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Aim

Introducing...
basic ideas of indicators and their (slight) generalization,
several consequences of the indicator arguments,
some conservation results of combinatorial principles.

“Indicators are useful to analyze the first-order part of
combinatorial statements in second-order arithmetic.”
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Nonstandard models of arithmetic

In this talk we will mainly use the base system EFA = I∆0 + exp or
RCA∗0, which consists of I∆0

0 + exp plus ∆0
1-comprehension, and

models we will consider will be countable nonstandard.
Let M |= EFA.

I ⊆ M is said to be a cut (abbr. I ⊆e M) if a < b ∈ I → a ∈ I and
I is closed under addition + and multiplication ·.
Cod(M) = {X ⊆ M | X is M-finite}, where M-finite set is a set
coded by an element in M (by means of the usual binary
coding).

for Z ∈ Cod(M), |Z | denotes the internal cardinality of Z in M.

for I ⊆e M, Cod(M/I) := {X ∩ I | X ∈ Cod(M)}.

Proposition

If I ⊆e M, then I is a Σ0-elementary substructure of M.
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Cuts

There are several important types of cuts.

Theorem (exponentially closed cut, Simpson/Smith)

Let M |= EFA, and let I ⊊e M. Then the following are equivalent.
1 (I,Cod(M/I)) |= WKL∗0.
2 I is closed under exp.

Theorem (semi-regular cut)

Let M |= EFA, and let I ⊊e M. Then the following are equivalent.
1 (I,Cod(M/I)) |= WKL0.
2 I is semi-regular, i.e., if X ∈ Cod(M) and |X | ∈ I, then X ∩ I is

bounded in I.
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Theorem (strong cut)

Let M |= EFA, and let I ⊊e M. Then the following are equivalent.
1 (I,Cod(M/I)) |= ACA0.
2 I is strong, i.e., if for any a > I for any b ∈ I and for any

f : [[0, a]]3 → b coded in M, there exists Y ⊆ [0, a] such that
Y is f -homogeneous and Y ∩ I is unbounded in I.

These combinatorial characterization of cuts play key roles in the
definition of indicators.
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Indicators

Let T be a theory of second-order arithmetic.
A Σ0-definable function Y : [M]2 → M is said to be an indicator for
T ⊇ WKL∗0 if

Y(x, y) ≤ y,
if x′ ≤ x < y ≤ y′, then Y(x, y) ≤ Y(x′, y′),
Y(x, y) > ω if and only if there exists a cut I ⊆e M such that
x ∈ I < y and (I,Cod(M/I)) |= T.
(Here, Y(x, y) > ω means that Y(x, y) > n for any standard natural
number n.)

Example

Y(x, y) = max{n : expn(x) ≤ y} is an indicator for WKL∗0.

Y(x, y) = max{n :any f [[x, y]]n → 2 has a homogeneous set
Z ⊆ [x, y] such that |Z | > min Z}

is an indicator for ACA0.
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Basic properties of indicators

Theorem
If Y is an indicator for a theory T, then for any n ∈ ω,

T ⊢ ∀x∃yY(x, y) ≥ n.

Theorem

If Y is an indicator for a theory T, then, T is a Π0
2-conservative

extension of EFA + {∀x∃yY(x, y) ≥ n | n ∈ ω}.

Let FY
n (x) = min{y | Y(x, y) ≥ n}.

Theorem

If Y is an indicator for a theory T and T ⊢ ∀x∃yθ(x, y) for some
Σ1-formula θ, then, there exists n ∈ ω such that

T ⊢ ∀x∃y < FY
n (x)θ(x, y).
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Set indicators

Let T be a theory of second-order arithmetic.
A Σ0-definable function Y : Cod(M)→ M is said to be a set
indicator for T ⊇ WKL∗0 if

Y(F) ≤ max F,
if F ⊆ F ′, then Y(F) ≤ Y(F ′),
Y(F) > ω if and only if there exists a cut I ⊆e M such that
min F ∈ I < max F and (I,Cod(M/I)) |= T, and F ∩ I is
unbounded in I.

Note that if Y is a set indicator, then Y ′(x, y) = Y([x, y]) is an
indicator function.

Example

Y(F) = max{m : F is m-dense(RT2
2)}

is an indicator for WKL0 + RT2
2.

Actually, density notions provide set indicators for many theories.
Keita Yokoyama Thoughts on indicators and density notions 8 / 18



Preliminaries
Indicators

Indicators and set indicators
More variations

Ramsey-like statements

Definition (Ramsey-like formulas)

A Ramsey-like-Π1
2-formula is a Π1

2-formula of the form

(∀f : [N]n → k)(∃Y)(Y is infinite ∧Ψ(f ,Y))

where Ψ(f ,Y) is of the form (∀G ⊆fin Y)Ψ0(f ↾ [[0,max G]N]
n,G)

such that Ψ0 is a ∆0
0-formula.

(Here, n, k ∈ ω or they are unbounded parameters.)

In particular, RTn
k is a Ramsey-like-Π1

2-statement
where Ψ(f ,Y) is the formula “Y is homogeneous for f ”.

Any Π1
2-formula of the form ∀X∃YΘ(X ,Y) where Θ is a

Σ0
3-formula is equivalent to a Ramsey-like formula over WKL0.

A Ramsey-like statement has an indicator given by the density
notion.

Keita Yokoyama Thoughts on indicators and density notions 9 / 18



Preliminaries
Indicators

Indicators and set indicators
More variations

Density

Definition (EFA, Density notion)

Given a Ramsey-like formula
Γ = (∀f : [N]n → k)(∃Y)(Y is infinite ∧Ψ(f ,Y)),

Z ⊆fin N is said to be 0-dense(Γ) if |Z |,min Z > 2,
Z ⊆fin N is said to be (m + 1)-dense(Γ) if

(for any n, k < min Z and) for any f : [[0,max Z ]]n → k , there is
an m-dense(Γ) set Y ⊆ Z such that Ψ(f ,Y) holds, and,
for any partition Z0 ⊔ · · · ⊔ Zℓ−1 = Z such that
ℓ ≤ Z0 < · · · < Zℓ−1, one of Zi ’s is m-dense(Γ).

Note that “Z is m-dense(Γ)” can be expressed by a ∆0-formula.

Put YΓ(F) := max{m | F is m-dense(Γ)}.

Theorem
YΓ is a set indicator for WKL0 + Γ.
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Basic properties of indicators (review)

Theorem
If Y is an indicator for a theory T, then for any n ∈ ω,

T ⊢ ∀x∃yY(x, y) ≥ n.

Theorem

If Y is an indicator for a theory T, then, T is a Π0
2-conservative

extension of EFA + {∀x∃yY(x, y) ≥ n | n ∈ ω}.

Let FY
n (x) = min{y | Y(x, y) ≥ n}.

Theorem

If Y is an indicator for a theory T and T ⊢ ∀x∃yθ(x, y) for some
Σ1-formula θ, then, there exists n ∈ ω such that

T ⊢ ∀x∃y < FY
n (x)θ(x, y).
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Basic properties of set indicators

Theorem
If Y is a set indicator for a theory T, then for any n ∈ ω,

T ⊢ ∀X ⊆inf N∃F ⊆fin X(Y(F) ≥ n).

Theorem

If Y is a set indicator for a theory T, then, T is a Π̃0
3-conservative

extension of RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(Y(F) ≥ n) | n ∈ ω}.

Theorem
If Y is a set indicator for a theory T and
T ⊢ ∀X ⊆inf N∃F ⊆fin Xθ(F) for some Σ1-formula θ, then, there
exists n ∈ ω such that

T ⊢ ∀Z ⊆fin N(Y(Z) ≥ n → ∃F ⊆ Z θ(F)).
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Some consequences (Π̃0
3-part of RT2

2...)

WKL0 + RT2
2 is a Π̃0

3-conservative extension of
RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense(RT2

2)) | n ∈ ω}.
(≡ RCA0 + {nPH2

2 | n ∈ ω})
WKL0 + RT2 is a Π̃0

3-conservative extension of
RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense(RT2)) | n ∈ ω}.
ACA0 + RT = ACA′0 is a Π1

1-conservative extension of
RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense(RT)) | n ∈ ω}.
ACA0 + HT(k) is a Π1

1-conservative extension of
RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense(HT(k))) | n ∈ ω}.
ACA0 + HT is a Π1

1-conservative extension of
RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense(HT)) | n ∈ ω}.
. . .

Here, HT denotes Hindman’s theorem.
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Some consequences (Generalized Parsons theorem)

Since ωn-largeness implies n-density(0 = 0), i.e., a density notion
for WKL0, we have the following.

Theorem (Generalized Parsons theorem)

Let ψ(F) be a Σ0
1-formula with exactly the displayed free variables.

Assume that for a given Ramsey-like statement Γ,

WKL0 + Γ ⊢ ∀X ⊆ N(X is infinite→ ∃F ⊆fin Xψ(F)).

Then, there exists n ∈ ω such that

WKL0 + Γ ⊢ ∀Z ⊆fin N(Z is n-dense(Γ)→ ∃F ⊆ Zψ(F)).

In particular,

WKL0 ⊢ ∀X ⊆ N(X is infinite→ ∃F ⊆fin Xψ(F)).

Then, there exists n ∈ ω such that

WKL0 ⊢ ∀Z ⊆fin N(Z is ωn-large→ ∃F ⊆ Zψ(F)).
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Density with the base ACA0

Definition (EFA, Density notion with the base ACA0)

Given a Ramsey-like formula
Γ = (∀f : [N]n → k)(∃Y)(Y is infinite ∧Ψ(f ,Y)),

Z ⊆fin N is said to be 0-dense′(Γ) if |Z | > 4,min Z > 2,
Z ⊆fin N is said to be (m + 1)-dense′(Γ) if

(for any n, k < min Z and) for any f : [[0,max Z ]]n → k , there is
an m-dense′(Γ) set Y ⊆ Z such that Ψ(f ,Y) holds, and,
for any partition f : [Z ]3 → ℓ such that ℓ < min Z there is an
m-dense′(Γ) set Y ⊆ Z which is f -homogeneous.

Put Y ′Γ(F) := max{m | F is m-dense’(Γ)}.

Theorem
Y ′Γ is a set indicator for ACA0 + Γ.

With ACA0, one can always characterize the Π1
1-part of Γ.
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Density with the base WKL∗0

Definition (EFA, Density notion with the base WKL∗0)

Given a Ramsey-like formula
Γ = (∀f : [N]n → k)(∃Y)(Y is infinite ∧Ψ(f ,Y)),

Z ⊆fin N is said to be 0-dense∗(Γ) if Z , ∅,
Z ⊆fin N is said to be (m + 1)-dense∗(Γ) if

(for any n, k < min Z and) for any f : [[0,max Z ]]n → k , there is
an m-dense∗(Γ) set Y ⊆ Z such that Ψ(f ,Y) holds, and,
Z \ [0, exp(min Z)] is m-dense∗(Γ).

Put Y∗Γ(F) := max{m | F is m-dense∗(Γ)}.

Theorem
Y∗Γ is a set indicator for WKL∗0 + Γ.
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Conservation theorems for RTn
k and HT(k ) over WKL∗0

WKL∗0 + RTn
k is a Π̃0

3-conservative extension of
RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense∗(RTn

k )) | n ∈ ω}.
= RCA∗0.

WKL∗0 + RT = ACA′0 is a Π̃0
3-conservative extension of

RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense∗(RT)) | n ∈ ω}.
WKL∗0 + HT(k) is a Π̃0

3-conservative extension of
RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense∗(HT(k))) | n ∈ ω}.
= RCA∗0.

WKL∗0 + HT = ACA0 + HT is a Π̃0
3-conservative extension of

RCA∗0 + {∀X ⊆inf N∃F ⊆fin X(F is n-dense∗(HT)) | n ∈ ω}.
. . .

Thus, WKL∗0 + RTn
k and WKL∗0 + HT(k) are very weak, while

WKL∗0 + RT and WKL∗0 + HT are not.
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Thank you!

Ludovic Patey and Y, The proof-theoretic strength of Ramsey’s
theorem for pairs and two colors, draft, available at
http://arxiv.org/abs/1601.00050

Y, On the strength of Ramsey’s theorem without Σ1-induction.
Math. Log. Q., 59(1-2):108–111, 2013.
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