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Abstract

We show that if M and N are ground models of the universe V ,

that is,

• M,N ⊆ V are transitive models of ZFC,

• V = M[G ] = N[H] for some generic filters G ⊆ P ∈ M and

H ⊆ Q ∈ N,

then M and N have a common ground model. We also show that

the intersection of all ground models of V is a model of ZFC, and

is a “core” of V in the sense of forcing.
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Definability of ground models

Throughout this talk, forcing means set forcing.

Fact (Laver (2007), Woodin)

In the forcing extension V [G ] of V , the universe V is a (first

order) definable class in V [G ] with some parameters from V .

In other words:

If M ⊆ V is a ground model of V , then M is definable.

So every ground model of V is definable by some first order

formula.
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Uniform definability of ground models

Actually all grounds model can be defined by some uniform way.

Fact (Fuchs-Hamkins-Reitz (2015))

There is a first order formula φ(x , y) such that:

1. For each set r , the class Wr = {x : φ(x , r)} is a ground model

of V , that is, it is a transitive model of ZFC, and there is a

poset P ∈ Wr and a (Wr ,P)-generic G with V = Wr [G ]

(V = Wr is possible).

2. For every transitive model M ⊆ V of ZFC, if M is a ground

model of V , then there is r with M = Wr .
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The mantle

This result allow us to study the structure of the collection of

ground models {Wr : r ∈ V } in ZFC:e.g.,

• One can define (in ZFC) the intersection of two ground

models.

• One can ask (in ZFC) whether ∀r∃s (Ws ⊊ Wr )?

The “mantle” is a natural concept indicated by uniform definability.

Definition

The mantle M is the intersection of all ground models of V .

The mantle is a first order definable class {x : ∀r φ(x , r)}.

• There are many open questions about the mantle.
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An important question about the mantle is:

Question (Fuchs-Hamkins-Reitz)

Is the mantle a model of ZF or ZFC?

If V is L[X ], HOD, K , class forcing extensions of there models, or

other known models, then the mantle is a model of ZFC.
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DDG

Another interesting question is the downward directedness of the

ground models:

Does every two grounds W0, W1 have a common ground

W ⊆ W0,W1?

Definition (Fuchs-Hamkins-Reitz)

The downward directed grounds hypothesis (DDG, for short) is the

assertion that every two ground models have a common ground

model: ∀r0, r1∃r (Wr ⊆ Wr0 ∩Wr1).

The strong downward directed grounds hypothesis (strong DDG,

for short) is the assertion that every set X , the collection

{Wr : r ∈ X} of ground models have a common ground model:

∀X∃r ∀s ∈ X (Wr ⊆ Ws).
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Fact (Fuchs-Hamkins-Rietz)

1. Many known models such as L[X ], HOD, K , class forcing

extensions, . . . satisfy the strong DDG.

2. If the strong DDG holds, then the mantle is a model of ZFC.

Question (Fuchs-Hamkins-Reitz)

Does the DDG always hold? How is the strong DDG?
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Main theorem 1

Theorem

The strong DDG always holds. Consequently, the mantle is a

model of ZFC.
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Other consequences:bedrock

Definition

A bedrock is a minimal ground model of V . A solid bedrock is a

minimum ground of V .

It was unknown whether every bedrock is solid.

Corollary

1. If a bedrock exists, then it is the solid bedrock.

2. V has a bedrock if and only if V has only set many ground

models, that is, there is a set X such that

∀r∃s ∈ X (Wr = Ws).

3. V has a bedrock if and only if the mantle itself is a ground

model of V .
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Other consequences: Invariant under forcing

The mantle is a “core” of V in the sense of forcing.

Corollary

The mantle is a parameter free definable model of ZFC, and is a

largest forcing-invariant definable class:

1. For every generic extension V [G ] of V and ground model W

of V , we have MV = MV [G ] = MW .

2. If N is a definable class which is invariant under forcing, then

N ⊆ M.
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Other consequences: Generic multiverse

Definition (Woodin (2011))

A generic multiverse is a “minimum” collection F of (countable)

models of ZFC such that F is closed under taking ground models

and generic extensions:

1. M ∈ F , N ⊆ M is a ground model of M ⇒ N ∈ F .

2. M ∈ F , N ⊇ M is a forcing extension of M ⇒ N ∈ F .

3. M,N ∈ F ⇒ ∃U0, . . . ,Un ∈ F such that U0 = M, Un = N,

and Ui+1 is a ground model or a forcing extension of Ui .
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Corollary

1. Every two members of a generic multiverse have a common

ground model:

M,N ∈ F ⇒ ∃U ∈ F , U is a ground model of M and N.

2. For every M, N ∈ F , we have MM = MN .

3. For some/any N ∈ F , if MN is a bedrock of N then MN is

the minimum element of F , and every member of F is a

forcing extension of MN .

The mantle is a “core” of generic multiverse.
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Truth of multiverse

Definition (Woodin)

A multiverse truth is a sentence φ which is true in every member

of generic multiverse.

• A multiverse truth is a sentence which is “absolutely true” in

the sense of forcing.

Proposition (Woodin)

There is a computable translation φ 7→ φ∗ on sentences such that

for every M ∈ F , a sentence φ is a multiverse truth if and only if

φ∗ holds in M.
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Corollary

1. Let M ∈ F . Then a sentence φ is a multiverse truth if and

only if for every ground model W of M, every forcing P ∈ W

forces φ in W .

2. If MN ∈ F for some/any N ∈ F , then φ is a multiverse truth

if and only if every forcing P ∈ MN forces φ in MN .
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Key of the proof

Definition

Let M ⊆ V be a transitive model of ZFC. Let κ be a cardinal. M

satisfies the κ-global covering property for V if for every ordinal α

and every function f : α → ON, there is F ∈ M such that

F : α → [On]<κ and f (β) ∈ F (β) for β < α.

Fact (Bukovsky (1973))

Let M ⊆ V be a transitive model of ZFC. Then the following are

equivalent:

1. M satisfies the κ-global covering property for V for some κ.

2. M is a ground model of V .
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Rough sketch of the proof

Let W0,W1 ⊆ V be ground models. Then there is some cardinal κ

such that W0 and W1 satisfy the κ-global covering property for V .

For each sufficiently large θ > κ, we can find a transitive model

Mθ ⊆ Hθ of ZFC-P such that:

1. θ ⊆ Mθ ∈ W0 ∩W1.

2. Mθ satisfies the κ+-global covering property for Hθ.

3. Mθ is unique in the following sense: For every N, if

3.1 N is a transitive model of ZFC-P with θ ⊆ N ⊆ Hθ,

3.2 N satisfies the κ+-global covering property for Hθ,

3.3 P(κ+) ∩ N = P(κ+) ∩M,

Then M = N.
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Rough sketch of the proof:conti.

By the uniqueness of the Mθ’s, we can find a sequence

⟨Mθ : θ > κ⟩ such that:

1. Mθ satisfies the κ+-global covering property for Hθ.

2. If θ < χ, then Mθ = Mχ ∩Hθ.

Let M =
∪

θ>κM
θ. One can check that M is a model of ZFC.

Moreover, M satisfies the κ+-global covering property for V . Now

we have that M is a ground model of V by Bukovsky’s theorem.
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Bedrock and large cardinals

Fact (Fuchs-Hamkins-Reitz)

It is consistent that V has a bedrock, moreover there is a class

forcing P ⊆ V such that if G is (V ,P)-generic, then
MV [G ] = V [G ].

This class forcing is a standard Easton support iteration of closed

forcings, so it preserves almost all large cardinals.

Fact

“V has a bedrock” is consistent with almost all large cardinals.
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No bedrock and large cardinals

Fact

It is consistent that V has no bedrock, moreover there is a class

forcing P ⊆ V such that if G is (V ,P)-generic, then V [G ] has no

bedrock (so MV [G ] is not a ground model of V [G ]).

This poset P can preserve supercompact cardinals.

Fact

“No bedrock exist” is consistent with supercompact cardinals.

However it is unknown whether “no bedrock exist” is consistent

with large cardinals which are stronger than supercompact

cardinals.

We will show that some large cardinal is inconsistent with “no

bedrock”.
20 / 25
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Definition

An infinite cardinal κ is supercompact if for every cardinal λ > κ,

there is an inner model M of ZFC and an elementary embedding

j : V → M such that:

1. The critical point of j is κ.

2. λ < j(κ).

3. M is closed under λ-sequences, that is, [M]λ ⊆ M.

• Consistencies of many interesting (independent) propositions

(e.g., Martin’s Maximum) are implied by supercompact

cardinals.

• If supercompact cardinal exists, then every projective set of

reals is Lebesgue measurable, has a Baire property, has a

perfect set property, etc.
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New large cardinal

Definition

An infinite cardinal κ is hyper huge if for every cardinal λ > κ,

there is an inner model M of ZFC and an elementary embedding

j : V → M such that:

1. The critical point of j is κ.

2. λ < j(κ).

3. M is closed under j(λ)-sequences.

Lemma

Hyper huge cardinal is a supercompact cardinal, and a limit of

supercompact cardinals.
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Main theorem 2

Theorem

Suppose hyper huge cardinal exists. Then V has only set many

ground models.

Consequently, the mantle is a ground model of V , hence V has a

solid bedrock.

• This means that if very large cardinal exists, then V must be

very close to its “core”.

• This also shows that there is some essential “gap” between

supercompact cardinals and very large cardinals in the sense

of forcing.
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Lemma

Suppose κ is hyper huge. If W ⊆ V is a ground model, then there

is a poset P ∈ W and a (W ,P)-generic G such that

1. |P| < κ.

2. V = W [G ].

Moreover, if κ is hyper huge, then V has only < κ many ground

models.

Applying the strong DDG, we can conclude that the mantle is a

ground model of V .
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