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Let M be a Kahler manifold. This means that A/ be a com-
plex manifold together with a Kdhler metric w.

In local coordinates z1,-- - , z,, the metric w 1s given by a
Hermitian positive matrix-valued function (g;;):

n
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satisfying:
dw = 0.



We say w 1s Kidhler-Einstein if it 1s Kidhler and Einstein, 1.e.,

Ric(w) = Aw,
where A = —1,0, 1.

In local coordinates, the Ricci curvature Ric(w) is given by

Ric(w) = —v—l@@logdet(gij).



In 50s, E. Calabi started the study of Kahler-Einstein metrics
on a compact Kahler manifold M.

The existence of Kihler-Einstein metric was established by
e Yau in 1976 when A\ = (
e Aubin, Yau independently in 1976 when A = —1

These correspond to the cases when the first Chern class of
M 1s zero or negative.



Now we assume A = 1. In this case, M has positive first
Chern class, 1.e., M 1s a Fano manifold.

Not every Fano manifold admits a Kahler-Einstein metric.

There are obstructions to the existence due to 1. Matsushima
in 1957, Futaki in 1983 and Tian in 1996.



e A Fano surface M has a Kihler-Einstein metric if and only
if Futaki invariant vanishes (Tian, 1989).

e In 1996, I introduced the notion of K-stability and proved
that 1f M has no non-trivial holomorphic fields and admits a
Kihler-Einstein metric only if M 1s K-stable.

e In 2012, I gave a proof of the following:

Theorem A Fano manifold M admits a Kiahler-Einstein
metric if 1t 1s K-stable.

Another proof was given by Chen-Donaldson-Sun.



A “‘toy” case:

There 1s a unique 1-dimensional Fano manifold with con-
stant curvature 1, that is, the unit sphere S 2 in R3!

This follows from the classical Uniformization Theorem or
complex analysis.



Conic spherical structure: Given points pq,--- ,p; In 52
(k> 1)and By,---, B € (0,1), is there a Riemannian met-
ric g on S?\{p;} of constant curvature 1 such that g extends
across each p; as a conic metric with angle 27 3;?

Troyanov, McOwen, Thurston, Luo-Tian:

Such a spherical structure exists if and only 1f

LYE 0-8) <2

2. For each 7, Z#j (1—=08;) > 1-=5;.



If we choose coordinate z such that S = C U {oo} and
p; € C with coordinate z;, then the existence of the above
conic spherical structure 1s reduced to solving the equation:

k
1+ Au = H |z — zi\_Q(l_m el v,
1=1
where F'1s a given function.

This 1s the type of equations I studied even when I was a
student at Peking University.



e Condition 1 corresponds to the Fano condition and 1s nec-
essary due to the Gauss-Bonnet formula for conic metrics.

e Condition 2 simply means that the pair (5%, (1 — 53;)p;)
is K-stable as a Fano manifold S? together with a divisor.



Geometric Invariant theory:

Geometric invariant theory (or GIT) 1s a method for con-
structing quotients by group actions in algebraic geometry.
It was developed by D. Mumford in 1965, using some 1deas
from a paper of Hilbert in 1893 in classical invariant theory.

Since 1970s, the GIT developed interactions with symplec-
tic geometry, equivariant topology and differential geometry.



Let G be an algebraic group, say SL(2, C) which consists of
all 2 x 2 complex matrices with determinant 1, acting on a
vector space V. This action induces an action of G on the
space of polynomials 2(V) on V by

o-fw)=flo '), c€G,veV.

A polynomial f is invariant under the G-actionif o - f = f
for all 0 € (. Those invariant polynomials form a commu-

tative algebra A = R(V)G.



For any v # 0in V, we say |[v| € P(V) semi-stable if 0 is not
contained in the closure of G(v). It follows from GIT that
this is equivalent to that there is a non-constant G-invariant
homogeneous polynomial f on V such that f(v) # 0.

We call [v] € P(V) stable if G(v) is closed.

Denote by P(V)®° the set of all semi-stable points, then
we have a “quotient” () of P(V)® by G. By GIT, @ is a
projective variety.



How does it relate to a Fano manifold M ?

By the famous Kodaira’s embedding theorem, we can embed
M as a subvariety 1n some complex projective space cpPV
on which the linear group G = SL(N + 1, C) acts.

Using a construction of Chow, Mumford associates a
nonzero vector RR)s, referred as the Chow coordinate, in
a vector space V which has an induced action by G. Such a

V depends only on NV, dim M and the degree of M C cPV,

M 1s called Chow-Mumford stable if its Chow coordinate 1s
stable.



In early 90s, I expected and tried to find a connection
between the existence of Kéahler-Einstein metrics and the
Chow-Mumford stability. Later, my former student S. Paul
also made some partial progress.

In 2000, S. Donaldson proved that the existence of Kihler-
Einstein metrics implies the Chow-Mumford stability.

Now we know that the K-stability 1s the right condition.
In fact, for many years in early 90s, I tried to relate the
K-stability to the Chow-Mumford stability even though I
already knew the way of defining the K-stability.

The K-stability does not fit into the classical Geometric In-
variant Theory and needs its extension.



We recall Futaki invariant: A character of n(M) of holo-
morphic vector fields on M. Let wy be a Kadhler metric

whose Kihler class representing the first Chern class and
define

fu(X) = /MX(h()) wp
where h( 1s chosen by

Ric(wp) — wy = v/—108hy, / (eho _ 1) W = 0.
M

Futaki: fj; 1s an invariant and vanishes if M admits a
Kéhler-Einstein metric.



There are Fano manifolds with non-vanishing Futaki invari-
ant, e.g., the blow-up of CP? at one or two points.

Futaki invariant can be expressed in terms of Bott-Chern
classes (Tian, 1994). This leads to a residue formula com-
puting the invariant by using the equivariant Riemann-Roch
Theorem (Futaki, Tian). Such a residue formula 1s analogous
to Bott’s residue formula for computing Chern numbers.



For long, only obstructions arise from the Lie algebra n(M ).
This led to the speculation:

If a Fano manifold M has no non-zero holomorphic fields,
then M admits a Kdhler-Einstein metric.

In 1996, I found a counterexample to this by using the K-
stability.



To introduce the K-stability, we need to generalize the Fu-
taki invariant to singular varieties.

It was Ding and myself who first generalized the Futaki in-
variant to singular varieties (1992). Our construction follows
a similar route as Futaki did in the smooth case, but analysis
1s a bit more involved. The advantage of this construction
1s that the generalized Futaki invariant vanishes if there 1s
a weakly Kahler-Einstein metric on a singular variety in a
suitable sense.

By a weakly Kahler-Einstein metric, we mean a Kahler-
Einstein metric w on a smooth part of a normal variety M
satisfying: w = 1/—100y locally for a bounded function ¢
and wy < cw for some ¢ > 0.



Other generalizations of Futaki invariant:

e In 2002, Donaldson gave an algebraic definition of gener-
alized Futaki invariant which works for any polarized vari-
eties.

e In 2008, S. Paul gave another algebraic formula of gen-
eralized Futaki invariant in terms of Chow coordinate and
hyperdiscriminant.



Let Gy = {o(t)} C Aut(M) be a C-action on M. This
can be naturally lifted to K]\_; = A"T'M, so we have

d(l) = hO(MO,Lg) and the weight w({) of Gg-action on
AP (M, K7 ).

By the equivariant Riemann-Roch theorem and the
Riemann-Roch theorem, we have

n+1 | n |
wl) = b M de) =y a0
i=0 i=0

Donaldson’s version of the Futaki invariant 1s defined by
a

fum(Go) = —2n! (51 — by —) -

ag

If M 1s smooth, it follows from the equivariant index theo-
rem that this definition coincides with Futaki’s.



e In my 1997 paper, I introduced the notion of CM line bun-
dle which can be also used to define the generalized Futaki
invariant.

Let Gg = {0(t)};ec* be an algebraic subgroup of G pre-
serving a subvariety My C CP! and L be the restriction of
the hyperplane bundle to M. Then it induces an action on
the CM-line which has a weight, referred as the CM-weight

wem(Go). It was proved by Paul-Tian in 2004 that the CM-
weight 1s the same as the generalized Futaki invariant.

The CM weight can be also identified with the first Chern
class of the CM line bundle over certain compactification of
G and turns out to be easier to use in algebraic geometry as
L1 and Xu manifested in their paper (2011).



K-stability:
By Kodaira, we can embed M +— CPY asa subvariety.

As above, set G = SL(N + 1,C). For any algebraic sub-
group Gy = {o(t)};ec+ of G, there is a unique limiting
cycle

My = lim o(t)(M) c CPV.
t—0

One can associate a weight w(G() which is either the
generalized Futaki invariant as defined by Ding-Tian or
Donaldson or the CM weight.



M 1s called semi K-stable for the embedding M C cPN if
w(Gg) > 0 for any Gy C G.

M is called K-stable if it is semi K-stable and w(Gg) > 0
unless M 1s biholomorphic to M.

As I said before, the K-stability 1s the necessary and suffi-
cient condition for the existence of Kiahler-Einstein metrics.



In the above, we confine ourselves to the case of Fano
manifold. In fact, the K-stability can be also defined for
any polarized projective manifold (M, L) in a similar way,
where L is a positive line bundle over M.

General YTD conjecture: If (M, L) is K-stable, then M
admits a Kidhler metric of constant scalar curvature and with
Kéhler class cq(L).



K-stability and Geometric Invariant Theory:

The K-stability does not fit in the classical frame of Geomet-
ric Invariant Theory as the Chow-Mumford stability does.
The GIT involves only one representation of G while the
right setting for K-stability involves a pair of representations
of G as manifested in the work of S. Paul. So the study of
K-stability leads to an extension of GIT, say EGIT.



Extending Geometric Invariant Theory:

Let V and W be two representations of G. Given a pair
v € V\ {0} and w € W \ {0}, we say the pair (v, w) is
semistable 1f

Glv,w] N G0, w] =0 in P(Va& W).




If W = C, w = 1 be the trivial 1-dimensional representation
of G. Then (v, 1) is semistable if and only if 0 is not in the
closure of the orbit Gv. In other words, v 1s semistable in
the usual sense of Geometric Invariant Theory.



K-stability fits well in the frame of the extended GIT:

For each M embedded in CPY, Paul associates the hy-
perdiscriminant A, and the Chow coordinate R);. They
lie in two vector spaces V and W on which G acts naturally.

Paul showed that M 1s semi K-stable is equivalent to the
semistability of the pair (A, Ryy).

In some sense, stability of pairs corresponds to the GIT for
the representation of G on the difference V. — W.



How 1s the K-stability related to the existence of Kahler-
Einstein metrics on a Fano manifold? First we introduce the
K-energy:

1
Fufo) == | [ r(Rictn) =) nu™ At

where {y+} is any path from 0 to ¢ in the space of Kéhler
metrics.

We also put

1 i—l—l
on(go)zv n+1/ Vv — 890/\890/\w0/\w" O 1,
’L

where wy is a fixed Kdhler metric with |wg| = 2wci (M).



We say that Fq 1s proper if for any sequence {w; with
wo++v —100¢1 > 0, Fy(p;) — oo whenever J,,,(p;) — 00.

Tian (90s): If M has no non-trivial holomorphic fields, then
M admits a Kihler-Einstein metric if and only it F,, 1s
proper.

The K-stability 1s closely related to this properness. Let us
recall a result in my PhD thesis in 1988.



By Kodaira, for ¢ >> 1, any basis of H)(M, K ]\_f) gives an
embedding ¢ : M — CP. So we get a family of metrics

1
K¢ = {Z¢*T*WFS}-

e | JICy is dense in the space of Kdhler metrics on M with
Kéhler class 2wcy (M).

e The K-stability simply corresponds to the properness of
F,, restricted to Ky for some sufficiently large /.



Let M c CPY by a basis of H(MM, K]\_f) for a large ¢. For
any 0 € G+ SL(N + 1,C), we have an induced metric

1

Wy = ZU*WFS’M = wqy + \/—1(95900, /M gogcug = 0.

The set of such metrics can be identified with the quotient
of G by SU(N +1).



For any algebraic subgroup G = {0 () };cc* of G, there is
a unique limit cycle (counted with multiplicity)

My = lim o(¢)(M) c CPV.

t—0
Note that GG preserves M.

Ast — 0, we have
Fug(po(r) = —wW'(Go)log [t|* — C.

where w/(Gy) is the generalized Futake invariant of a cer-
tain (z(-equivariant branched cover Mé of M.

Thus, the K-stability implies that £, 1s proper along
{S%(t)}tec for every algebraic one-parameter subgroup
G() of G.



On the other hand, in 1996, I also introduced the CM-
stability in terms of the induced action of GG on certain CM
line bundle. This CM-stability 1s equivalent to the proper-
ness of f,, on K.

In view of the Hilbert-Mumford criterion in the Geometric
Invariant Theory, the K-stability implies the CM-stability.

Indeed, this 1s true due to me and S. Paul.



Finally, the crucial technique for proving the existence
of Kihler-Einstein metrics is to establish the partial CV-
estimate I proposed in 90s.



