Integrable deformations of local analytic fibrations with singularities

Bruno Scárdua

Abstract

In this talk we shall study analytic integrable deformations of the germ of a holomorphic foliation given by df = 0 at the origin $0 \in \mathbb{C}^n$, $n \ge 3$. We consider the case where f is a germ of an irreducible and reduced holomorphic function. Our central hypotheses is that, *outside* of a dimension $\le n - 3$ analytic subset $Y \subset X$, the analytic hypersurface $X_f : (f = 0)$ has only normal crossings singularities. We then prove that, as germs, such deformations also exhibit a holomorphic first integral, depending analytically on the parameter of the deformation. This applies to the study of integrable germs writing as $\omega = df + f\eta$ where f is quasihomogeneous. Under the same hypotheses for $X_f : (f = 0)$ we prove that ω also admits a holomorphic first integral. Finally, we conclude that an integrable germ $\omega = adf + f\eta$ admits a holomorphic first integral provided that: (i) $X_f : (f = 0)$ is irreducible with an isolated singularity at the origin $0 \in \mathbb{C}^n$, $n \ge 3$; (ii) the algebraic multiplicities of ω and f at the origin satisfy $\nu(\omega) = \nu(df)$. In the case of an isolated singularity for (f = 0) the writing $\omega = adf + f\eta$ is always assured so that we conclude the existence of a holomorphic first integral. Some questions related to Relative Cohomology are naturally considered and not all of them answered.

References

- D. Cerveau, J.-F. Mattei: Formes intgrables holomorphes singulires, Astrisque, Vol. 97 (1982). MR 86f:58006
- [2] B. Malgrange: Frobenius avec singularits, 1. Codimension un, Public. Sc. I.H.E.S., 46 (1976), pp. 163-173.
- [3] B. Malgrange: *Frobenius avec singularites. 2. Le cas general.* Inventiones mathematicae (1977) Volume: 39, page 67-90.
- [4] J.F. Mattei and R. Moussu: *Holonomie et intégrales premières*, Ann. Sci. École Norm. Sup. (4) 13 (1980), 469–523.
- [5] D. Cerveau, B. Scárdua: Integrable deformations of local analytic fibrations with singularities, pre-print Univ. Rennes I, 2016.