Thoughts on indicators and density notions

Keita Yokoyama partially joint work with Ludovic Patey

JAIST / UC Berkeley

IMS-JSPS Joint Workshop on Mathematical Logic and the Foundations of Mathematics January 16, 2016

Introducing...

- basic ideas of indicators and their (slight) generalization,
- several consequences of the indicator arguments,
- some conservation results of combinatorial principles.

"Indicators are useful to analyze the first-order part of combinatorial statements in second-order arithmetic."

Nonstandard models of arithmetic

In this talk we will mainly use the base system $\text{EFA} = I\Delta_0 + \exp \operatorname{or} \text{RCA}_0^*$, which consists of $I\Delta_0^0 + \exp \operatorname{plus} \Delta_1^0$ -comprehension, and models we will consider will be countable nonstandard. Let $M \models \text{EFA}$.

- *I* ⊆ *M* is said to be a cut (abbr. *I* ⊆_{*e*} *M*) if *a* < *b* ∈ *I* → *a* ∈ *I* and *I* is closed under addition + and multiplication .
- Cod(M) = {X ⊆ M | X is M-finite}, where M-finite set is a set coded by an element in M (by means of the usual binary coding).
- for $Z \in Cod(M)$, |Z| denotes the internal cardinality of Z in M.
- for $I \subseteq_e M$, $\operatorname{Cod}(M/I) := \{X \cap I \mid X \in \operatorname{Cod}(M)\}$.

Proposition

If $I \subseteq_e M$, then I is a Σ_0 -elementary substructure of M.

There are several important types of cuts.

Theorem (exponentially closed cut, Simpson/Smith)

Let $M \models EFA$, and let $I \subsetneq_e M$. Then the following are equivalent.

$$(I, \operatorname{Cod}(M/I)) \models \mathsf{WKL}_0^*.$$

I is closed under exp.

Theorem (semi-regular cut)

Let $M \models EFA$, and let $I \subsetneq_e M$. Then the following are equivalent.

- $(I, \operatorname{Cod}(M/I)) \models \mathsf{WKL}_0.$
- ② I is semi-regular, i.e., if $X \in Cod(M)$ and $|X| \in I$, then $X \cap I$ is bounded in I.

Theorem (strong cut)

Let $M \models EFA$, and let $I \subsetneq_e M$. Then the following are equivalent.

$$(I, \operatorname{Cod}(M/I)) \models \mathsf{ACA}_0.$$

I is strong, i.e., if for any a > I for any b ∈ I and for any f : [[0, a]]³ → b coded in M, there exists Y ⊆ [0, a] such that Y is f-homogeneous and Y ∩ I is unbounded in I.

These combinatorial characterization of cuts play key roles in the definition of indicators.

Indicators

Let T be a theory of second-order arithmetic.

A Σ_0 -definable function $Y : [M]^2 \to M$ is said to be an *indicator* for $T \supseteq WKL_0^*$ if

- $Y(x,y) \leq y$,
- if $x' \le x < y \le y'$, then $Y(x, y) \le Y(x', y')$,
- $Y(x, y) > \omega$ if and only if there exists a cut $I \subseteq_e M$ such that $x \in I < y$ and $(I, \operatorname{Cod}(M/I)) \models T$. (Here, $Y(x, y) > \omega$ means that Y(x, y) > n for any standard nature

(Here, $Y(x, y) > \omega$ means that Y(x, y) > n for any standard natural number *n*.)

Example

- Y(x, y) = max{n : expⁿ(x) ≤ y} is an indicator for WKL₀^{*}.
- $Y(x, y) = \max\{n : \text{any } f[[x, y]]^n \to 2 \text{ has a homogeneous set}$ $Z \subseteq [x, y] \text{ such that } |Z| > \min Z\}$

is an indicator for ACA₀.

Basic properties of indicators

Theorem

If Y is an indicator for a theory T, then for any $n \in \omega$,

 $T \vdash \forall x \exists y Y(x, y) \geq n.$

Theorem

If Y is an indicator for a theory T, then, T is a Π_2^0 -conservative extension of EFA + { $\forall x \exists y Y(x, y) \ge n \mid n \in \omega$ }.

Let
$$F_n^Y(x) = \min\{y \mid Y(x, y) \ge n\}.$$

Theorem

If Y is an indicator for a theory T and $T \vdash \forall x \exists y \theta(x, y)$ for some Σ_1 -formula θ , then, there exists $n \in \omega$ such that $T \vdash \forall x \exists y < F_n^Y(x) \theta(x, y)$.

Set indicators

Let *T* be a theory of second-order arithmetic. A Σ_0 -definable function $Y : \operatorname{Cod}(M) \to M$ is said to be a *set indicator* for $T \supseteq \operatorname{WKL}_0^*$ if

- $Y(F) \leq \max F$,
- if $F \subseteq F'$, then $Y(F) \leq Y(F')$,
- Y(F) > ω if and only if there exists a cut I ⊆_e M such that min F ∈ I < max F and (I, Cod(M/I)) ⊨ T, and F ∩ I is unbounded in I.

Note that if Y is a set indicator, then Y'(x, y) = Y([x, y]) is an indicator function.

Example

 Y(F) = max{m : F is m-dense(RT₂²)} is an indicator for WKL₀ + RT₂².

Actually, density notions provide set indicators for many theories.

Indicators and set indicators More variations

Ramsey-like statements

Definition (Ramsey-like formulas)

A Ramsey-like- Π_2^1 -formula is a Π_2^1 -formula of the form $(\forall f : [\mathbb{N}]^n \to k)(\exists Y)(Y \text{ is infinite } \land \Psi(f, Y))$ where $\Psi(f, Y)$ is of the form $(\forall G \subseteq_{\text{fin}} Y)\Psi_0(f \upharpoonright [[0, \max G]_{\mathbb{N}}]^n, G)$ such that Ψ_0 is a Δ_0^0 -formula.

(Here, $n, k \in \omega$ or they are unbounded parameters.)

- In particular, RTⁿ_k is a Ramsey-like-Π¹₂-statement where Ψ(f, Y) is the formula "Y is homogeneous for f".
- Any Π₂¹-formula of the form ∀X∃YΘ(X, Y) where Θ is a Σ₃⁰-formula is equivalent to a Ramsey-like formula over WKL₀.

A Ramsey-like statement has an indicator given by the density notion.

Density

Definition (EFA, Density notion)

Given a Ramsey-like formula

$$\bar{f} = (\forall f : [\mathbb{N}]^n \to k)(\exists Y)(Y \text{ is infinite } \land \Psi(f, Y)),$$

- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be 0-*dense*(Γ) if |Z|, min Z > 2,
- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be (m + 1)-dense(Γ) if
 - (for any n, k < min Z and) for any f : [[0, max Z]]ⁿ → k, there is an m-dense(Γ) set Y ⊆ Z such that Ψ(f, Y) holds, and,
 - for any partition $Z_0 \sqcup \cdots \sqcup Z_{\ell-1} = Z$ such that $\ell \le Z_0 < \cdots < Z_{\ell-1}$, one of Z_i 's is *m*-dense(Γ).

Note that "*Z* is *m*-dense(Γ)" can be expressed by a Δ_0 -formula.

Put $Y_{\Gamma}(F) := \max\{m \mid F \text{ is } m \text{-dense}(\Gamma)\}.$

Theorem

 Y_{Γ} is a set indicator for WKL₀ + Γ .

Basic properties of indicators (review)

Theorem

If Y is an indicator for a theory T, then for any $n \in \omega$,

 $T \vdash \forall x \exists y Y(x, y) \geq n.$

Theorem

If Y is an indicator for a theory T, then, T is a Π_2^0 -conservative extension of EFA + { $\forall x \exists y Y(x, y) \ge n \mid n \in \omega$ }.

Let
$$F_n^Y(x) = \min\{y \mid Y(x, y) \ge n\}.$$

Theorem

If Y is an indicator for a theory T and $T \vdash \forall x \exists y \theta(x, y)$ for some Σ_1 -formula θ , then, there exists $n \in \omega$ such that $T \vdash \forall x \exists y < F_n^Y(x) \theta(x, y)$.

Basic properties of set indicators

Theorem

If Y is a set indicator for a theory T, then for any $n \in \omega$,

 $T \vdash \forall X \subseteq_{\inf} \mathbb{N} \exists F \subseteq_{\inf} X(Y(F) \ge n).$

Theorem

If Y is a set indicator for a theory T, then, T is a $\tilde{\Pi}_3^0$ -conservative extension of $\operatorname{RCA}_0^* + \{ \forall X \subseteq_{\inf} \mathbb{N} \exists F \subseteq_{\operatorname{fin}} X(Y(F) \ge n) \mid n \in \omega \}.$

Theorem

If Y is a set indicator for a theory T and $T \vdash \forall X \subseteq_{inf} \mathbb{N} \exists F \subseteq_{fin} X\theta(F)$ for some Σ_1 -formula θ , then, there exists $n \in \omega$ such that

 $T \vdash \forall Z \subseteq_{\text{fin}} \mathbb{N}(Y(Z) \ge n \to \exists F \subseteq Z \theta(F)).$

- WKL₀ + RT₂² is a $\tilde{\Pi}_3^0$ -conservative extension of RCA₀^{*} + { $\forall X \subseteq_{inf} \mathbb{N} \exists F \subseteq_{fin} X(F \text{ is } n\text{-dense}(RT_2^2)) \mid n \in \omega$ }. ($\equiv RCA_0 + \{nPH_2^2 \mid n \in \omega\}$)
- WKL₀ + RT² is a $\tilde{\Pi}_3^0$ -conservative extension of RCA₀^{*} + { $\forall X \subseteq_{inf} \mathbb{N} \exists F \subseteq_{fin} X(F \text{ is } n\text{-dense}(RT^2)) \mid n \in \omega$ }.
- ACA₀ + RT = ACA'₀ is a Π_1^1 -conservative extension of RCA₀^{*} + { $\forall X \subseteq_{inf} \mathbb{N} \exists F \subseteq_{fin} X(F \text{ is } n\text{-dense}(RT)) \mid n \in \omega$ }.
- ACA₀ + HT(k) is a Π¹₁-conservative extension of RCA^{*}₀ + {∀X ⊆_{inf} ℝ∃F ⊆_{fin} X(F is n-dense(HT(k))) | n ∈ ω}.
- ACA₀ + HT is a Π_1^1 -conservative extension of RCA₀^{*} + { $\forall X \subseteq_{inf} \mathbb{N} \exists F \subseteq_{fin} X(F \text{ is } n\text{-dense}(HT)) \mid n \in \omega$ }.

• . . .

Here, HT denotes Hindman's theorem.

Some consequences (Generalized Parsons theorem)

Since ω^n -largeness implies *n*-density(0 = 0), *i.e.*, a density notion for WKL₀, we have the following.

Theorem (Generalized Parsons theorem)

Let $\psi(F)$ be a Σ_1^0 -formula with exactly the displayed free variables. Assume that for a given Ramsey-like statement Γ ,

 $\mathsf{WKL}_0 + \Gamma \vdash \forall X \subseteq \mathbb{N}(X \text{ is infinite} \to \exists F \subseteq_{\mathrm{fin}} X\psi(F)).$

Then, there exists $n \in \omega$ such that

 $\mathsf{WKL}_0 + \Gamma \vdash \forall Z \subseteq_{\mathrm{fin}} \mathbb{N}(Z \text{ is } n\text{-dense}(\Gamma) \to \exists F \subseteq Z\psi(F)).$

In particular,

WKL₀
$$\vdash \forall X \subseteq \mathbb{N}(X \text{ is infinite} \rightarrow \exists F \subseteq_{\text{fin}} X\psi(F)).$$

Then, there exists $n \in \omega$ such that

 $\mathsf{WKL}_0 \vdash \forall Z \subseteq_{\mathrm{fin}} \mathbb{N}(Z \text{ is } \omega^n \text{-large} \to \exists F \subseteq Z\psi(F)).$

Density with the base ACA₀

Definition (EFA, Density notion with the base ACA₀)

Given a Ramsey-like formula

$$\overline{} = (\forall f : [\mathbb{N}]^n \to k)(\exists Y)(Y \text{ is infinite } \land \Psi(f, Y)),$$

- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be 0-*dense*'(Γ) if |Z| > 4, min Z > 2,
- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be (m + 1)-dense' (Γ) if
 - (for any n, k < min Z and) for any f : [[0, max Z]]ⁿ → k, there is an m-dense'(Γ) set Y ⊆ Z such that Ψ(f, Y) holds, and,
 - for any partition f : [Z]³ → ℓ such that ℓ < min Z there is an m-dense'(Γ) set Y ⊆ Z which is f-homogeneous.

Put $Y'_{\Gamma}(F) := \max\{m \mid F \text{ is } m \text{-dense'}(\Gamma)\}.$

Theorem

 Y'_{Γ} is a set indicator for ACA₀ + Γ .

With ACA₀, one can always characterize the Π_1^1 -part of Γ .

Density with the base WKL₀*

Definition (EFA, Density notion with the base WKL^{*}₀)

Given a Ramsey-like formula

- $\Gamma = (\forall f : [\mathbb{N}]^n \to k)(\exists Y)(Y \text{ is infinite } \land \Psi(f, Y)),$
- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be 0-dense^{*}(Γ) if $Z \neq \emptyset$,
- $Z \subseteq_{\text{fin}} \mathbb{N}$ is said to be (m + 1)-dense^{*} (Γ) if
 - (for any n, k < min Z and) for any f : [[0, max Z]]ⁿ → k, there is an m-dense*(Γ) set Y ⊆ Z such that Ψ(f, Y) holds, and,
 - *Z* \ [0, exp(min Z)] is *m*-dense^{*}(Γ).

Put $Y^*_{\Gamma}(F) := \max\{m \mid F \text{ is } m \text{-dense}^*(\Gamma)\}.$

Theorem

 Y_{Γ}^* is a set indicator for WKL₀^{*} + Γ .

Conservation theorems for RT_k^n and HT(k) over WKL_0^*

- WKL₀^{*} + RT_kⁿ is a Π₃⁰-conservative extension of RCA₀^{*} + {∀X ⊆_{inf} ℕ ∃F ⊆_{fin} X(F is n-dense^{*}(RT_kⁿ)) | n ∈ ω}.
 = RCA₀^{*}
- WKL₀^{*} + RT = ACA₀' is a $\tilde{\Pi}_{3}^{0}$ -conservative extension of RCA₀^{*} + { $\forall X \subseteq_{inf} \mathbb{N} \exists F \subseteq_{fin} X(F \text{ is } n\text{-dense}^{*}(RT)) \mid n \in \omega$ }.
- WKL₀^{*} + HT(k) is a Π₃⁰-conservative extension of RCA₀^{*} + {∀X ⊆_{inf} ℕ ∃F ⊆_{fin} X(F is n-dense*(HT(k))) | n ∈ ω}.
 = RCA₀^{*}
- WKL₀⁺ + HT = ACA₀ + HT is a Π₃⁰-conservative extension of RCA₀⁺ + {∀X ⊆_{inf} ℕ ∃F ⊆_{fin} X(F is *n*-dense*(HT)) | *n* ∈ ω}.
 ...

Thus, $WKL_0^* + RT_k^n$ and $WKL_0^* + HT(k)$ are very weak, while $WKL_0^* + RT$ and $WKL_0^* + HT$ are not.

Thank you!

- Ludovic Patey and Y, The proof-theoretic strength of Ramsey's theorem for pairs and two colors, draft, available at http://arxiv.org/abs/1601.00050
- Y, On the strength of Ramsey's theorem without Σ₁-induction. Math. Log. Q., 59(1-2):108–111, 2013.