jouko Väänänen

16 January 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We will work on 2nd-order logic.

We work in ZFC.

Review; 1st-order logic

1st-order logic enjoys several nice properties:

- Completeness Theorem
- The set of valid sentences is Σ⁰₁.
- Compactness Theorem
- Löwenheim-Skolem-Tarski Theorem

Review; 1st-order logic

1st-order logic enjoys several nice properties:

- Completeness Theorem
- The set of valid sentences is Σ⁰₁.
- Compactness Theorem
- Löwenheim-Skolem-Tarski Theorem

How about 2nd-order logic?

2nd-order logic; Two semantics

- 1. Henkin semantics: Very simple (very week), enjoys completeness, compactness.
- 2. Full semantics: Highly complex (very powerful), does not enjoy completeness, compactness.

Henkin semantics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Henkin semantics is the semantics for 2nd-order logic given by Henkin models.

Henkin semantics

Henkin semantics is the semantics for 2nd-order logic given by Henkin models.

Henkin models _	Models of ZFC
2nd-order logic	Set theory

Definition

A 2nd-order structure $M = (A, \mathcal{G}, ...)$ is a Henkin model if it satisfies Comprehension Axiom for each 2nd-order formula.

Henkin semantics

Henkin semantics is the semantics for 2nd-order logic given by Henkin models.

Henkin models	_ Models of ZFC
2nd-order logic	Set theory

Definition

A 2nd-order structure M = (A, G, ...) is a Henkin model if it satisfies Comprehension Axiom for each 2nd-order formula.

Example

A 2nd-order structure $M = (A, \mathcal{P}(A), ...)$ is called a *full 2nd-order structure*.

Henkin semantics ctd.

Theorem (Henkin)

Henkin semantics is sound and complete to a standard syntax in 2nd-order logic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Henkin semantics ctd.

Theorem (Henkin)

Henkin semantics is sound and complete to a standard syntax in 2nd-order logic.

Point: One can find a 1st-order theory T such that

" $M = (A, \mathcal{G}, \ldots)$ is a Henkin model" $\iff (\mathcal{G}, \ldots) \vDash T$.

Henkin semantics ctd.

Theorem (Henkin)

Henkin semantics is sound and complete to a standard syntax in 2nd-order logic.

Point: One can find a 1st-order theory T such that

$$``M = (A, \mathcal{G}, \ldots) \text{ is a Henkin model''} \iff (\mathcal{G}, \ldots) \vDash T.$$

Henkin semantics is essentially the same as the standard semantics for 1st-order logic.

Full semantics

Full semantics = semantics with full 2nd-order structures

Recall

A 2nd-order structure $M = (A, \mathcal{P}(A), ...)$ is called a full 2nd-order structure.

Full semantics

Full semantics = semantics with full 2nd-order structures

Recall

A 2nd-order structure $M = (A, \mathcal{P}(A), ...)$ is called a full 2nd-order structure.

Theorem (Väänänen)

The set of valid 2nd-order sentences with full semantics is Π_2 -complete in the language of set theory.

Full semantics

Full semantics = semantics with full 2nd-order structures

Recall

A 2nd-order structure $M = (A, \mathcal{P}(A), ...)$ is called a full 2nd-order structure.

Theorem (Väänänen)

The set of valid 2nd-order sentences with full semantics is Π_2 -complete in the language of set theory.

Note: One cannot expect a completeness result for full semantics with 'simple' syntax.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Boolean-valued semantics gives us a powerful 2nd-order logic sitting between Henkin semantics and full semantics.

Boolean-valued semantics gives us a powerful 2nd-order logic sitting between Henkin semantics and full semantics.

Idea: Consider all the Boolean-valued subsets of the form $f: A \to \mathbb{B}$,

Boolean-valued semantics gives us a powerful 2nd-order logic sitting between Henkin semantics and full semantics.

Idea: Consider all the Boolean-valued subsets of the form $f: A \to \mathbb{B}$,

where A: the 1st-order universe, \mathbb{B} : a complete Boolean algebra

Boolean-valued semantics gives us a powerful 2nd-order logic sitting between Henkin semantics and full semantics.

Idea: Consider all the Boolean-valued subsets of the form $f: A \to \mathbb{B}$,

where A: the 1st-order universe, \mathbb{B} : a complete Boolean algebra

Note: When $\mathbb{B} = \{0, 1\}$, it is the same as considering all the subsets $\mathcal{P}(A)$, i.e., full semantics.

Boolean-valued semantics; Boolean-valued structures

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

From now on, \mathcal{L} will be a relational language $\{R_1, \ldots, R_m\}$.

Boolean-valued semantics; Boolean-valued structures

From now on, \mathcal{L} will be a relational language $\{R_1, \ldots, R_m\}$.

Definition

A Boolean-valued \mathcal{L} -structure is a tuple $M = (A, \mathbb{B}, \{R_i^M\})$ where

- 1. A is a nonempty set,
- 2. ${\mathbb B}$ is a complete Boolean algebra, and
- 3. for each *n*-ary relational symbol R_i in \mathcal{L} , $R_i^M : A^n \to \mathbb{B}$.

Boolean-valued semantics; Boolean-valued structures

From now on, \mathcal{L} will be a relational language $\{R_1, \ldots, R_m\}$.

Definition

A Boolean-valued \mathcal{L} -structure is a tuple $M = (A, \mathbb{B}, \{R_i^M\})$ where

- 1. A is a nonempty set,
- 2. ${\mathbb B}$ is a complete Boolean algebra, and
- 3. for each *n*-ary relational symbol R_i in \mathcal{L} , $R_i^M \colon \mathcal{A}^n \to \mathbb{B}$.

Example

If $\mathbb{B} = \{0, 1\}$, R_i^M is a relation in 1st-order logic and M is the same as a 1st-order structure.

Boolean valued semantics; the interpretation

From now on,

```
y or \vec{y}: 1st-order variables, X: 2nd-order variables.
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Boolean valued semantics; the interpretation

From now on,

y or \vec{y} : 1st-order variables, X: 2nd-order variables.

Definition

Let $M = (A, \mathbb{B}, \{R_i\})$ be a Boolean-valued \mathcal{L} -structure. Then we assign $\|\phi[\vec{a}, \vec{f}]\|^M$ to each 2nd-order formula $\phi, \vec{a} \in A^{<\omega}$, and $\vec{f} \in (A \to \mathbb{B})^{<\omega}$ as follows:

Boolean valued semantics; the interpretation

From now on,

y or \vec{y} : 1st-order variables, X: 2nd-order variables.

Definition

Let $M = (A, \mathbb{B}, \{R_i\})$ be a Boolean-valued \mathcal{L} -structure. Then we assign $\|\phi[\vec{a}, \vec{f}]\|^M$ to each 2nd-order formula $\phi, \vec{a} \in A^{<\omega}$, and $\vec{f} \in (A \to \mathbb{B})^{<\omega}$ as follows:

- 1. ϕ is $R_i(\vec{y})$. Then $||R_i(\vec{y})[\vec{a}]||^M = R_i^M(\vec{a})$.
- 2. ϕ is X(y). Then $||X(y)[a, f]||^M = f(a)$.
- 3. Boolean combinations are as usual.
- 4. ϕ is $\exists y\psi$. Then $\|\exists y\psi[\vec{a},\vec{f}]\|^M = \bigvee_{b\in A} \|\psi[b,\vec{a},\vec{f}]\|^M$.
- 5. ϕ is $\exists X\psi$. Then $\|\exists X\psi[\vec{a},\vec{f}]\|^M = \bigvee_{g:A \to \mathbb{B}} \|\psi[\vec{a},g,\vec{f}]\|^M$.

Definition

A 2nd-order \mathcal{L} -sentence ϕ is Boolean-valid if $\|\phi\|^M = 1$ for any Boolean-valued \mathcal{L} -structure M.

Definition

A 2nd-order \mathcal{L} -sentence ϕ is Boolean-valid if $\|\phi\|^M = 1$ for any Boolean-valued \mathcal{L} -structure M.

Definition

 $\begin{aligned} \mathbf{0}^{2f} &= \{ \phi \mid \phi \text{ is valid w.r.t. full semantics} \} \\ \mathbf{0}^{2b} &= \{ \phi \mid \phi \text{ is Boolean valid} \}. \end{aligned}$

Definition

A 2nd-order \mathcal{L} -sentence ϕ is Boolean-valid if $\|\phi\|^M = 1$ for any Boolean-valued \mathcal{L} -structure M.

Definition

 $0^{2f} = \{\phi \mid \phi \text{ is valid w.r.t. full semantics} \}$ $0^{2b} = \{\phi \mid \phi \text{ is Boolean valid} \}.$

Question 0^{2f} or 0^{2b} , which is more complicated?

Definition

A 2nd-order \mathcal{L} -sentence ϕ is Boolean-valid if $\|\phi\|^M = 1$ for any Boolean-valued \mathcal{L} -structure M.

Definition

 $0^{2f} = \{\phi \mid \phi \text{ is valid w.r.t. full semantics} \}$ $0^{2b} = \{\phi \mid \phi \text{ is Boolean valid} \}.$

Question 0^{2f} or 0^{2b} , which is more complicated?

Answer One canNOT decide in ZFC!

Boolean-valued semantics vs full semantics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Väänänen, I.) If V = L, then $0^{2b} \equiv_T 0^{2f}$.

Boolean-valued semantics vs full semantics

Theorem (Väänänen, I.) If V = L, then $0^{2b} \equiv_T 0^{2f}$.

Theorem (Väänänen, I.)

If you assume Large Cardinals and the Ω -Conjecture, then 0^{2b} is strictly simpler than 0^{2f} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 Ω -logic: a logic on forcing absoluteness Forcing absoluteness: "forcing" + "absoluteness"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 Ω -logic: a logic on forcing absoluteness Forcing absoluteness: "forcing" + "absoluteness" From now on, V is the class of all sets.

 $\Omega\text{-logic:}$ a logic on forcing absoluteness

Forcing absoluteness: "forcing" + "absoluteness"

From now on, V is the class of all sets.

Definition (Ω -validity)

Let ϕ be a Π_2 -sentence in set theory. We say ϕ is Ω -valid if ϕ is true in V and any set forcing extension of V.

 Ω -logic: a logic on forcing absoluteness

Forcing absoluteness: "forcing" + "absoluteness"

From now on, V is the class of all sets.

Definition (Ω -validity)

Let ϕ be a Π_2 -sentence in set theory. We say ϕ is Ω -valid if ϕ is true in V and any set forcing extension of V.

Main interest:
$$\mathbf{0}^{\Omega} = \{\phi \mid \phi \text{ is } \Omega \text{-valid}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

1. Any arithmetical sentence true in V is in 0^{Ω} . Point: Forcings do not change ω .

Example

- 1. Any arithmetical sentence true in V is in 0^{Ω} . Point: Forcings do not change ω .
- 2. (Shoenfield) Any Σ_3^1 -sentence true in V is in 0^{Ω} . Point: Any Π_2^1 -formula is absolute between V and its forcing extensions.

Example

- 1. Any arithmetical sentence true in V is in 0^{Ω} . Point: Forcings do not change ω .
- 2. (Shoenfield) Any Σ_3^1 -sentence true in V is in 0^{Ω} . Point: Any Π_2^1 -formula is absolute between V and its forcing extensions.
- 3. If V = L, then the Π_3^1 -sentence "Every real is constructible" is *not* in 0^{Ω} while it is true in V(=L).

Example

- 1. Any arithmetical sentence true in V is in 0^{Ω} . Point: Forcings do not change ω .
- 2. (Shoenfield) Any Σ_3^1 -sentence true in V is in 0^{Ω} . Point: Any Π_2^1 -formula is absolute between V and its forcing extensions.
- 3. If V = L, then the Π_3^1 -sentence "Every real is constructible" is *not* in 0^{Ω} while it is true in V(=L).
- 4. (Woodin) If you assume Large Cardinals, then every sentence in the 2nd-order arithmetic true in V is in 0^{Ω} .

Example

- 1. Any arithmetical sentence true in V is in 0^{Ω} . Point: Forcings do not change ω .
- 2. (Shoenfield) Any Σ_3^1 -sentence true in V is in 0^{Ω} . Point: Any Π_2^1 -formula is absolute between V and its forcing extensions.
- 3. If V = L, then the Π_3^1 -sentence "Every real is constructible" is *not* in 0^{Ω} while it is true in V(=L).
- 4. (Woodin) If you assume Large Cardinals, then every sentence in the 2nd-order arithmetic true in V is in 0^{Ω} .

Phenomenon: The stronger axioms of infinity you assume, the more sentences belong to 0^{Ω} .

Some words on the $\Omega\text{-}Conjecture$

Recall

The stronger axioms of infinity you assume, the more sentences belong to 0^{Ω} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some words on the Ω -Conjecture

Recall

The stronger axioms of infinity you assume, the more sentences belong to 0^{Ω} .

The Ω -provability explains the above phenomenon using sets of reals with the special property so-called universally Baireness.

Some words on the $\Omega\text{-}Conjecture$

Recall

The stronger axioms of infinity you assume, the more sentences belong to 0^{Ω} .

The Ω -provability explains the above phenomenon using sets of reals with the special property so-called universally Baireness.

The Ω -Conjecture

Under the existence of large cardinals,

```
"\Omega-provability" = "\Omega-validity".
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall 0^{2f} is Π_2 -complete in the language of set theory.

Recall 0^{2f} is Π_2 -complete in the language of set theory. Key Lemma

$$0^{2b} \equiv_{\mathsf{T}} 0^{\Omega}.$$

Point: "Considering all the Boolean-valued subsets of A" = "considering all the subsets of A in any set generic extension".

Recall 0^{2f} is Π_2 -complete in the language of set theory.

Key Lemma

$$0^{2b} \equiv_{\mathsf{T}} 0^{\Omega}.$$

Point: "Considering all the Boolean-valued subsets of A" = "considering all the subsets of A in any set generic extension".

Theorem (Woodin)

Assuming large cardinals and the $\Omega\text{-Conjecture}, \ 0^\Omega$ is Δ_2 in the language of set theory.

Recall 0^{2f} is Π_2 -complete in the language of set theory.

Key Lemma

$$0^{2b} \equiv_{\mathsf{T}} 0^{\Omega}.$$

Point: "Considering all the Boolean-valued subsets of A" = "considering all the subsets of A in any set generic extension".

Theorem (Woodin)

Assuming large cardinals and the $\Omega\text{-Conjecture},~0^\Omega$ is Δ_2 in the language of set theory.

Corollary

Assuming large cardinals and the Ω -Conjecture, then 0^{2b} is strictly simpler than 0^{2f} .

Definition

Let \mathcal{L} be a logic. Then the Löwenheim-Skolem number of $\mathcal{L}(\ell(\mathcal{L}))$ is defined as follows:

 $\ell(\mathcal{L}) = \min\{\kappa \mid \text{if an } \mathcal{L}\text{-sentence } \phi \text{ has a model, then it has a model of size at most } \kappa\}$

Definition

Let \mathcal{L} be a logic. Then the Löwenheim-Skolem number of $\mathcal{L}(\ell(\mathcal{L}))$ is defined as follows:

 $\ell(\mathcal{L}) = \min\{\kappa \mid \text{if an } \mathcal{L}\text{-sentence } \phi \text{ has a model, then it has a model of size at most } \kappa\}$

Example

- 1. If FOL is 1st-order logic with the standard semantics, then $\ell(\text{FOL}) = \omega$.
- 2. If SOL is 2nd-order logic with full semantics, then

 $\ell(SOL) = \sup\{\alpha \mid \alpha \text{ is } \Delta_2\text{-definable in the language of set theory}\}.$

Let BVSOL be Boolean valued second order logic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let BVSOL be Boolean valued second order logic.

```
Theorem (Väänänen, I.)
If V = L, then \ell(BVSOL) = \ell(SOL).
```

Let BVSOL be Boolean valued second order logic.

```
Theorem (Väänänen, I.)
```

```
If V = L, then \ell(\mathsf{BVSOL}) = \ell(\mathsf{SOL}).
```

Theorem (Väänänen, I.)

If ZFC + large cardinals is consistent, then so is ZFC + large cardinals + " $\ell(\mathsf{BVSOL}) < \ell(\mathsf{SOL})$ ".

Let BVSOL be Boolean valued second order logic.

```
Theorem (Väänänen, I.)
```

```
If V = L, then \ell(\mathsf{BVSOL}) = \ell(\mathsf{SOL}).
```

Theorem (Väänänen, I.)

If ZFC + large cardinals is consistent, then so is ZFC + large cardinals + " ℓ (BVSOL) < ℓ (SOL)".

One can obtain similar results for Hanf number for 2nd-order logic, and the compactness number for infinitary 2nd-order logic.

Conclusion

- Henkin semantics and full semantics are the major semantics for 2nd-order logic.
- Henkin semantics is essentially the same as 1st-order logic.
- full semantics is much more powerful than 1st-order logic and highly complicated.
- Boolean-valued semantics is a powerful semantics for 2nd-order logic while it could be simpler and easier to deal with than full semantics depending on set-theoretic assumptions.

The End.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ