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Let M be a Kähler manifold. This means that M be a com-
plex manifold together with a Kähler metric ω.

In local coordinates z1, · · · , zn, the metric ω is given by a
Hermitian positive matrix-valued function (gij̄):

ω =
√
−1

n∑
i,j=1

gij̄dzi ∧ dz̄j

satisfying:
dω = 0.



We say ω is Kähler-Einstein if it is Kähler and Einstein, i.e.,

Ric(ω) = λω,

where λ = −1, 0, 1.

In local coordinates, the Ricci curvature Ric(ω) is given by

Ric(ω) = −
√
−1∂∂̄ log det(gij̄).



In 50s, E. Calabi started the study of Kähler-Einstein metrics
on a compact Kähler manifold M .

The existence of Kähler-Einstein metric was established by

• Yau in 1976 when λ = 0

• Aubin, Yau independently in 1976 when λ = −1

These correspond to the cases when the first Chern class of
M is zero or negative.



Now we assume λ = 1. In this case, M has positive first
Chern class, i.e., M is a Fano manifold.

Not every Fano manifold admits a Kähler-Einstein metric.

There are obstructions to the existence due to 1. Matsushima
in 1957, Futaki in 1983 and Tian in 1996.



• A Fano surfaceM has a Kähler-Einstein metric if and only
if Futaki invariant vanishes (Tian, 1989).

• In 1996, I introduced the notion of K-stability and proved
that if M has no non-trivial holomorphic fields and admits a
Kähler-Einstein metric only if M is K-stable.

• In 2012, I gave a proof of the following:

Theorem A Fano manifold M admits a Kähler-Einstein
metric if it is K-stable.

Another proof was given by Chen-Donaldson-Sun.



A “toy” case:

There is a unique 1-dimensional Fano manifold with con-
stant curvature 1, that is, the unit sphere S2 in R3!

This follows from the classical Uniformization Theorem or
complex analysis.



Conic spherical structure: Given points p1, · · · , pk in S2

(k ≥ 1) and β1, · · · , βk ∈ (0, 1), is there a Riemannian met-
ric g on S2\{pi} of constant curvature 1 such that g extends
across each pi as a conic metric with angle 2πβi?

Troyanov, McOwen, Thurston, Luo-Tian:

Such a spherical structure exists if and only if

1.
∑k
i=1 (1− βi) < 2;

2. For each j,
∑
i 6=j (1− βi) > 1− βj.



If we choose coordinate z such that S2 = C ∪ {∞} and
pi ∈ C with coordinate zi, then the existence of the above
conic spherical structure is reduced to solving the equation:

1 + ∆u =

k∏
i=1

|z − zi|−2(1−βi) eF−u.

where F is a given function.

This is the type of equations I studied even when I was a
student at Peking University.



• Condition 1 corresponds to the Fano condition and is nec-
essary due to the Gauss-Bonnet formula for conic metrics.

• Condition 2 simply means that the pair (S2,
∑

(1 − βi)pi)
is K-stable as a Fano manifold S2 together with a divisor.



Geometric Invariant theory:

Geometric invariant theory (or GIT) is a method for con-
structing quotients by group actions in algebraic geometry.
It was developed by D. Mumford in 1965, using some ideas
from a paper of Hilbert in 1893 in classical invariant theory.

Since 1970s, the GIT developed interactions with symplec-
tic geometry, equivariant topology and differential geometry.



Let G be an algebraic group, say SL(2,C) which consists of
all 2 × 2 complex matrices with determinant 1, acting on a
vector space V. This action induces an action of G on the
space of polynomials R(V) on V by

σ · f (v) = f (σ−1v), σ ∈ G, v ∈ V.

A polynomial f is invariant under the G-action if σ · f = f
for all σ ∈ G. Those invariant polynomials form a commu-
tative algebra A = R(V)G.



For any v 6= 0 in V, we say [v] ∈ P (V) semi-stable if 0 is not
contained in the closure of G(v). It follows from GIT that
this is equivalent to that there is a non-constant G-invariant
homogeneous polynomial f on V such that f (v) 6= 0.

We call [v] ∈ P (V) stable if G(v) is closed.

Denote by P (V)ss the set of all semi-stable points, then
we have a “quotient” Q of P (V)ss by G. By GIT, Q is a
projective variety.



How does it relate to a Fano manifold M?

By the famous Kodaira’s embedding theorem, we can embed
M as a subvariety in some complex projective space CPN
on which the linear group G = SL(N + 1,C) acts.

Using a construction of Chow, Mumford associates a
nonzero vector RM , referred as the Chow coordinate, in
a vector space V which has an induced action by G. Such a
V depends only onN , dimM and the degree ofM ⊂ CPN .

M is called Chow-Mumford stable if its Chow coordinate is
stable.



In early 90s, I expected and tried to find a connection
between the existence of Kähler-Einstein metrics and the
Chow-Mumford stability. Later, my former student S. Paul
also made some partial progress.

In 2000, S. Donaldson proved that the existence of Kähler-
Einstein metrics implies the Chow-Mumford stability.

Now we know that the K-stability is the right condition.
In fact, for many years in early 90s, I tried to relate the
K-stability to the Chow-Mumford stability even though I
already knew the way of defining the K-stability.

The K-stability does not fit into the classical Geometric In-
variant Theory and needs its extension.



We recall Futaki invariant: A character of η(M) of holo-
morphic vector fields on M . Let ω0 be a Kähler metric
whose Kähler class representing the first Chern class and
define

fM (X) =

∫
M
X(h0)ωn0 ,

where h0 is chosen by

Ric(ω0)− ω0 =
√
−1∂∂̄h0,

∫
M

(
eh0 − 1

)
ωn0 = 0.

Futaki: fM is an invariant and vanishes if M admits a
Kähler-Einstein metric.



There are Fano manifolds with non-vanishing Futaki invari-
ant, e.g., the blow-up of CP 2 at one or two points.

Futaki invariant can be expressed in terms of Bott-Chern
classes (Tian, 1994). This leads to a residue formula com-
puting the invariant by using the equivariant Riemann-Roch
Theorem (Futaki, Tian). Such a residue formula is analogous
to Bott’s residue formula for computing Chern numbers.



For long, only obstructions arise from the Lie algebra η(M).
This led to the speculation:

If a Fano manifold M has no non-zero holomorphic fields,
then M admits a Kähler-Einstein metric.

In 1996, I found a counterexample to this by using the K-
stability.



To introduce the K-stability, we need to generalize the Fu-
taki invariant to singular varieties.

It was Ding and myself who first generalized the Futaki in-
variant to singular varieties (1992). Our construction follows
a similar route as Futaki did in the smooth case, but analysis
is a bit more involved. The advantage of this construction
is that the generalized Futaki invariant vanishes if there is
a weakly Kähler-Einstein metric on a singular variety in a
suitable sense.

By a weakly Kähler-Einstein metric, we mean a Kähler-
Einstein metric ω on a smooth part of a normal variety M
satisfying: ω =

√
−1∂∂̄ϕ locally for a bounded function ϕ

and ω0 ≤ c ω for some c > 0.



Other generalizations of Futaki invariant:

• In 2002, Donaldson gave an algebraic definition of gener-
alized Futaki invariant which works for any polarized vari-
eties.
• In 2008, S. Paul gave another algebraic formula of gen-
eralized Futaki invariant in terms of Chow coordinate and
hyperdiscriminant.



Let G0 = {σ(t)} ⊂ Aut(M) be a C-action on M . This
can be naturally lifted to K−1

M = ΛnTM , so we have
d(`) = h0(M0, L

`
0) and the weight w(`) of G0-action on

ΛtopH0(M,K−`M ).

By the equivariant Riemann-Roch theorem and the
Riemann-Roch theorem, we have

w(`) =

n+1∑
i=0

bi `
n+1−i, d(`) =

n∑
i=0

ai `
n−i.

Donaldson’s version of the Futaki invariant is defined by

fM (G0) = − 2n!

(
b1 − b0

a1

a0

)
.

If M is smooth, it follows from the equivariant index theo-
rem that this definition coincides with Futaki’s.



• In my 1997 paper, I introduced the notion of CM line bun-
dle which can be also used to define the generalized Futaki
invariant.

Let G0 = {σ(t)}t∈C∗ be an algebraic subgroup of G pre-
serving a subvariety M0 ⊂ CPN and L0 be the restriction of
the hyperplane bundle to M0. Then it induces an action on
the CM-line which has a weight, referred as the CM-weight
wcm(G0). It was proved by Paul-Tian in 2004 that the CM-
weight is the same as the generalized Futaki invariant.

The CM weight can be also identified with the first Chern
class of the CM line bundle over certain compactification of
G0 and turns out to be easier to use in algebraic geometry as
Li and Xu manifested in their paper (2011).



K-stability:

By Kodaira, we can embed M 7→ CPN as a subvariety.

As above, set G = SL(N + 1,C). For any algebraic sub-
group G0 = {σ(t)}t∈C∗ of G, there is a unique limiting
cycle

M0 = lim
t→0

σ(t)(M) ⊂ CPN .

One can associate a weight w(G0) which is either the
generalized Futaki invariant as defined by Ding-Tian or
Donaldson or the CM weight.



M is called semi K-stable for the embedding M ⊂ CPN if
w(G0) ≥ 0 for any G0 ⊂ G.

M is called K-stable if it is semi K-stable and w(G0) > 0
unless M0 is biholomorphic to M .

As I said before, the K-stability is the necessary and suffi-
cient condition for the existence of Kähler-Einstein metrics.



In the above, we confine ourselves to the case of Fano
manifold. In fact, the K-stability can be also defined for
any polarized projective manifold (M,L) in a similar way,
where L is a positive line bundle over M .

General YTD conjecture: If (M,L) is K-stable, then M
admits a Kähler metric of constant scalar curvature and with
Kähler class c1(L).



K-stability and Geometric Invariant Theory:

The K-stability does not fit in the classical frame of Geomet-
ric Invariant Theory as the Chow-Mumford stability does.
The GIT involves only one representation of G while the
right setting for K-stability involves a pair of representations
of G as manifested in the work of S. Paul. So the study of
K-stability leads to an extension of GIT, say EGIT.



Extending Geometric Invariant Theory:

Let V and W be two representations of G. Given a pair
v ∈ V \ {0} and w ∈ W \ {0}, we say the pair (v, w) is
semistable if

G[v, w] ∩ G[0, w] = ∅ in P (V ⊕W).



If W = C, w = 1 be the trivial 1-dimensional representation
of G. Then (v, 1) is semistable if and only if 0 is not in the
closure of the orbit Gv. In other words, v is semistable in
the usual sense of Geometric Invariant Theory.



K-stability fits well in the frame of the extended GIT:

For each M embedded in CPN , Paul associates the hy-
perdiscriminant ∆M and the Chow coordinate RM . They
lie in two vector spaces V and W on which G acts naturally.

Paul showed that M is semi K-stable is equivalent to the
semistability of the pair (∆M , RM ).

In some sense, stability of pairs corresponds to the GIT for
the representation of G on the difference V −W.



How is the K-stability related to the existence of Kähler-
Einstein metrics on a Fano manifold? First we introduce the
K-energy:

Fω0(ϕ) = −
∫ 1

0

∫
M
ϕ̇t (Ric(ωt)− ωt) ∧ ωn−1

t ∧ dt,

where {ϕt} is any path from 0 to ϕ in the space of Kähler
metrics.

We also put

Jω0(ϕ) =
1

V

n−1∑
i=0

i + 1

n + 1

∫
M

√
−1 ∂ϕ ∧ ∂ϕ ∧ ωi0 ∧ ω

n−i−1
ϕ ,

where ω0 is a fixed Kähler metric with [ω0] = 2πc1(M).



We say that F0 is proper if for any sequence {ϕi with
ω0+
√
−1∂∂̄ϕ1 > 0, Fω0(ϕi)→∞whenever Jω0(ϕi)→∞.

Tian (90s): If M has no non-trivial holomorphic fields, then
M admits a Kähler-Einstein metric if and only if Fω0 is
proper.

The K-stability is closely related to this properness. Let us
recall a result in my PhD thesis in 1988.



By Kodaira, for ` >> 1, any basis of H0(M,K−`M ) gives an
embedding φ : M 7→ CPN . So we get a family of metrics

K` = {1
`
φ∗τ∗ωFS}.

•
⋃
K` is dense in the space of Kähler metrics on M with

Kähler class 2πc1(M).

• The K-stability simply corresponds to the properness of
Fω0 restricted to K` for some sufficiently large `.



Let M ⊂ CPN by a basis of H0(M,K−`M ) for a large `. For
any σ ∈ G + SL(N + 1,C), we have an induced metric

ωσ =
1

`
σ∗ωFS|M = ω0 +

√
−1 ∂∂̄ ϕσ,

∫
M
ϕσ ω

n
0 = 0.

The set of such metrics can be identified with the quotient
of G by SU(N + 1).



For any algebraic subgroup G0 = {σ(t)}t∈C∗ of G, there is
a unique limit cycle (counted with multiplicity)

M0 = lim
t→0

σ(t)(M) ⊂ CPN .

Note that G0 preserves M0.

As t→ 0, we have

Fω0(ϕσ(t)) = −w′(G0) log |t|2 − C.

where w′(G0) is the generalized Futake invariant of a cer-
tain G0-equivariant branched cover M ′0 of M0.

Thus, the K-stability implies that Fω0 is proper along
{ϕσ(t)}t∈C for every algebraic one-parameter subgroup
G0 of G.



On the other hand, in 1996, I also introduced the CM-
stability in terms of the induced action of G on certain CM
line bundle. This CM-stability is equivalent to the proper-
ness of Fω0 on K`.

In view of the Hilbert-Mumford criterion in the Geometric
Invariant Theory, the K-stability implies the CM-stability.

Indeed, this is true due to me and S. Paul.



Finally, the crucial technique for proving the existence
of Kähler-Einstein metrics is to establish the partial C0-
estimate I proposed in 90s.


