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Dagstuhl Problems (Sep. 2015)

1 (Pauly 2012) (∃k ∈ ω) AoUC ⋆ AoUC ≤W AoUCk ?
Here, AoUC is the all-or-unique choice principle.

2 (Le Roux-Pauly 2015) (∃k ∈ ω) XC ⋆ XC ≤W XCk ?
Here, XC is the convex choice principle.

It is easy to see that LLPO <W AoUC <W XC <W WKL
(any recursion theorist can separate them).

Main Theorem (K. and Pauly)

1 Problem 1 is false: LLPO ⋆ AoUC ≰W AoUCk for all k .
2 Problem 2 is false: XC ⋆ AoUC ≰W XCk for all k .

Here, XCk is the k -dimensional convex choice principle.
3 However, it is true that

AoUC ⋆ AoUC ⋆ AoUC ≤W AoUC4 ⋆ AoUC3.
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A Π2-principle is non-uniformly computable if
any x-computable instance has an x-computable solution.

Equivalently, it has a σ-computable realizer, where f is σ-computable if
it is decomposable into countably many computable functions.

(this is an effective version of σ-continuity in the sense of Nikolai Luzin).

Non-uniformly Computable Principles (below WKL)

1 LLPO: de Morgan’s law for Σ0
1
-formulas.

2 Cn: Given nonempty closed F ⊆ {1, . . . , n}, choose i ∈ F .
3 C[0,1],#≤n: Given nonempty closed F ⊆ [0, 1],

if F has at most n many elements, choose x ∈ F .
4 AoUC: Given nonempty closed F ⊆ [0, 1],

if F = [0, 1] or F is singleton, choose x ∈ F .
5 XC: Given nonempty convex closed F ⊆ [0, 1], choose x ∈ F .

Clear: LLPO ≡W C2 <W C[0,1],#≤2 <W AoUC <W XC <W WKL.
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Definition (Weihrauch Reducibility)

f ≤W g iff there are computable H,K such that
for any realizer G of g, K(id,GH) realizes f .

(Brattka-Gherardi-Marcone) Classify Π2-theorems in the
Weihrauch lattice.

There are some challenges to connect the Weihrauch lattice with
intuitionistic linear logic:

Yoshimura (submitted in 2013; still unpublished?):
Some partial result using fibration in categorical logic.

Kuyper: Some relationship with EL0 plus Markov’s principle
(Σ0

1
-DNE) via realizability.

EL0 = Heyting Arithmetic HA restricted to quantifier-free induction QF-IND
with the axiom λ-convesion, the axiom of recursor,
and the quantifier-free axiom of choice QF-AC00

Note that RCA0 = EL0+ “the law of excluded middle”.
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Constructive Reverse Mathematics
1 EL0 proves the equivalence of the following:

BE: every real number has a binary expansion.
(a real number is represented by a rapid Cauchy sequence)
C[0,1],#≤2: for any infinite binary tree T , if every level of T has
at most 2 nodes, then T has an infinite path.

2 EL0 proves the equivalence of the following:
IVT: the intermediate value theorem.
XC: every infinite binary convex tree has an infinite path.

3 (Pauly 2010; Brattka-Gherardi-Hölzl 2015) NASH ≡W AoUC∗:
Does EL0 (+MP) prove the equivalence of the following?

NASH: every bi-matrix game has a Nash equilibrium.
AoUC: every infinite binary all-or-unique tree has an infinite
path.

(1) and (2) are confirmed by Berger-Ishihara-K.-Nemoto
(we need some nontrivial work on eliminating Markov’s principle).

There are a huge number of works in constructive reverse math...
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Definition
For f :⊆ X ⇒ Y and g :⊆ Z ⇒ W ,

1 f × g(x, z) = f(x) × g(z).
2 f ◦ g(x) =

∪{f(y) : y ∈ g(x)}.
3 f ⋆ g = max≤W {f0 ◦ g0 : f0 ≤W f and g0 ≤W g}.

For X = N, 2N,NN,R, etc., we have:
1 CX ⋆ CX ≡W CX × CX ≡W CX .
2 PCX ⋆ PCX ≡W PCX × PCX ≡W PCX .
3 CX ,#≤n ⋆ CX ,#≤n ≡W CX ,#≤n × CX ,#≤n.

(Brattka-Le Roux-Pauly) XC <W XC × XC.

Dagstuhl Problems (Sep. 2015)

1 (Pauly 2012) (∃k ∈ ω) AoUC ⋆ AoUC ≤W AoUCk ?
2 (Le Roux-Pauly 2015) (∃k ∈ ω) XC ⋆ XC ≤W XCk ?
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Main Theorem (K. and Pauly)

1 Problem 1 is false: LLPO ⋆ AoUC ≰W AoUCk for all k .
2 Problem 2 is false: XC ⋆ AoUC ≰W XCk for all k .

Here, XCk is the k -dimensional convex choice principle.
3 However, it is true that

AoUC ⋆ AoUC ⋆ AoUC ≤W AoUC4 ⋆ AoUC3.

In particular, we have
NASH <W NASH ⋆ NASH ≡W NASH ⋆ NASH ⋆ NASH.
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XC ⋆ AoUC ≰W XCk for all k .

(Pe , φe , ψe): the e-th triple constructed by the opponent Opp
The e-th co-c.e. closed subset of Pe ⊆ [0, 1]k .

The e-th partial computable φe :⊆ NN → 2N.

The e-th partial computable ψe :⊆ NN → [0, 1].

The W -reduction proceeds as follows:
We first give an all-or-unique tree Tr ⊆ 2<ω

and a map Jr : 2ω → {nonempty intervals}.
Opp reacts with a convex Pr ⊆ [0, 1]k , and ensure that

if z is a name of a point in Pr ,
then φr(z) = x is a path through Tr ,
and ψr(z) chooses an element of the interval Jr(x),

where Opp can use information on (names of) Tr and Jr to
construct φr and ψr .

Our purpose is to prevent Opp’s strategy.

By the recursion theorem, I know who I am.
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XC ⋆ AoUC ≰W XCk for all k .

The e-th strategy constructs an a.o.u. tree Te
and an interval-valued map Je .
The q-th substrategy Sq:

Sq acts under the assumption that the substrategies (Sp)p<q
will eventually force the Opp’s convex set Pe to be
at most (k − q)-dimensional.
The t-th action of Sq forces the measure λk−q(P̃e) of
a nonempty open subset P̃e of Pe to be
less than or equal to 2q−t · εt , where εt =

∑t+1
j=0

2−j < 2.
If Sq acts infinitely often, then it forces Pe to be
at most (k − q − 1)-dimensional
(under the assumption that Pe is convex).
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XC ⋆ AoUC ≰W XCk for all k .

How can we approximate the value of λk−q by an effective way?
Obvious obstacles:

Even if we know that a co-c.e. closed X ⊆ [0, 1]k is
at most d-dimensional for some d < k , it is still possible that
X[s] can always be at least k -dimensional for all s ∈ ω.

Fortunately, however, if a convex closed set X ⊆ [0, 1]k is
at most d-dimensional for some d < k :

By convexity, X is a subset of d-dim. hyperplane L .

By compactness, X[s] for sufficiently large s is eventually covered
by a thin k -parallelotope L̂ obtained by expanding d-hyperplane L .

For instance, if X ⊆ [0, 1]3 is included in the plane
L = {1/2} × [0, 1]2, then for all t ∈ ω, there is s ∈ ω such that
X[s] ⊆ L̂(2−t) := [1/2 − 2−t , 1/2 + 2−t ] × [0, 1]2 by compactness.

We call such L̂(2−t) as the 2−t -thin expansion of L .
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The d-dim. measure λd is defined on Borel subsets of d-hyperplanes in
[0, 1]k whose values are consistent with the d-dim. volume (defined by
the wedge product) on d-parallelotopes in [0, 1]k .

Assume: We know that a convex set X ⊆ [0, 1]k is at most d-dim.,
and moreover, a co-c.e. closed X̃ ⊆ X satisfies that λd(X̃) < r.
Given ε > 0, there must be a rational closed subset Y of a
d-hyperplane L such that X̃ is covered by the ε-thin expansion Ŷ(ε)
of Y , and moreover, Y is very close to X̃ .

If Y is a rational closed subset of a d-hyperplane,
one can calculate λd(Y).
Indeed, we can compute the maximum value md(Y , ε) of
λd(Ŷ(ε) ∩ L ′) where L ′ ranges over all d-hyperplanes.
For instance, if Y = [0, s] × {y}, it is easy to see that

m1(Y , ε) =
√

s2 + (2ε)2.
If λd(X̃) < r, given n, one can effectively find s, Y , ε such that

X̃[s] ⊆ Ŷ(ε) and md(Y , ε) < r + 2−n.
In this way, if the inequality λd(X̃) < r holds for a co-c.e. closed
subset X̃ of a d-dimensional convex set X , then one can effectively
confirm this fact.
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XC ⋆ AoUC ≰W XCk for all k .

Opp: (convex) closed Pe ⊆ [0, 1]k , which helps φe to find a path p of Te ,
and ψe to find an element of Je(p).
The action of the q-th substrategy Sq:

1 Ask whether φe(z) already computes a node of length at least
p + 1 for any name z of an element of Pe .

Yes⇒ Go next // No⇒Wait.
2 Ask whether there is some τ ∈ 2q+1 such that

any point in Pe has a name z such that φe(z) does not extend τ.
No⇒ Go next.
Yes⇒ Let Te be a tree with a unique path τ⌢0ω; then we win.

3 Now Sq believes that (Sp)p<q eventually forces Pe to be at most
(k − q)-dimensional. Under this assumption, Sq believes that Sq has
forced λk−q(P̃e) < 2q−t+1 · εt−1 (P̃e is an open subset of Pe) by Sq ’s
(t − 1)-st action.

4 Ask whether for any name z of a point of Pe , whenever φe(z)
extends 0q1, the value of ψe(z) is already approximated with
precision 3−t−2.

Yes⇒ Go next // No⇒Wait.
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XC ⋆ AoUC ≰W XCk for all k .

The action of the q-th substrategy Sq (Continued):
We have a nonempty interval Je(0q1) at the current stage.

I0, I1: sufficiently separated subintervals of Je(0q1).

V : names of points in Pe whose φe-values extend 0q1.

Sq believes that Sq has already forced λk−q(δ[V]) ≤ 2q−t+1 · εt−1,
where δ is an open representation of [0, 1]k .

Qi : the set of all points in δ[V] all of whose names are still possible
to have ψe-values in Ii with precision 3−t−2. One can show:

Qi is effectively compact.
λk−q(Q0 ∩ Q1) = 0 whenever Pe is at most (k − q)-dim.
Therefore, λk−q(Qi) ≤ 2q−t · εt−1 for some i < 2.

Finally, ask whether there is a witness for the above.
That is, ask whether one can find s, Y , ε, i such that

Qi[s] ⊆ Ŷ(ε) and mk−q(Y , ε) < 2q−t · εt .

No⇒Wait.
Yes⇒ Put Je(0q1) = Ii and go to the next action t + 1.
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XC ⋆ AoUC ≰W XCk for all k .

The previous action of Sq forces that δ[V] ⊆ Qi ;
therefore, λk−q(δ[V]) ≤ λk−q(Qi) ≤ 2q−t · εt .

If Sq acts infinitely often, then this forces λk−q(δ[V]) = 0;
therefore convexity of Pe implies λk−q(Pe) = 0
since δ[V] is an open subset of Pe .

Given (Tr , Jr), Opp reacts with (Pf(e), φf(e), ψf(e)).
By the Rec. Thm., there is r s.t. (Pr , φr , ψr) = (Pf(r), φf(r), ψf(r)).
Suppose: Opp wins with this triple (Pr , φr , ψr)

Then Sq eventually forces Pr to be (k − q − 1)-dimensional;
therefore, (Sq)q<k forces Pr to be zero-dimensional.

Since Pr is convex (if Opp wins), Pr is a singleton or empty.

Then, there is some τ ∈ 2q+1 such that
any point in Pr has a name z such that φr(z) does not extend τ.

Then Sq ensures that Tr has a unique path τ⌢0ω.

Thus, φr fails to choose a path of Tr ; hence Opp loses.
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LLPO ⋆ AoUC ≰W AoUCk for all k .

Proof of LLPO ⋆ AoUC ≰W AoUC∗:
Easy. Use the similar argument □
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NASH <W NASH ⋆ NASH ≡W NASH ⋆ NASH ⋆ NASH.

Lemma

1 AoUCm ⋆ AoUCk ≤W C2k ⋆ (AoUCm·2k+k ).

In particular, AoUC ⋆ AoUC ≤W LLPO ⋆ (AoUC3).
2 AoUCl ⋆ Cm ≤W AoUCl·m × Cm.

Corollary

AoUCl ⋆ AoUCm ⋆ AoUCk ≤W AoUC(l+1)·2k
⋆ AoUCm·2k+k .

In particular,

AoUC ⋆ AoUC ⋆ AoUC ≤W AoUC4 ⋆ AoUC3.
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Main Theorem (K. and Pauly)

1 Problem 1 is false: LLPO ⋆ AoUC ≰W AoUCk for all k .
2 Problem 2 is false: XC ⋆ AoUC ≰W XCk for all k .

Here, XCk is the k -dimensional convex choice principle.
3 However, it is true that

AoUC ⋆ AoUC ⋆ AoUC ≤W AoUC4 ⋆ AoUC3.

In particular, we have
NASH <W NASH ⋆ NASH ≡W NASH ⋆ NASH ⋆ NASH.
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