Takayuki Kihara
University of California, Berkeley, USA

Workshop on New Challenges in Reverse Mathematics, IMS, NUS, Singapore




Dagstuhl Problems (Sep. 2015)
@ (Pauly 2012) (3k € w) AoUC % AoUC <y AoUCK?
Here, AoUC is the all-or-unique choice principle.

© (Le Roux-Pauly 2015) (Ik € w) XC % XC <y XCk?
Here, XC is the convex choice principle.

It is easy to see that LLPO <y AoUC <y XC <y WKL
(any recursion theorist can separate them).

Main Theorem (K. and Pauly)

@ Problem 1 is false: LLPO % AoUC £ AoUCK for all k.

@ Problem 2 is false: XC x AoUC £w XC for all k.
Here, XCy is the k-dimensional convex choice principle.

© However, it is true that
AoUC % AoUC x AoUC <y AoUC* x AoUC3.
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A May-principle is non-uniformly computable if
any x-computable instance has an x-computable solution.

Equivalently, it has a o-computable realizer, where f is o-computable if
it is decomposable into countably many computable functions.

(this is an effective version of o-continuity in the sense of Nikolai Luzin).

Non-uniformly Computable Principles (below WKL)
@ LLPO: de Morgan’s law for Z?-formulas.

© C,: Given nonempty closed F € {1,...,n}, choose i € F.
© Cjo,1},#<n: Given nonempty closed F C [0, 1],

if F has at most h many elements, choose x € F.
© AoUC: Given nonempty closed F < [0, 1],

if F = [0, 1] or F is singleton, choose x € F.

© XC: Given nonempty convex closed F < [0, 1], choose x € F.
Clear: LLPO =y C> <w C[0,1],#32 <w AoUC <y XC <w WKL.
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Definition (Weihrauch Reducibility)

f <w g iff there are computable H, K such that
for any realizer G of g, K(id, GH) realizes f.

(Brattka-Gherardi-Marcone) Classify Ma-theorems in the
Weihrauch lattice.

There are some challenges to connect the Weihrauch lattice with
intuitionistic linear logic:
@ Yoshimura (submitted in 2013; still unpublished?):
Some partial result using fibration in categorical logic.
@ Kuyper: Some relationship with ELq plus Markov’s principle
(Z‘:—DNE) via realizability.

EL, = Heyting Arithmetic HA restricted to quantifier-free induction QF-IND
with the axiom A-convesion, the axiom of recursor,
and the quantifier-free axiom of choice QF-ACqo

Note that RCAy, = ELy+ “the law of excluded middle”.
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Constructive Reverse Mathematics

@ EL, proves the equivalence of the following:
e BE: every real number has a binary expansion.
(a real number is represented by a rapid Cauchy sequence)
@ Cjo,1],<2: for any infinite binary tree T, if every level of T has
at most 2 nodes, then T has an infinite path.
© EL, proves the equivalence of the following:
o IVT: the intermediate value theorem.
e XC: every infinite binary convex tree has an infinite path.
© (Pauly 2010; Brattka-Gherardi-Holzl 2015) NASH = AoUC*:
Does ELq (+MP) prove the equivalence of the following?

o NASH: every bi-matrix game has a Nash equilibrium.
e AoUC: every infinite binary all-or-unique tree has an infinite
path.

(1) and (2) are confirmed by Berger-Ishihara-K.-Nemoto
(we need some nontrivial work on eliminating Markov’s principle).

There are a huge number of works in constructive reverse math...
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Definition
Forf:cX33Yandg:CZ3 W,
Q fxg(x,z) = f(x) x g(2).
Q fog(x) = Ulf(y) : y € g(x)}.
©Q fxg=max,{foogo: fo <wfand go <w g}.

For X = N, 2Y, NN, R etc., we have:
©Q@ Cx xCx =w Cx x Cx =w Cx.
© PCx x PCx =y PCx x PCx =w PCxy.
© Cx#<n * Cx#<n =w Cxz<n X Cx #<n.
(Brattka-Le Roux-Pauly) XC <y XC x XC.

Dagstuhl Problems (Sep. 2015)

@ (Pauly 2012) (Ik € w) AoUC * AoUC <y AoUCk?
© (Le Roux-Pauly 2015) (Ik € w) XC % XC <y XCk?
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Main Theorem (K. and Pauly)

@ Problem 1 is false: LLPO x AoUC £w AoUCK for all k.

© Problem 2 is false: XC x AoUC £w XC for all k.
Here, XCy is the k-dimensional convex choice principle.

© However, it is true that
AoUC % AoUC x AoUC <y AoUC* x AoUC3.

In particular, we have
NASH <y NASH x NASH =y NASH %« NASH x NASH.
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XC x AoUC £ XC, for all k.

(Pe, we,s ¥e): the e-th triple constructed by the opponent Opp
@ The e-th co-c.e. closed subset of Pe C [0,1].
@ The e-th partial computable g :C N — 2V,
@ The e-th partial computable ¥ :C NY — [0, 1].
The W-reduction proceeds as follows:
@ We first give an all-or-unique tree T, € 2<¢
and a map J; : 2 — {nonempty intervals}.
@ Opp reacts with a convex P, C [0,1]¥, and ensure that

e if zis a name of a point in Py,

e then ¢,(z) = x is a path through T,

e and y.(z) chooses an element of the interval J,(x),
where Opp can use information on (hames of) T, and J, to
construct ¢, and ;.

@ Our purpose is to prevent Opp’s strategy.

By the recursion theorem, | know who | am.
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XC x AoUC £ XC, for all k.

@ The e-th strategy constructs an a.o.u. tree Tg
and an interval-valued map Je.
@ The g-th substrategy Sg:
e S, acts under the assumption that the substrategies (Sp)p<q
will eventually force the Opp’s convex set P, to be
at most (k — q)-dimensional.
o The t-th action of S forces the measure A¥~9(Pg) of
a nonempty open subset P, of P, to be
less than or equal to 297t - &;, where &; = Zl‘f; 277 < 2.
e If 84 acts infinitely often, then it forces P, to be
at most (k — q — 1)-dimensional
(under the assumption that P, is convex).
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XC x AoUC £ XC, for all k.

How can we approximate the value of 2¥~9 by an effective way?
Obvious obstacles:
@ Even if we know that a co-c.e. closed X C [0,1]¥ is
at most d-dimensional for some d < k, it is still possible that
X[s] can always be at least k-dimensional for all s € w.
Fortunately, however, if a convex closed set X € [0,1]¥ is
at most d-dimensional for some d < k:
@ By convexity, X is a subset of d-dim. hyperplane L.
@ By compactness, X[s] for sufficiently large s is eventually covered
by a thin k-parallelotope L obtained by expanding d-hyperplane L.

@ For instance, if X € [0, 1]3 is included in the plane
L = {1/2} x [0,1]?, then for all t € w, there is s € w such that
X[s] c L(27") :=[1/2-27",1/2 + 27!] x [0, 1]? by compactness.

@ We call such L(27t) as the 2~!-thin expansion of L.
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The d-dim. measure A9 is defined on Borel subsets of d-hyperplanes in
[0, 1]% whose values are consistent with the d-dim. volume (defined by
the wedge product) on d-parallelotopes in [0, 1]¥.

@ Assume: We know that a convex set X < [0, 1]¥ is at most d-dim.,
and moreover, a co-c.e. closed X C X satisfies that 19(X) < r.
@ Given g > 0, there must be a rational closed subset Y of a
d-hyperplane L such that X is covered by the -thin expansion ¥ (&)
of Y, and moreover, Y is very close to X.
e If Y is a rational closed subset of a d-hyperplane,
one can calculate 29(Y).
e Indeed, we can compute the maximum value m9(Y, &) of
29(Y(g) N L’) where L’ ranges over all d-hyperplanes.
e Forinstance, if Y = [0, s] x {y}, it is easy to see that

m'(Y,&) = +/s? + (28)2.
o If /ld()?) < r, given n, one can effectively find s, Y, & such that
X[s] € Y(g) and m?(Y,&) < r + 27"
@ In this way, if the inequality 29(X) < r holds for a co-c.e. closed

subset X of a d-dimensional convex set X, then one can effectively
confirm this fact.
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XC x AoUC £ XC, for all k.

Opp: (convex) closed P, C [0, 1]%, which helps g, to find a path p of T,
and ¥, to find an element of Jo(p).
The action of the g-th substrategy Sq:
@ Ask whether ¢ (2) already computes a node of length at least
p + 1 for any name z of an element of Pe.
e Yes = Go next // No = Wait.
@ Ask whether there is some T € 2911 such that
any point in P, has a name z such that ¢.(z) does not extend .
e No = Go next.
o Yes = Let T, be a tree with a unique path 7~0%; then we win.
© Now S, believes that (Sp)p<q eventually forces P. to be at most
(k — q)-dimensional. Under this assumption, S4 believes that Sq has
forced A*~9(P,) < 29-+1. &,_4 (P, is an open subset of P.) by Sg's
(t — 1)-st action.
© Ask whether for any name z of a point of Pe, whenever . (2)
extends 091, the value of Y. (z) is already approximated with
precision 37172,
e Yes = Go next// No = Wait.
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XC x AoUC £ XC, for all k.

The action of the g-th substrategy Sq (Continued):
@ We have a nonempty interval J.(091) at the current stage.
@ Iy, I: sufficiently separated subintervals of Jg(091).
@ V: names of points in P, whose ¢e-values extend 091.
°

84 believes that S4 has already forced A¥=9(6[V]) < 297141 . g4,
where § is an open representation of [0, 1]¥.

Q;: the set of all points in 8[ V] all of whose names are still possible
to have ye-values in I; with precision 3712, One can show:
e Q;is effectively compact.
o 2¥79(Qp N Q1) = 0 whenever P, is at most (k — q)-dim.
o Therefore, A¥-9(Q;) < 291 . g;_4 for some i < 2.
Finally, ask whether there is a witness for the above.
That is, ask whether one can find s, Y, &, i such that

Qfs] € V(s) and m-9(Y, ) < 297" - 5.

e No = Wait.
e Yes = Put J¢(091) = J; and go to the next action t + 1.
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XC x AoUC £ XC, for all k.

@ The previous action of Sq forces that 6[V] € Q;;
therefore, A¥-9(6[V]) < A¥-9(Q;) < 29! . .

@ If S acts infinitely often, then this forces A¥=9(6[V]) = 0;
therefore convexity of P, implies 2¥~9(Pg) = 0
since 6[V] is an open subset of Pe.
Given (T;, J;), Opp reacts with (Pf(e),épf(e), (ﬁf(e)).
By the Rec. Thm., there is r s.t. (Pr, ¢r, ¥r) = (Pt(r)> Pi(r)s ¥1(r))-
Suppose: Opp wins with this triple (Pr, ¢r, ¥r)

@ Then 8, eventually forces P, to be (k — q — 1)-dimensional;
therefore, (Sq)q<k forces Py to be zero-dimensional.

@ Since P, is convex (if Opp wins), P, is a singleton or empty.

@ Then, there is some 7 € 29%1 such that
any point in P, has a name z such that ¢,(z) does not extend .

@ Then 84 ensures that T, has a unique path T~0.
@ Thus, ¢, fails to choose a path of T,; hence Opp loses.
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LLPO x AoUC £, AoUC* for all k.

Proof of LLPO % AoUC £y AoUC":
Easy. Use the similar argument
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NASH <y NASH x NASH =y NASH x NASH x NASH.

Lemma
© AoUC™ x AoUCK <y Co * (AoUC™2 k)
In particular, AoUC %« AoUC <y LLPO % (AoUC3).
© AoUC! x C;y <w AoUC!™ x Cp.

Corollary

AoUC' x AoUC™ x AoUC¥ <y AoUC(H12* x Aouc™2+k.

In particular,

AoUC x AoUC x AoUC <y AoUC* x AoUC3.
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Main Theorem (K. and Pauly)

@ Problem 1 is false: LLPO x AoUC £w AoUCK for all k.

© Problem 2 is false: XC x AoUC £w XC for all k.
Here, XCy is the k-dimensional convex choice principle.

© However, it is true that
AoUC % AoUC x AoUC <y AoUC* x AoUC3.

In particular, we have
NASH <y NASH x NASH =y NASH %« NASH x NASH.
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