K-stability and Kähler metrics, I

Gang Tian

Beijing University and Princeton University

Let M be a Kähler manifold. This means that M be a complex manifold together with a Kähler metric ω .

In local coordinates z_1, \dots, z_n , the metric ω is given by a Hermitian positive matrix-valued function $(g_{i\bar{j}})$:

$$\omega = \sqrt{-1} \sum_{i,j=1}^{n} g_{i\bar{j}} dz_i \wedge d\bar{z}_j$$

satisfying:

 $d\omega = 0.$

We say ω is Kähler-Einstein if it is Kähler and Einstein, i.e.,

$$\operatorname{Ric}(\omega) = \lambda \omega,$$

where $\lambda = -1, 0, 1$.

In local coordinates, the Ricci curvature $Ric(\omega)$ is given by

$$\operatorname{Ric}(\omega) = -\sqrt{-1}\partial\bar{\partial}\log\det(g_{i\bar{j}}).$$

In 50s, E. Calabi started the study of Kähler-Einstein metrics on a compact Kähler manifold M.

The existence of Kähler-Einstein metric was established by

- Yau in 1976 when $\lambda = 0$
- Aubin, Yau independently in 1976 when $\lambda = -1$

These correspond to the cases when the first Chern class of M is zero or negative.

Now we assume $\lambda = 1$. In this case, M has positive first Chern class, i.e., M is a Fano manifold.

Not every Fano manifold admits a Kähler-Einstein metric.

There are obstructions to the existence due to 1. Matsushima in 1957, Futaki in 1983 and Tian in 1996.

• A Fano surface *M* has a Kähler-Einstein metric if and only if Futaki invariant vanishes (Tian, 1989).

• In 1996, I introduced the notion of K-stability and proved that if M has no non-trivial holomorphic fields and admits a Kähler-Einstein metric only if M is K-stable.

• In 2012, I gave a proof of the following:

Theorem A Fano manifold M admits a Kähler-Einstein metric if it is K-stable.

Another proof was given by Chen-Donaldson-Sun.

A "toy" case:

There is a unique 1-dimensional Fano manifold with constant curvature 1, that is, the unit sphere S^2 in \mathbb{R}^3 !

This follows from the classical Uniformization Theorem or complex analysis.

Conic spherical structure: Given points p_1, \dots, p_k in S^2 $(k \ge 1)$ and $\beta_1, \dots, \beta_k \in (0, 1)$, is there a Riemannian metric g on $S^2 \setminus \{p_i\}$ of constant curvature 1 such that g extends across each p_i as a conic metric with angle $2\pi\beta_i$?

Troyanov, McOwen, Thurston, Luo-Tian:

Such a spherical structure exists if and only if

1.
$$\sum_{i=1}^{k} (1 - \beta_i) < 2;$$

2. For each $j, \sum_{i \neq j} (1 - \beta_i) > 1 - \beta_j$.

If we choose coordinate z such that $S^2 = \mathbb{C} \cup \{\infty\}$ and $p_i \in \mathbb{C}$ with coordinate z_i , then the existence of the above conic spherical structure is reduced to solving the equation:

$$1 + \Delta u = \prod_{i=1}^{k} |z - z_i|^{-2(1 - \beta_i)} e^{F - u}.$$

where F is a given function.

This is the type of equations I studied even when I was a student at Peking University.

- Condition 1 corresponds to the Fano condition and is necessary due to the Gauss-Bonnet formula for conic metrics.
- Condition 2 simply means that the pair $(S^2, \sum_{i=1}^{n} (1 \beta_i)p_i)$ is K-stable as a Fano manifold S^2 together with a divisor.

Geometric Invariant theory:

Geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry. It was developed by D. Mumford in 1965, using some ideas from a paper of Hilbert in 1893 in classical invariant theory.

Since 1970s, the GIT developed interactions with symplectic geometry, equivariant topology and differential geometry. Let G be an algebraic group, say $SL(2, \mathbb{C})$ which consists of all 2×2 complex matrices with determinant 1, acting on a vector space V. This action induces an action of G on the space of polynomials R(V) on V by

$$\sigma \cdot f(v) = f(\sigma^{-1}v), \quad \sigma \in \mathbf{G}, v \in \mathbf{V}.$$

A polynomial f is invariant under the G-action if $\sigma \cdot f = f$ for all $\sigma \in \mathbf{G}$. Those invariant polynomials form a commutative algebra $\mathbf{A} = R(\mathbf{V})^{\mathbf{G}}$. For any $v \neq 0$ in V, we say $[v] \in P(V)$ semi-stable if 0 is not contained in the closure of G(v). It follows from GIT that this is equivalent to that there is a non-constant G-invariant homogeneous polynomial f on V such that $f(v) \neq 0$.

We call $[v] \in P(\mathbf{V})$ stable if $\mathbf{G}(v)$ is closed.

Denote by $P(\mathbf{V})^{ss}$ the set of all semi-stable points, then we have a "quotient" Q of $P(\mathbf{V})^{ss}$ by **G**. By GIT, Q is a projective variety. How does it relate to a Fano manifold M?

By the famous Kodaira's embedding theorem, we can embed M as a subvariety in some complex projective space $\mathbb{C}P^N$ on which the linear group $\mathbf{G} = SL(N+1,\mathbb{C})$ acts.

Using a construction of Chow, Mumford associates a nonzero vector R_M , referred as the Chow coordinate, in a vector space V which has an induced action by G. Such a V depends only on N, dim M and the degree of $M \subset \mathbb{C}P^N$.

 ${\cal M}$ is called Chow-Mumford stable if its Chow coordinate is stable.

In early 90s, I expected and tried to find a connection between the existence of Kähler-Einstein metrics and the Chow-Mumford stability. Later, my former student S. Paul also made some partial progress.

In 2000, S. Donaldson proved that the existence of Kähler-Einstein metrics implies the Chow-Mumford stability.

Now we know that the K-stability is the right condition. In fact, for many years in early 90s, I tried to relate the K-stability to the Chow-Mumford stability even though I already knew the way of defining the K-stability.

The K-stability does not fit into the classical Geometric Invariant Theory and needs its extension. We recall **Futaki invariant**: A character of $\eta(M)$ of holomorphic vector fields on M. Let ω_0 be a Kähler metric whose Kähler class representing the first Chern class and define

$$f_M(X) = \int_M X(h_0) \,\omega_0^n,$$

where h_0 is chosen by

$$\operatorname{Ric}(\omega_0) - \omega_0 = \sqrt{-1}\partial\bar{\partial}h_0, \quad \int_M \left(e^{h_0} - 1\right)\omega_0^n = 0.$$

Futaki: f_M is an invariant and vanishes if M admits a Kähler-Einstein metric.

There are Fano manifolds with non-vanishing Futaki invariant, e.g., the blow-up of $\mathbb{C}P^2$ at one or two points.

Futaki invariant can be expressed in terms of Bott-Chern classes (Tian, 1994). This leads to a residue formula computing the invariant by using the equivariant Riemann-Roch Theorem (Futaki, Tian). Such a residue formula is analogous to Bott's residue formula for computing Chern numbers. For long, only obstructions arise from the Lie algebra $\eta(M)$. This led to the speculation:

If a Fano manifold M has no non-zero holomorphic fields, then M admits a Kähler-Einstein metric.

In 1996, I found a counterexample to this by using the K-stability.

To introduce the K-stability, we need to generalize the Futaki invariant to singular varieties.

It was Ding and myself who first generalized the Futaki invariant to singular varieties (1992). Our construction follows a similar route as Futaki did in the smooth case, but analysis is a bit more involved. The advantage of this construction is that the generalized Futaki invariant vanishes if there is a weakly Kähler-Einstein metric on a singular variety in a suitable sense.

By a weakly Kähler-Einstein metric, we mean a Kähler-Einstein metric ω on a smooth part of a normal variety M satisfying: $\omega = \sqrt{-1}\partial \bar{\partial} \varphi$ locally for a bounded function φ and $\omega_0 \leq c \, \omega$ for some c > 0. Other generalizations of Futaki invariant:

- In 2002, Donaldson gave an algebraic definition of generalized Futaki invariant which works for any polarized varieties.
- In 2008, S. Paul gave another algebraic formula of generalized Futaki invariant in terms of Chow coordinate and hyperdiscriminant.

Let $\mathbf{G}_0 = \{\sigma(t)\} \subset \operatorname{Aut}(M)$ be a \mathbb{C} -action on M. This can be naturally lifted to $K_M^{-1} = \Lambda^n T M$, so we have $d(\ell) = h^0(M_0, L_0^{\ell})$ and the weight $w(\ell)$ of \mathbf{G}_0 -action on $\Lambda^{\operatorname{top}} H^0(M, K_M^{-\ell})$.

By the equivariant Riemann-Roch theorem and the Riemann-Roch theorem, we have

$$w(\ell) = \sum_{i=0}^{n+1} b_i \,\ell^{n+1-i}, \ d(\ell) = \sum_{i=0}^n a_i \,\ell^{n-i}.$$

Donaldson's version of the Futaki invariant is defined by

$$f_M(\mathbf{G}_0) = -2n! \left(b_1 - b_0 \frac{a_1}{a_0} \right)$$

If M is smooth, it follows from the equivariant index theorem that this definition coincides with Futaki's. • In my 1997 paper, I introduced the notion of CM line bundle which can be also used to define the generalized Futaki invariant.

Let $\mathbf{G}_0 = \{\sigma(t)\}_{t \in \mathbb{C}^*}$ be an algebraic subgroup of \mathbf{G} preserving a subvariety $M_0 \subset \mathbb{C}P^N$ and L_0 be the restriction of the hyperplane bundle to M_0 . Then it induces an action on the CM-line which has a weight, referred as the CM-weight $\mathbf{w}_{cm}(\mathbf{G}_0)$. It was proved by Paul-Tian in 2004 that the CM-weight is the same as the generalized Futaki invariant.

The CM weight can be also identified with the first Chern class of the CM line bundle over certain compactification of G_0 and turns out to be easier to use in algebraic geometry as Li and Xu manifested in their paper (2011).

K-stability:

By Kodaira, we can embed $M \mapsto \mathbb{C}P^N$ as a subvariety.

As above, set $\mathbf{G} = SL(N + 1, \mathbb{C})$. For any algebraic subgroup $\mathbf{G}_0 = \{\sigma(t)\}_{t \in \mathbb{C}^*}$ of \mathbf{G} , there is a unique limiting cycle

$$M_0 = \lim_{t \to 0} \sigma(t)(M) \subset \mathbb{C}P^N.$$

One can associate a weight $w(G_0)$ which is either the generalized Futaki invariant as defined by Ding-Tian or Donaldson or the CM weight.

M is called semi K-stable for the embedding $M \subset \mathbb{C}P^N$ if $\mathbf{w}(\mathbf{G}_0) \ge 0$ for any $\mathbf{G}_0 \subset \mathbf{G}$.

M is called K-stable if it is semi K-stable and $\mathbf{w}(\mathbf{G}_0) > 0$ unless M_0 is biholomorphic to M.

As I said before, the K-stability is the necessary and sufficient condition for the existence of Kähler-Einstein metrics.

In the above, we confine ourselves to the case of Fano manifold. In fact, the K-stability can be also defined for any polarized projective manifold (M, L) in a similar way, where L is a positive line bundle over M.

General YTD conjecture: If (M, L) is K-stable, then M admits a Kähler metric of constant scalar curvature and with Kähler class $c_1(L)$.

K-stability and Geometric Invariant Theory:

The K-stability does not fit in the classical frame of Geometric Invariant Theory as the Chow-Mumford stability does. The GIT involves only one representation of G while the right setting for K-stability involves a pair of representations of G as manifested in the work of S. Paul. So the study of K-stability leads to an extension of GIT, say EGIT.

Extending Geometric Invariant Theory:

Let V and W be two representations of G. Given a pair $v \in V \setminus \{0\}$ and $w \in W \setminus \{0\}$, we say the pair (v, w) is semistable if

$$\overline{\mathbf{G}[v,w]} \cap \overline{\mathbf{G}[0,w]} = \emptyset \text{ in } P(\mathbf{V} \oplus \mathbf{W}).$$

If $\mathbf{W} = \mathbb{C}$, w = 1 be the trivial 1-dimensional representation of **G**. Then (v, 1) is semistable if and only if 0 is not in the closure of the orbit **G**v. In other words, v is semistable in the usual sense of Geometric Invariant Theory.

K-stability fits well in the frame of the extended GIT:

For each M embedded in $\mathbb{C}P^N$, Paul associates the hyperdiscriminant Δ_M and the Chow coordinate R_M . They lie in two vector spaces V and W on which G acts naturally.

Paul showed that M is semi K-stable is equivalent to the semistability of the pair (Δ_M, R_M) .

In some sense, stability of pairs corresponds to the GIT for the representation of G on the difference V - W.

How is the K-stability related to the existence of Kähler-Einstein metrics on a Fano manifold? First we introduce the K-energy:

$$F_{\omega_0}(\varphi) = -\int_0^1 \int_M \dot{\varphi}_t \left(\operatorname{Ric}(\omega_t) - \omega_t \right) \wedge \omega_t^{n-1} \wedge dt,$$

where $\{\varphi_t\}$ is any path from 0 to φ in the space of Kähler metrics.

We also put

$$J_{\omega_0}(\varphi) = \frac{1}{V} \sum_{i=0}^{n-1} \frac{i+1}{n+1} \int_M \sqrt{-1} \, \partial \varphi \wedge \overline{\partial} \varphi \wedge \omega_0^i \wedge \omega_\varphi^{n-i-1},$$

where ω_0 is a fixed Kähler metric with $[\omega_0] = 2\pi c_1(M)$.

We say that F_0 is proper if for any sequence $\{\varphi_i \text{ with } \omega_0 + \sqrt{-1}\partial \bar{\partial} \varphi_1 > 0, F_{\omega_0}(\varphi_i) \to \infty \text{ whenever } J_{\omega_0}(\varphi_i) \to \infty.$

Tian (90s): If M has no non-trivial holomorphic fields, then M admits a Kähler-Einstein metric if and only if F_{ω_0} is proper.

The K-stability is closely related to this properness. Let us recall a result in my PhD thesis in 1988.

By Kodaira, for $\ell >> 1$, any basis of $H^0(M, K_M^{-\ell})$ gives an embedding $\phi: M \mapsto \mathbb{C}P^N$. So we get a family of metrics

$$\mathcal{K}_{\ell} = \{ \frac{1}{\ell} \phi^* \tau^* \omega_{FS} \}.$$

• $\bigcup \mathcal{K}_{\ell}$ is dense in the space of Kähler metrics on M with Kähler class $2\pi c_1(M)$.

• The K-stability simply corresponds to the properness of F_{ω_0} restricted to \mathcal{K}_{ℓ} for some sufficiently large ℓ .

Let $M \subset \mathbb{C}P^N$ by a basis of $H^0(M, K_M^{-\ell})$ for a large ℓ . For any $\sigma \in \mathbf{G} + SL(N+1, \mathbb{C})$, we have an induced metric

$$\omega_{\sigma} = \frac{1}{\ell} \sigma^* \omega_{FS}|_M = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi_{\sigma}, \quad \int_M \varphi_{\sigma} \omega_0^n = 0.$$

The set of such metrics can be identified with the quotient of **G** by SU(N + 1).

For any algebraic subgroup $\mathbf{G}_0 = \{\sigma(t)\}_{t \in \mathbb{C}^*}$ of \mathbf{G} , there is a unique limit cycle (counted with multiplicity)

$$M_0 = \lim_{t \to 0} \sigma(t)(M) \subset \mathbb{C}P^N.$$

Note that G_0 preserves M_0 .

As $t \to 0$, we have

$$F_{\omega_0}(\varphi_{\sigma(t)}) = -\mathbf{w}'(\mathbf{G}_0) \log |t|^2 - C.$$

where $\mathbf{w}'(\mathbf{G}_0)$ is the generalized Futake invariant of a certain \mathbf{G}_0 -equivariant branched cover M'_0 of M_0 .

Thus, the K-stability implies that F_{ω_0} is proper along $\{\varphi_{\sigma(t)}\}_{t\in\mathbb{C}}$ for every algebraic one-parameter subgroup \mathbf{G}_0 of \mathbf{G} .

On the other hand, in 1996, I also introduced the CMstability in terms of the induced action of G on certain CM line bundle. This CM-stability is equivalent to the properness of F_{ω_0} on \mathcal{K}_{ℓ} .

In view of the Hilbert-Mumford criterion in the Geometric Invariant Theory, the K-stability implies the CM-stability.

Indeed, this is true due to me and S. Paul.

Finally, the crucial technique for proving the existence of Kähler-Einstein metrics is to establish the partial C^0 -estimate I proposed in 90s.