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In this talk...

We will work on 2nd-order logic.



From now on...

We work in ZFC.



Review; 1st-order logic

1st-order logic enjoys several nice properties:

• Completeness Theorem

• The set of valid sentences is Σ0
1.

• Compactness Theorem

• Löwenheim-Skolem-Tarski Theorem

How about 2nd-order logic?
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2nd-order logic; Two semantics

1. Henkin semantics: Very simple (very week), enjoys
completeness, compactness.

2. Full semantics: Highly complex (very powerful), does not
enjoy completeness, compactness.



Henkin semantics

Henkin semantics is the semantics for 2nd-order logic given by
Henkin models.

Henkin models

2nd-order logic
=

Models of ZFC

Set theory

Definition
A 2nd-order structure M = (A,G, . . .) is a Henkin model if it
satisfies Comprehension Axiom for each 2nd-order formula.

Example

A 2nd-order structure M = (A,P(A), . . .) is called a full 2nd-order
structure.
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Henkin semantics ctd.

Theorem (Henkin)

Henkin semantics is sound and complete to a standard syntax in
2nd-order logic.

Point: One can find a 1st-order theory T such that

“M = (A,G, . . .) is a Henkin model” ⇐⇒ (G, . . .) ⊨ T .

Henkin semantics is essentially the same as the standard semantics
for 1st-order logic.
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Full semantics

Full semantics = semantics with full 2nd-order structures

Recall
A 2nd-order structure M = (A,P(A), . . .) is called a full 2nd-order
structure.

Theorem (Väänänen)

The set of valid 2nd-order sentences with full semantics is
Π2-complete in the language of set theory.

Note: One cannot expect a completeness result for full semantics
with ‘simple’ syntax.
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Boolean valued semantics

Boolean-valued semantics gives us a powerful 2nd-order logic
sitting between Henkin semantics and full semantics.

Idea: Consider all the Boolean-valued subsets of the form
f : A → B,

where A: the 1st-order universe, B: a complete Boolean algebra

Note: When B = {0, 1}, it is the same as considering all the
subsets P(A), i.e., full semantics.
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Boolean-valued semantics; Boolean-valued structures

From now on, L will be a relational language {R1, . . . ,Rm}.

Definition
A Boolean-valued L-structure is a tuple M = (A,B, {RM

i }) where
1. A is a nonempty set,

2. B is a complete Boolean algebra, and

3. for each n-ary relational symbol Ri in L, RM
i : An → B.

Example

If B = {0, 1}, RM
i is a relation in 1st-order logic and M is the same

as a 1st-order structure.
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Boolean valued semantics; the interpretation

From now on,

y or y⃗ : 1st-order variables, X : 2nd-order variables.

Definition
Let M = (A,B, {Ri}) be a Boolean-valued L-structure. Then we
assign ∥ϕ[⃗a, f⃗ ]∥M to each 2nd-order formula ϕ, a⃗ ∈ A<ω, and
f⃗ ∈ (A → B)<ω as follows:

1. ϕ is Ri (y⃗). Then ∥Ri (y⃗)[⃗a]∥M = RM
i (⃗a).

2. ϕ is X (y). Then ∥X (y)[a, f ]∥M = f (a).

3. Boolean combinations are as usual.

4. ϕ is ∃yψ. Then ∥∃yψ[⃗a, f⃗ ]∥M =
∨

b∈A ∥ψ[b, a⃗, f⃗ ]∥M .

5. ϕ is ∃Xψ. Then ∥∃Xψ[⃗a, f⃗ ]∥M =
∨

g : A→B ∥ψ[⃗a, g , f⃗ ]∥M .
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Boolean-valued semantics; Boolean-validity

Definition
A 2nd-order L-sentence ϕ is Boolean-valid if ∥ϕ∥M = 1 for any
Boolean-valued L-structure M.

Definition

02f = {ϕ | ϕ is valid w.r.t. full semantics}
02b = {ϕ | ϕ is Boolean valid}.

Question
02f or 02b, which is more complicated?

Answer
One canNOT decide in ZFC!
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Boolean-valued semantics vs full semantics

Theorem (Väänänen, I.)

If V = L, then 02b ≡T 02f .

Theorem (Väänänen, I.)

If you assume Large Cardinals and the Ω-Conjecture, then 02b is
strictly simpler than 02f .
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Ω-logic

Ω-logic: a logic on forcing absoluteness

Forcing absoluteness: “forcing” + “absoluteness”

From now on, V is the class of all sets.

Definition (Ω-validity)

Let ϕ be a Π2-sentence in set theory.
We say ϕ is Ω-valid if ϕ is true in V and any set forcing extension
of V .

Main interest: 0Ω = {ϕ | ϕ is Ω-valid}.
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Ω-validity

Example

1. Any arithmetical sentence true in V is in 0Ω.
Point: Forcings do not change ω.

2. (Shoenfield) Any Σ1
3-sentence true in V is in 0Ω.

Point: Any Π1
2-formula is absolute between V and its forcing

extensions.

3. If V = L, then the Π1
3-sentence “Every real is constructible” is

not in 0Ω while it is true in V (= L).

4. (Woodin) If you assume Large Cardinals, then every sentence
in the 2nd-order arithmetic true in V is in 0Ω.

Phenomenon: The stronger axioms of infinity you assume, the
more sentences belong to 0Ω.
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Some words on the Ω-Conjecture

Recall
The stronger axioms of infinity you assume, the more sentences
belong to 0Ω.

The Ω-provability explains the above phenomenon using sets of
reals with the special property so-called universally Baireness.

The Ω-Conjecture

Under the existence of large cardinals,

“Ω-provability” = “Ω-validity”.
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Boolean-valued 2nd-order logic and Ω-logic

Recall
02f is Π2-complete in the language of set theory.

Key Lemma
02b ≡T 0Ω.

Point: “Considering all the Boolean-valued subsets of A” =
“considering all the subsets of A in any set generic extension”.

Theorem (Woodin)

Assuming large cardinals and the Ω-Conjecture, 0Ω is ∆2 in the
language of set theory.

Corollary

Assuming large cardinals and the Ω-Conjecture, then 02b is strictly
simpler than 02f .
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Löwenheim Skolem number

Definition
Let L be a logic. Then the Löwenheim-Skolem number of L
(ℓ(L)) is defined as follows:

ℓ(L) = min{κ | if an L-sentence ϕ has a model, then it has a
model of size at most κ}

Example

1. If FOL is 1st-order logic with the standard semantics, then
ℓ(FOL) = ω.

2. If SOL is 2nd-order logic with full semantics, then

ℓ(SOL) = sup{α | α is ∆2-definable in the language of set theory}.
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Löwenheim Skolem number ctd.

Let BVSOL be Boolean valued second order logic.

Theorem (Väänänen, I.)

If V = L, then ℓ(BVSOL) = ℓ(SOL).

Theorem (Väänänen, I.)

If ZFC + large cardinals is consistent, then so is ZFC + large
cardinals + “ℓ(BVSOL) < ℓ(SOL)”.

One can obtain similar results for Hanf number for 2nd-order logic,
and the compactness number for infinitary 2nd-order logic.
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Conclusion

• Henkin semantics and full semantics are the major semantics
for 2nd-order logic.

• Henkin semantics is essentially the same as 1st-order logic.

• full semantics is much more powerful than 1st-order logic and
highly complicated.

• Boolean-valued semantics is a powerful semantics for
2nd-order logic while it could be simpler and easier to deal
with than full semantics depending on set-theoretic
assumptions.



The End.


