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Erdős-Rényi graph G (n, ρ): n vertices; include edges independently
with probability ρ.
Empirical study of network structure shows that “transitivity is the
outstanding feature that differentiates observed data from a
pattern of random ties”. Modeling transitivity (or lack thereof) in
a way that makes statistical inference feasible however has proved
to be rather difficult.
One direction is using exponential random graph models. They are
particularly useful when one wants to construct models that
resemble observed networks as closely as possible, but without
going into detail of the specific process underlying network
formation.



Probability space: The set Gn of all simple graphs Gn on n vertices.
Probability mass function:

Pβ
n (Gn) = exp

(
n2(β1t(H1,Gn) + ...+ βkt(Hk ,Gn)− ψβ

n )
)
.

• β1, ..., βk are real parameters and H1, ...,Hk are pre-chosen
finite simple graphs. Each Hi has vertex set [ki ] = {1, ..., ki}
and edge set E (Hi ). By convention, we take H1 to be a single
edge.

• Graph homomorphism hom(Hi ,Gn) is a random vertex map
V (Hi )→ V (Gn) that is edge-preserving. Homomorphism

density t(Hi ,Gn) = |hom(Hi ,Gn)|
|V (Gn)||V (Hi )|

.

• Normalization constant:

ψβ
n =

1

n2
log

∑
Gn∈Gn

exp
(
n2(β1t(H1,Gn) + ...+ βkt(Hk ,Gn))

)
.



βi = 0 for i ≥ 2:

Pβ
n (Gn) = exp

(
n2(β1t(H1,Gn)− ψβ

n )
)

= exp
(
2β1|E (Gn)| − n2ψβ

n

)
.

Erdős-Rényi graph G (n, ρ),

Pρ
n(Gn) = ρ|E(Gn)|(1− ρ)

(n
2

)
−|E(Gn)|.

Include edges independently with probability ρ = e2β1/(1 + e2β1).

exp(n2ψβ
n ) =

∑
Gn∈Gn

exp (2β1|E (Gn)|) =

(
1

1− ρ

)(n
2

)
.



What happens with general βi?
Problem: Graphs with different numbers of vertices belong to
different probability spaces!
Solution: Theory of graph limits (graphons)! (Lovász and
coauthors; earlier work of Aldous and Hoover)
Graphon space W is the space of all symmetric measurable
functions h(x , y) from [0, 1]2 into [0, 1]. The interval [0, 1]
represents a ‘continuum’ of vertices, and h(x , y) denotes the
probability of putting an edge between x and y .
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Example: Erdős-Rényi graph G (n, ρ), h(x , y) = ρ.
Example: Any Gn ∈ Gn,

h(x , y) =

{
1, if (dnxe, dnye) is an edge in Gn;
0, otherwise.



Large deviation and Concentration of measure:

ψβ = lim
n→∞

ψβ
n = max

h∈W

(
β1t(H1, h) + ...+ βkt(Hk , h)−

∫
[0,1]2

I (h)dxdy

)
,

where:

t(Hi , h) =

∫
[0,1]ki

∏
(i ,j)∈E(Hi )

h(xi , xj)dx1...dxki
,

and I : [0, 1]→ R is the function

I (u) =
1

2
u log u +

1

2
(1− u) log(1− u).



Let F ∗ be the set of maximizers. Gn lies close to F ∗ with high
probability for large n.
β2, ..., βk ≥ 0: Gn behaves like the Erdős-Rényi graph G (n, u∗),
where u∗ ∈ [0, 1] maximizes

β1u + ...+ βku|E(Hk )| − 1

2
u log u − 1

2
(1− u) log(1− u).

(Chatterjee and Varadhan; Chatterjee and Diaconis; Häggström
and Jonasson; Bhamidi, Bresler, and Sly)



Take H1 a single edge and H2 a triangle. Fix the edge parameter
β1. Let the triangle parameter β2 vary from 0 to ∞. Then ψβ1,β2

loses its analyticity at at most one value of β2. (Radin and Y)

Critical point is (1
2 log 2− 3

4 ,
9
16).



The line β1 = −β2 is of particular importance. The edge-triangle
model transitions from an Erdős-Rényi type almost complete graph
(β1 > −β2) to an Erdős-Rényi type almost empty graph
(β1 ≤ −β2). (Y)



Feasible edge-triangle densities.



Upper bound: complete subgraph on e1/2n vertices.
Lower bound for e ≤ 1/2: complete bipartite graph with 1− 2e
fraction of edges randomly deleted.
Lower bound for e ≥ 1/2: complicated scallop curves where
boundary points are complete multipartite graphs. (Razborov and
others)



Take β1 = aβ2 + b. Fix a and b. Let n→∞ and then let
β2 → −∞. Gn exhibits quantized behavior. (Y, Rinaldo, and
Fadnavis; related work in Handcock; Rinaldo, Fienberg, and Zhou)
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The exponential family of random graphs have popular
counterparts in statistical physics: a hierarchy of models ranging
from the grand canonical ensemble, the canonical ensemble, to the
microcanonical ensemble, with subgraph densities in place of
particle and energy densities, and tuning parameters in place of
temperature and chemical potentials.

The hierarchy

grand canonical ensemble←→ exponential random graph
no prior knowledge of the graph is assumed
↓
canonical ensemble←→ constrained exponential random graph
partial information of the graph is given
↓
microcanonical ensemble←→ constrained graph
complete information of the graph is observed beforehand



Let e ∈ [0, 1] be a real parameter that signifies an “ideal” edge
density. What happens if we only consider graphs whose edge
density is close to e, say |e(Gn)− e| < α?
(conditional) Probability mass function:

Pe,β
n,α(Gn) = exp

(
n2(β1t(H1,Gn) + ...+ βkt(Hk ,Gn)− ψe,β

n,α)
)
·

· 1|e(Gn)−e|<α.

(conditional) Normalization constant ψe,β
n,α:

ψe,β
n,α =

1

n2
log

∑
Gn∈Gn:|e(Gn)−e|<α

exp
(
n2(β1t(H1,Gn) + ...+ βkt(Hk ,Gn))

)
.



Large deviation and Concentration of measure:

ψe,β = lim
α→0

lim
n→∞

ψe,β
n,α = β1e+

max
h∈W:e(h)=e

(
β2t(H2, h) + ...+ βkt(Hk , h)−

∫
[0,1]2

I (h)dxdy

)
,

where:

e(h) =

∫
[0,1]2

h(x , y)dxdy ,

t(Hi , h) =

∫
[0,1]ki

∏
(i ,j)∈E(Hi )

h(xi , xj)dx1...dxki
,

and I : [0, 1]→ R is the function

I (u) =
1

2
u log u +

1

2
(1− u) log(1− u).

Let F ∗ be the set of maximizers. Gn lies close to F ∗ with high
(conditional) probability for large n. (Kenyon and Y)



Take H1 a single edge and H2 a triangle. Fix the “ideal” edge
density e. Let the edge parameter β1 = 0 and the triangle
parameter β2 vary from 0 to −∞. Then ψe,β2 loses its analyticity
at at least one value of β2. (Kenyon and Y)
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Special strip: Fix e = 1
2 . As β2 decreases from 0 to −∞, Gn jumps

from Erdős-Rényi to almost complete bipartite, skipping a large
portion of the e = 1

2 line. (Kenyon and Y)



Simple graphs are such that the edge weights satisfy a Bernoulli
(.5) distribution. Generalizations?
Probability space: The set Gn of all edge-weighted undirected
graphs Gn on n vertices. Edge weights xij between vertices i and j
are iid with a common distribution µ. This yields probability
measure Pn and associated expectation En on Gn.
Probability mass function:

Pβ
n (Gn) = exp

(
n2
(
β1t(H1,Gn) + · · ·+ βkt(Hk ,Gn)− ψβ

n

))
Pn(Gn).

Normalization constant ψβ
n :

ψβ
n =

1

n2
log En

(
exp

(
n2 (β1t(H1,Gn) + · · ·+ βkt(Hk ,Gn))

))
.
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Take µ = Unif(0, 1) as an example.
Large deviation and Concentration of measure:

ψβ = lim
n→∞

ψβ
n = max

h∈W

(
β1t(H1, h) + ...+ βkt(Hk , h)−

∫
[0,1]2

I (h)dxdy

)
,

where:

t(Hi , h) =

∫
[0,1]ki

∏
(i ,j)∈E(Hi )

h(xi , xj)dx1...dxki
,

and I : [0, 1]→ R is Cramér’s conjugate rate function

I (u) = sup
θ

(
θu − log

(∫
eθuµ(du)

))
= sup

θ

(
θu − log

eθ − 1

θ

)



Let F ∗ be the set of maximizers. Gn lies close to F ∗ with high
probability for large n.
β2, ..., βk ≥ 0: Gn behaves like the Erdős-Rényi graph G (n, u∗),
where u∗ ∈ [0, 1] maximizes

β1u + ...+ βku|E(Hk )| − 1

2
I (u).

I (u) does not admit closed-form expression; apply duality principle
for Legendre transform. (Y)



Take H1 a single edge and H2 a 2-star. Fix the edge parameter β1.
Let the triangle parameter β2 vary from 0 to ∞. Then ψβ1,β2 loses
its analyticity at at most one value of β2. (Y)

Critical point is (−3, 3).



I’ve really enjoyed visiting Singapore
and NUS! Thank You!:)


