
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

EM Algorithm and Stochastic Control

Steven Kou1, Xianhua Peng2, Xingbo Xu3

1Risk Management Institute and Dept. of Mathematics
National University of Singapore
2Department of Mathematics

HKUST
3Goldman Sachs

Kou, Peng, and Xu EM Algorithm and Stochastic Control 1 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

1 Introduction

2 The Control-EM Algorithm
Introduction to EM
Mutiple-Period Finite-Time Horizon Setup

3 Properties of the C-EM Algorithm

4 Implementation of C-EM by Simulation

5 Application 1: A Simple Stochastic Growth Model

6 Application 2: Dynamic Pricing of Inventories
Application 2a: Single-Product Dynamic Pricing of Inventories
Application 2b: Multi-Product Dynamic Pricing of Inventories

7 Application 3: Real Business Cycle

Kou, Peng, and Xu EM Algorithm and Stochastic Control 2 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Literature Review

EM algorithm: Started with Dempster, Laird, and Rubin (1977), and
thousands of papers after that. Google Citation over 45,000.

Previous Monte Carlo methods for stochastic control, dynamic
programming and BSDE: Kharroubi, Langren, and Pham (2013a, b),
Zhang(2004), Crisan, Manolarakis, and Touzi (2010), Bouchard and
Touzi (2004), etc.
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Our Contribution

We propose a Control-EM (C-EM) Algorithm for stochastic control
problems. The implementation of C-EM can be achieved by using
Monte Carlo simulation and the Stochastic Approximation (SA)
algorithm (or other optimization algorithm, e.g. cross-entropy
method).
If the goal is do a static search for an optimal parameter, then the
algorithm becomes the traditional EM algorithm.

1 We can deal with general stochastic processes, i.e., more than
diffusions or Levy processes.

2 Similar to the EM, we show the monotonicity of performance
improvement over each iterations, which leads to the convergence
results.

3 Unlike many existing algorithms in Approximate Dynamics
Programming (ADP) and reinforcement learning literature, we focus
on finite-horizon problems, where the optimal policy is not necessarily
stationary.
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The Main Difficulty

Traditionally, many stochastic control problems can be solved by the
dynamic programming (Bellman equation).

The main difficulty: Simulation is about going forward in time while
dynamic programming is going backward.

Our new algorithm does not rely on dynamic programming, and the
algorithm goes iteratively forward and backward, and does regression
on basis functions.
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Comparing with Other Approximate Dynamic
Programming

Approximate Dynamic Programming:
1 Many papers on value function improvement: Longstaff and Schwartz

(2001), Tsitsiklis ad Van Roy (2001), Broadie and Glasserman (1997,
2004).

2 Fewer results on policy improvement: Bertsekas (1999) and etc.

Value function improvement approaches may not lead to the
improvement of overall performance (Bartlett and Baxter, 2001); we
also have a counterexample showing that, even starting with the
optimal policy, the value function iteration may lead to suboptimal
policy.

On the contrary, our algorithms lead to increasing performance in
each iteration, due to the monotonicity.
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Comparing with Other Approximate Dynamic
Programming

Policy improvement approaches, e.g. in the book by Kushner and
Dupuis (2013), aim at first approximating the underlying process
using a Markov chain, and then computing the optimal policy
analytically backwards on the Markov chain.

The computing can be extensive as the Markov chain can be high
dimension.

In contrast, we only use simulation to compute the optimal policy,
and thus we can solve high dimensional problems.
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Introduction to EM

The Expectation-Maximization (EM) Algorithm is an iterative
method in statistics for finding MLE with missing data (see, e.g.,
Dempster et al. 1977).

A typical maximum likelihood estimation problem can be formulated
as

max
θ∈Θ

∫
u(s, θ)f (s, θ)ds, (1)

where u is some likelihood function; f (s, θ) is the probability density
function of a random variable or random vector s (related to missing
data); θ is the parameter to be estimated.

The EM algorithm starts from initial guess θ0 and iterates as below

θn+1 = argmax
θ∈Θ

∫
u(s, θ)f (s, θn)ds, n ≥ 0. (2)
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Introduction to EM

It can be broken down into two steps. First, in Expectation step
(E-step), the expectation is estimated using θn obtained from
previous iteration, i.e, the integral in (2). Then in the Maximization
step (M-step), optimization is used to get an updated θn+1.

The EM algorithm allows for very general distribution assumption for
f ; it also has monotonicity in each iteration, which leads to good
convergence properties, e.g. Wu (1983).
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1-Period Stochastic Control Problem Setup

1-Period problem:

max
c∈Γ

E [u(s, c)]

s.t. s = ψ(c , z).

where

c ∈ Rnc is control policy
u is the utility function
z is the random source
s ∈ Rns is state which is driven by random source z and policy c
Γ is the policy space
E [u(s, c)] =

∫
u(ψ(c , z), c)f (z)dz , where f is the density of z .
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EM Algorithm for the One Period Stochastic Control
Problem

EM Algorithm: An iterative method for finding control policies

cn+1 = argmax
c∈Γ

∫
u(ψ(cn, z), c)f (z)dz = argmax

c∈Γ

∫
u(sn, c)f (z)dz

It iteratively updates parameters (policies) using previous result cn.

E-Step: estimate
∫
u(ψ(cn, z), c)f (z)dz by using the previous cn to

get the state variable sn = ψ(cn, z).

M-Step: do optimization to get the updated result cn+1.

Monotonicity convergence results.

It allows very general distributions of z and s.
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Multi-Step Problem Setup

For t ≥ 1, we assume that ct = c(t, st , θt), t ≥ 1, where c(·) is a
function and θt = (θ1,t , θ2,t , . . . , θd ,t)

⊤ ∈ Rd is the vector of
parameters for the tth period.

For example, one may assume that

ct :=
d

∑
i=1

θi ,tϕi ,t(st), t ≥ 1, (3)

where {ϕi ,t : Rns → Rnc , i = 1, . . . , d} is the set of basis functions
for the tth period.

Path dependence can be accommodated by including auxiliary
variables in st .

The state evolution equation

st+1 = ψt+1(st , ct , zt+1), (4)

where ψt+1(·) is the state evolution function and zt+1 ∈ Rnz is the
random vector denoting the random shock in the (t + 1)th period.
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Multi-Step Problem Setup

At time 0, the decision maker wishes to choose the optimal control
c0 ∈ Rnc and the sequence of control parameters θ1, . . . , θT−1, which
determines the sequence of controls c1, . . . , cT−1,

To maximize the expectation of his or her utility

max
c0,θ1,...,θT−1

E0

[
T−1

∑
t=0

ut+1(st+1, st , ct)

∣∣∣∣∣c0, θ1, . . . , θT−1

]
(5)

s.t. ct = c(t, st , θt), t = 0, 1, . . . ,T − 1, (6)

st+1 = ψt+1(st , ct , zt+1), t = 0, 1, . . . ,T − 1, (7)

where ut+1(·) is the utility function of the decision maker in the
(t + 1)th period; noting that utility function in the first period can
include the utility at period 0.
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Multi-Step Problem Setup

A control problem that is more general than the problem (5) is

max
c0,θ1,...,θT−1

E0 [u(s0, c0, s1, c1, . . . , sT−1, cT−1, sT )|c0, θ1, . . . , θT−1]

(8)

s.t. ct = c(t, st , θt), t = 0, 1, . . . ,T − 1, (9)

st+1 = ψt+1(st , ct , zt+1), t = 0, 1, . . . ,T − 1, (10)

where u(s0, c0, s1, c1, . . . , sT−1, cT−1, sT ) is a general utility function
that may not be time separable as the one in (5).

For simplicity of exposition, we will present our C-EM algorithm for
the problem (5); however, the C-EM algorithm also applies to the
general problem (8).
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The Algorithm

1 Initialize k = 1 and x0 = (c00 , θ01, θ02, . . . , θ0T−1).
2 Iterate k until some stopping criteria are met. In the kth iteration,

update xk−1 = (ck−1
0 , θk−1

1 , θk−1
2 , . . . , θk−1

T−1) to

xk = (ck0 , θk1 , θk2 , . . . , θkT−1) by moving backwards from t = T − 1 to
t = 0 as follows:

(a) At time T − 1, update θk−1
T−1 to be θkT−1 such that

E0

[
uT (sT , sT−1, cT−1)

∣∣∣ck−1
0 , θk−1

1 , . . . , θk−1
T−2, θkT−1

]
≥E0

[
uT (sT , sT−1, cT−1)

∣∣∣ck−1
0 , θk−1

1 , . . . , θk−1
T−2, θk−1

T−1

]
. (11)

Such an θkT−1 can be set as a suboptimal (optimal) solution to the
problem

max
θT−1∈Rd

E0

[
uT (sT , sT−1, cT−1)

∣∣∣ck−1
0 , θk−1

1 , . . . , θk−1
T−2, θT−1

]
. (12)
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.

The Algorithm, cont’d

(b) Move backward from t = T − 2 to t = 1. At each time t, update
θk−1
t to be θkt such that

E0

[
T−1

∑
j=t

uj+1(sj+1, sj , cj )

∣∣∣∣∣ck−1
0 , θk−1

1 , . . . , θk−1
t−1 , θkt , θkt+1, . . . , θkT−1

]

≥E0

[
T−1

∑
j=t

uj+1(sj+1, sj , cj )

∣∣∣∣∣ck−1
0 , θk−1

1 , . . . , θk−1
t−1 , θk−1

t , θkt+1, . . . , θkT−1

]
.

(13)

Such an θkt can be set as a suboptimal (optimal) solution to the
problem

max
θt∈Rd

E0

[
T−1

∑
j=t

uj+1(sj+1, sj , cj )

∣∣∣∣∣ck−1
0 , θk−1

1 , . . . , θk−1
t−1 , θt , θkt+1, . . . , θkT−1

]
.

(14)
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The Algorithm, cont’d

(c) At time 0, update ck−1
0 to be ck0 such that

E0

[
T−1

∑
j=0

uj+1(sj+1, sj , cj )

∣∣∣∣∣ck0 , θk1 , . . . , θkT−1

]
≥ E0

[
T−1

∑
j=0

uj+1(sj+1, sj , cj )

∣∣∣∣∣ck−1
0 , θk1 , . . . , θkT−1

]
.

(15)

Such a ck0 can be set as a suboptimal (optimal) solution to the
problem

max
c0∈Rnc

E0

[
T−1

∑
j=0

uj+1(sj+1, sj , cj )

∣∣∣∣∣c0, θk1 , . . . , θkT−1

]
. (16)

Kou, Peng, and Xu EM Algorithm and Stochastic Control 17 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Multi-Step Problem Setup

In the C-EM algorithm, when we update θk−1
t to be θkt or updating

ck−1
0 to ck0 , if no improvement of the objective function can be found,
we simply set θkt = θk−1

t or set ck0 = ck−1
0 .

When we update θk−1
t to be θkt or updating ck−1

0 to ck0 , we need to
evaluate the expectation in (12), (14), or (16), where the expectation
is evaluated with all the parameters in other time periods fixed; this
corresponds to the E-step in the EM algorithm. And then, the
maximization in (12), (14), and (16) corresponds to the M-step in the
EM algorithm.

The C-EM algorithm does not use the dynamic programming
principle, and hence it can be applied to stochastic control problem
that do not satisfy the dynamic programming principle.
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Monotonicity

Theorem 1: The objective function U(·) defined in (5) monotonically
increases in each iteration of the C-EM algorithm, i.e.,

U(ck0 , θk1 , θk2 , . . . , θkT−1) ≥ U(ck−1
0 , θk−1

1 , θk−1
2 , . . . , θk−1

T−1), ∀k. (17)

Proof.

U(ck−1
0 , θk−1

1 , θk−1
2 , . . . , θk−1

T−3, θk−1
T−2, θk−1

T−1)

≤ U(ck−1
0 , θk−1

1 , θk−1
2 , . . . , θk−1

T−3, θk−1
T−2, θkT−1)

≤ U(ck−1
0 , θk−1

1 , θk−1
2 , . . . , θk−1

T−3, θkT−2, θkT−1)

≤ · · ·
≤ U(ck−1

0 , θk1 , θk2 , . . . , θkT−3, θkT−2, θkT−1)

≤ U(ck0 , θk1 , θk2 , . . . , θkT−3, θkT−2, θkT−1), (18)

which completes the proof.
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Convergences of the Value Function to a Stationary Value

Let {xk}k≥0 be the sequence of control parameters generated by the
C-EM algorithm. In this subsection, we consider the issue of the
convergence of U(xk) to a stationary value.

We make the following assumptions on the objective function U:

∀x0 such that U(x0) > −∞, {x ∈ Rn : U(x) ≥ U(x0)} is compact.
(19)

U(·) is continuous and differentiable on Rn. (20)

Suppose the objective function U(·) satisfies (19) and (20). Then, we
have

{U(xk)}k≥0 is bounded above for any x0 ∈ Rn. (21)

Define

M := set of local maxima of U(·) on Rn, (22)

S := set of stationary points of U(·) on Rn, (23)
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Convergences of the Value Function to a Stationary Value

Theorem 2. Suppose the objective function U satisfies conditions (19) and
(20). Let {xk}k≥0 be the sequence generated by the C-EM algorithm.

Suppose that

U(xk) > U(xk−1) for any xk−1 /∈ S(resp. xk−1 /∈ M). (24)

Then, all the limit points of {xk}k≥0 are stationary points (resp.
local maxima) of U, and U(xk) converges monotonically to
U∗ = U(x∗) for some x∗ ∈ S (resp. x∗ ∈ M).

Suppose that at each iteration k in the C-EM algorithm, θkt and ck0
are the optimal solution to the problems (12), (14), and (16)
respectively. Then, all the limit points of {xk} are stationary points
of U and U(xk) converges monotonically to U∗ = U(x∗) for some
x∗ ∈ S .
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Convergences of xk

Define

M(a) := {x ∈ M : U(x) = a},

S(a) := {x ∈ S : U(x) = a}.

Under the conditions of Theorem 2, U(xk) → U∗ and all the limit
points of {xk} are in S(U∗) (resp. M(U∗)). However, this does not
automatically imply the convergence of {xk}k≥0 to a point x∗.

If S(U∗) (resp. M(U∗)) consists of a single point x∗, i.e., there
cannot be two different stationary points (resp. local maxima) with
the same U∗, then xk → x∗. Hence, we have the following theorem.
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Convergences of xk

Theorem 3. Let {xk}k≥0 be an instance of a C-EM algorithm satisfying
the conditions of Theorem 2, and let U∗ be the limit of {U(xk)}k≥0.

If S(U∗) = {x∗} (resp. M(U∗) = {x∗}), then xk → x∗.

If ∥xk+1 − xk∥ → 0 as k → ∞, then, all the limit points of xk are in
a connected and compact subset of S(U∗) (resp. M(U∗)). In
particular, if S(U∗) (resp. M(U∗)) is discrete, i.e., its only
connected components are singletons, then xk converges to some x∗

in S(U∗) (resp. M(U∗)).

Kou, Peng, and Xu EM Algorithm and Stochastic Control 23 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Implementation of C-EM by Simulation and Stochastic
Approximation(SA)

The stochastic optimization problem at each time t is solved by using
Stochastic Approximation.

Stochastic Approximation (SA) is a simulation-based iterative
algorithm for stochastic optimization (Robbins and Monro (1951),
Kiefer and Wolfowitz (1952), Broadie, et al. (2011)).

argminx E [G (x , ξ)] or finding the root of 0 = E [G (x , ξ)].

Other algorithms, e.g., Cross Entropy approach (Rubinstein and
Kroese (2004) ), can be alternatives.
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Application 1: A Simple Stochastic Growth Model

We consider a simple stochastic growth problem as follows

max
ct

E0

[
2

∑
t=0

ut+1(st+1, st , ct)

]
= E0

[
2

∑
t=0

log ct + log s3

]

s.t. st+1 =

(
st −

st
1+ exp(ct)

)
exp(a+ bzt+1), t = 0, 1, 2 (25)

s0 = 1

ct ∈ R, t = 0, 1, 2

where a is a constant, b > 0 is the volatility term, and zt+1
d∼ N(0, 1) are

i.i.d. normally distributed random noise.

At the t-th time period, the amount st
1+exp(ct )

is consumed from

capital st ,

The remaining capital grows at rate exp(a+ bzt+1).

All wealth will be consumed in the end (at time t = 3).
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Application 1: A Simple Stochastic Growth Model

The problem can be solve analytically with the following optimal controls
and value functions

c∗t = log(3− t), t = 0, 1, 2.

V0(s0) = 6a− 4 log 4+ 4 log s0

V1(s1) = 3a− 3 log 3+ 3 log s1

V2(s2) = a− 2 log 2+ 2 log s2. (26)
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Application 1: A Simple Stochastic Growth Model

To test our algorithm numerically, we choose a = −0.1 and b = 0.2.

We use N = 104 sample paths and m = 2000 loops for the SA
algorithm.

We consider two specification of basis functions. In the first specification,
we use only one basis function

ϕ1(s) = s

ct = θ1,tϕ1(st).

In the second specification, we use two basis functions

ϕ1(s) = 1, ϕ2(s) = s,

ct = θ1,tϕ1(st) + θ2,tϕ2(st).

The theoretical optimal control c∗t lie in the space linearly spanned by the
basis in the second specification but not in the first one. In the C-EM
algorithm, we choose initial values of c0 and θt to be c00 = 0, θ0t = 0, ∀t.
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Application 1: A Simple Stochastic Growth Model

0 1 2 3 4 5
Iteration
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Theoretical optimal
C-EM using one basis
C-EM using two basis

Each iteration takes around 3 minutes. The theoretical optimal objective
function value is -6.1452. The optimal objective function obtained by the
C-EM algorithm is -6.1421 (7.4659e-03) with only one basis function and
is -6.1358 (7.4755e-03) with two basis functions.
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Application 2a: Single-Product Dynamic Pricing of
Inventories

A single-product dynamic pricing inventory problem in Gallego and
Van Ryzin (1994). It is a finite-horizon problem with one state and
one control.

Suppose revenue within a short period (t, t + ∆t) is given by
r = p(λt)∆Nλ, where λt is the sale intensity at time t, Nλ is a
Poisson counting process with intensity λt , p(λt) is the price at time
t, and ∆Nλ is the number of arriving customers in the time interval
(t, t + ∆t).
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Application 2a: Single-Product Dynamic Pricing of
Inventories

The continuous-time problem is formulated as follows

V (nc ,T ) = sup
p

E0

[∫ T

0
psdN

λ
s

]
s.t. V (nc , 0) = V (0,T ) = 0, for any nc and any T

(27)

Nλ
T ≤ nc ,

ps = −1

α
log

λs

a
, for s ≤ T ,

where nc is the total capacity at the beginning t = 0 and T is the
time-to-maturity. The price is assumed to follow a parametric
function depending on the sale intensity λ.
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Application 2a: Single-Product Dynamic Pricing of
Inventories

In this problem, the state variable is the residual capacity
Rs = nc −Nλ

s and the control is λs , which determines the sale price
ps and the dynamics of future arrivals Ns+. The capacity constraint is
automatically taken care of because of the continuous setting.

When α = 1, the optimal solution given in Gallego and Van Ryzin
(1994).
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Application 2a: Single-Product Dynamic Pricing of
Inventories

We discretize the whole time horizon [0,T ] into nT equal periods,
denoted as t0 = 0, . . . , tnT = T . We choose cti as the control and
formulate the discrete problem as follows

max
cti

E0

[
nT−1

∑
i=0

p(λti )(N
c
ti+1

−Nc
ti
)

]
s.t. Nλ

ti+1
−Nλ

ti
∼ Poisson(λti ∆t), i = 0, 1, . . . , nT − 1

Nc
ti+1

−Nc
ti
= min(nc −Nc

ti
,Nλ

ti+1
−Nλ

ti
), i = 0, 1, . . . , nT − 1

(28)

p(λti ) = −1

α
log

λti

a
, i = 0, 1, . . . , nT − 1

λti =
a

1+ exp(cti )
, i = 0, 1, . . . , nT − 1

cti ∈ R, i = 0, 1, . . . , nT − 1.

In the problem, the state variable is the residual capacity
Rti = nc −Nc

ti
; Nc

t is the total number of customers arrived during
[0, t] that have been capped at nc .
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Single-Product Dynamic Pricing of Inventories

nc = 20 nc = 10 nc = 5

Theoretical C-EM Theoretical C-EM Theoretical C-EM

continuous discrete continuous discrete continuous discrete

Mean 7.3576 7.3494 7.3777 7.2231 7.2207 7.2237 6.000 5.8964 5.9419

Stderr N/A 0.0271 0.0270 N/A 0.0257 0.0260 N/A 0.0205 0.0204

We discretize the time horizon [0, 1] into nT = 4 equal periods. We use
N = 10, 000 sample paths in the C-EM algorithm, and we use 1000
iteration in the SA algorithm. We specifies the control ct as the linear
combination of three basis functions:

ct = θt1ϕ1(Rt) + θt2ϕ2(Rt) + θt3ϕ3(Rt),

ϕi (R) = R i , i = 0, 1, 2.

We choose initial values of c0 and θt to be c00 = 0, θ0t = 0, ∀t.
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Single-Product Dynamic Pricing of Inventories
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Figure: nc = 20, nc = 10, nc = 5. The C-EM converges in about 2 iterations.
Each iteration takes about 3 minutes.
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Application 2b: Multi-Product Dynamic Pricing of
Inventories

Consider an airline network sales problem with nr legs, ni itineraries.

Example: A network with three nodes {1, 2, 3}, two legs
{1 → 2, 2 → 3}, and three itineraries {1 → 2, 2 → 3, 1 → 2 → 3}.
Prices of itineraries p ∈ Rni , customer arrival rate λ ∈ Rni . Initial
capacity nc ∈ Rnr .

A = [aij ] ∈ Rni×nr defines whether flight leg j is a part of itinerary i
using aij ∈ {0, 1}.

A =

1 0
0 1
1 1


The problem is proposed (Gallego and Van Ryzin (1997))
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Application 2b: Multi-Product Dynamic Pricing of
Inventories

Continuous version

sup
λ

E

[∫ T

0
p⊤s dN

λ
s

]
,

s.t.
∫ T

0
A⊤dNλ

s ≤ nc , pj (λ) = (ϵ−1
0,j log

λj
0

λj
+ 1)pj0, for j = 1, . . . , ni .

V (n, 0) = V (0, t) = 0, ∀n ∈ Nnr , ∀t > 0.

Difficult to solve the HJB equation
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Application 2b: Multi-Product Dynamic Pricing of
Inventories

We focus on a discrete-time setting of the problem.

max
c

E0

[
nT−1

∑
k=0

p(λtk )
⊤(Nc

tk+1
−Nc

tk
)

]
s.t. Nλ,j

tk+1
−Nλ,j

tk ∼ Poisson(λj
tk ∆t), j = 1, . . . , ni

Nc
tk+1

= G (nc ,Nc
tk
,Nλ

tk+1
−Nλ

tk
) (29)

pj (λj
tk ) = (ϵ−1

0,j log
λ0,j

λj
tk

+ 1)p0,j , j = 1, . . . , ni

λj
tk = min(λ0,je

ϵ0,j , max(c jtk , 0)), j = 1, . . . , ni ,

c jtk ∈ R, j = 1, . . . , ni .

The control of the problem is ctk = (c1tk , . . . , cnitk )
⊤. The state

variables of the problem are the residual capacities Rtk = nc − ANc
tk
.
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Example: Multi-Product Dynamic Pricing of Inventories

Deterministic benchmarks (by Gallego and Van Ryzin (1997)):

For its continuous version, the HJB equation does not not analytical
solution.

Gallego and Van Ryzin (1997) gave two heuristic policies, MTS and
MTO, by considering their deterministic versions, and showed their
asymptotic optimality.

The deterministic versions are solved via a constrained convex
programming.

MTO allows itineraries to share airline capacity when available, while
MTS does not.

Both MTO and MTS assume stationary policies, while our problem
has a much higher dimension.

Other approaches via the value function approximation: Bertsimas &
de Boer (2005), Adelman (2007) and etc.
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Example: Multi-Product Dynamic Pricing of Inventories

Consider T = 1, nT = 6, N = 100. The total running time is about 5
hours (SA is the bottleneck).

A network with three nodes {1, 2, 3}, two legs {1− 2, 2− 3}, and
three itineraries {1− 2, 2− 3, 1− 2− 3}.
State variables: Rij = ncij −Nij for (i , j) ∈ {(1, 2), (2, 3)}.
Policy: λ = [λ12,λ23,λ123]⊤.

Assume linear basis (linear of states){
ϕ1
12(R) = [1, 0, 0]⊤

ϕ2
12(R) = [R12, 0, 0]⊤

ϕ3
12(R) = [R23, 0, 0]⊤

{
ϕ1
23(R) = [0, 1, 0]⊤

ϕ2
23(R) = [0,R12, 0]⊤

ϕ3
23(R) = [0,R23, 0]⊤

{
ϕ1
123(R) = [0, 0, 1]⊤

ϕ2
123(R) = [0, 0,R12]⊤

ϕ3
123(R) = [0, 0,R23]⊤

Denote the corresponding coefficients by {θk,l} for
l ∈ {(1, 2), (2, 3), (1, 2, 3)} and k = 1, 2, 3.

The initial policies are set to be equal to the optimal deterministic
controls, i.e.,

θ02,l = θ03,l = 0, θ01,l = λd ,∗
l
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Applicatinn 2b: Multi-Product Dynamic Pricing of
Inventories
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Figure: The algorithm converged after 4 iterations. It uses N = 10, 000 sample
path in the simulation. It takes 1.3 hours for each iteration. The optimal revenue
is 1.8757× 105 (with standard error 52).
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Example: Multi-Product Dynamic Pricing of Inventories
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Figure: Histograms of total revenue with optimal control (left), heuristic MTO
(middle) and heuristic MTS (right). Based on 10,000 simulation sample paths.
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Example: Multi-Product Dynamic Pricing of Inventories

Total revenue Revenue at 3rd period Revenue at 6th period
C-EM MTO MTS C-EM MTO MTS C-EM MTO MTS

mean 187.57 185.06 182.48 31.82 31.69 30.70 29.45 26.78 24.71
stderr 0.05 0.06 0.06 0.04 0.04 0.04 0.04 0.06 0.06

skewness -0.30 -1.36 -1.00 0.14 0.14 0.09 -0.38 -0.70 -0.35
kurtosis 3.06 4.74 3.80 2.94 2.96 3.00 3.21 3.83 3.11

1% quantile 174.02 166.56 165.16 22.48 22.52 21.26 19.86 9.15 10.34
5% quantile 178.17 173.16 170.97 25.09 24.99 24.02 22.94 15.69 14.70

95% quantile 195.57 190.57 189.29 39.01 38.81 37.67 35.18 35.21 33.26
99% quantile 198.62 190.89 189.29 41.82 41.85 40.73 37.07 38.48 36.41

Table: Dynamic multi-product pricing inventories : statistics of revenues (in units
of 1,000). Stderr indicates the standard error of the mean estimation.
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Example: Mult-Product Dynamic Pricing of Inventories
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Figure: The airline ticket prices. The first row plots the prices at the beginning of
the 3rd period (at time t2 = 1/3), and the second row plots the prices at the
beginning of the 6th period (at time t5 = 5/6).
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Application 3: Real Business Cycle

We follow the models in Christiano (1990) to compare the log-linear
LQ approximation for real business cycle model as in Kydland and
Prescott (1982), Long and Plosser (1983), and Hansen (1985).

The original infinite horizon problem:

max
gt

E0

[
∞

∑
t=0

βtu(kt−1, kt , xt)

]
= E0

[
∞

∑
t=0

βt g
1−τ
t

1− τ

]
(30)

s.t. xt+1 = ρxt + ϵt+1, t ≥ 0

kt = exp(xt)k
γ
t−1 − gt + (1− δ)kt−1, t ≥ 0

gt ∈ [0, exp(xt)k
γ
t−1 + (1− δ)kt−1], t ≥ 0

where (k−1, x0) is given as the initial state at time t = 0; xt is the
technology innovation level at period t, exp(xt)k

γ
t−1 is the total

production at period t; gt is the consumption at period t; kt is the
end-of-period-t capital, which depends on the depreciation rate of
capital δ. The state of the model at time t is st = (kt−1, xt).
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Application 3: Real Business Cycle

Infinite-horizon (IH) version is well studied.

Log-linear LQ approximates the objective function with
linear-quadratic functions. Then it is solved analytically by
Linear-Quadratic programming.

Not suitable for the finite-horizon (FH) problem:
1 The solution is not stationary for FH problem.
2 FH problem has a much higher dimension. IH problem implicitly

assumes only optimization only for one period.
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Application 3: Real Business Cycle

We consider the finite horizon version as follows

max
ct ,0≤t≤T−1

E0

[
T

∑
t=0

βtu(kt−1, kt , xt)

]
= E0

[
T

∑
t=0

βt g
1−τ
t

1− τ

]
(31)

s.t. xt+1 = ρxt + ϵt+1, 0 ≤ t ≤ T − 1

kt = exp(xt)k
γ
t−1 − gt + (1− δ)kt−1, 0 ≤ t ≤ T − 1

gt =
1

1+ exp(ct)

[
exp(xt)k

γ
t−1 + (1− δ)kt−1

]
, 0 ≤ t ≤ T − 1

gT = exp(xT )k
γ
T−1 + (1− δ)kT−1, (32)

ct ∈ R, 0 ≤ t ≤ T − 1,

where (32) means that the available capital at period T is all
consumed at period T . Hence, the last period utility of problem (31)
is given by

uT (sT , sT−1, cT−1) = βT−1 g
1−τ
T−1

1− τ
+ βT g1−τ

T

1− τ
.
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Application 3: Real Business Cycle

Suppose the problem parameters are β = 0.98, γ = 0.33, τ = 0.5,
δ = 0.025, ρ = 0.95, and ϵt ∼ N(0, σ2

e ) with σe = 0.1. The initial state is
s0 = (k−1, x0) = (k∗, 0). The control ct is specified as

ct =
4

∑
i=1

θi ,tϕi (kt−1, xt),

where {ϕi} are the basis functions defined as

ϕ1(kt−1, xt) = 1,

ϕ2(kt−1, xt) = kt−1,

ϕ3(kt−1, xt) = exp(xt),

ϕ4(kt−1, xt) = k
γ
t−1.

In the C-EM algorithm, we initialize c00 = 0, θ0t = 0, ∀t. We simulate
N = 10, 000 sample paths in the C-EM algorithm, and we use 2000
iterations in the SA algorithm.
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Example: Real Business Cycle

0 1 2 3 4
Iteration
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n 
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e

C-EM
Log-Linear LQ

Figure: T = 6. The C-EM algorithm converges after 3 iterations. It takes 18
minutes for each iteration.
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Example: Real Business Cycle

0
-1 40

1

2

g t

3

4

-0.5 30

5

x
t

k
t-1

200
0.5 10

01

C-EM
Log-linear LQ
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1 0
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Figure: T = 6. The top figure plots gt for t = 2, and the bottom one plots gt for
t = 5, which is the second to the last period.

Kou, Peng, and Xu EM Algorithm and Stochastic Control 49 / 55



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example: Real Business Cycle
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Iteration
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Figure: T = 10. The C-EM algorithm converges after 3 iterations. It takes 18
minutes for each iteration.
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Example: Real Business Cycle
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Figure: T = 10. The top figure plots gt for t = 2, and the bottom one plots gt
for t = 9, which is the second to the last period.
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Thank you!
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Example: Comparison with Value Function Approximation

Value Function Improvement: it approximates and keeps tracks of
value function. The policy from the approximated function may not
necessarily lead to performance improvement.

Consider the state space is {1, 2} and policy space is {a1, a2}. For
each policy, the state follows a discrete-time Markov process as follows

P(a1) =

[
1/3 2/3
1/3 2/3

]
, P(a2) =

[
2/3 1/3
2/3 1/3

]
.

The objective is

max
c

Es1

[
T−1

∑
t=1

αtu(st) + αTuT (sT )

]
, for α ∈ (0, 1) and s1 given

where u(1) = 0, u(2) = 1.
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Example: Comparison with Value Function Approximation

For the infinite-horizon version of the problem, the optimal value
function is

J(1) =
2α

3− 3α
, J(2) = 1+

2α

3− 3α

The optimal policy is c∗(s) = a1 for any s.

Choosing uT = J, the optimal policy for the finite-horizon problem is
also c∗t (s) = a1 for t = 0, ...,T − 1.

Suppose we use basis

ϕ(1) = 2, ϕ(2) = 1.

Approximate value function Ĵt(i) = wtϕ(i) for any i ∈ {1, 2}. Where

wt = argmin
w

Est−1,ct−1 [wϕ(st)− Jt(st)]
2 .
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Example: Comparison with Value Function Approximation

Suppose we use basis

ϕ(1) = 2, ϕ(2) = 1.

Approximate value function Ĵt(i) = wtϕ(i) for any i ∈ {1, 2}. Where

wt = argmin
w

Est−1,ct−1 [wϕ(st)− Jt(st)]
2 . (33)

Initialize with Jt = J.

Start backward from T , (33) gives w1
T = 2+α

9−9α > 0.

So ĴT (1) > ĴT (2) ⇒ ĉ1T−1(s) = a2 ̸= c∗T−1(s). Suboptimal!

If continue with the iteration, the suboptimal policy still cannot be
improved over multiple rounds.
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