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Any cubic surface with 3A; is isom. to (w® = xyz).
» If S has Ay or Ay-singularities only, S = CPP?(1,2,3) or
one of the above.

In this talk, S has at worst quotient singularities.
Then S'is a Q-homology CP? if by(S) = 1.

A minimal resolution of S has py = g = 0.
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Let S be a Q-hom CP? with quotient singularities,
f: 8" — S a minimal resolution.
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e.g. CP?/G, CP%(a, b,c), ...
» k(S') = —o0.
» Kg is numerically trivial.
» log Enriques surfaces of Picard number 1.
> k(S') = —o0,0.
» Kgis ample.
» e.g. quotients of fake projective planes,

suitable contraction of a suitable blowup of some Enriques

surface or CP2.
» k(S') = —0,0,1,2.

Problem (Kollar)
Classify all Q-homology CP?’s with quotient singularities.
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S : Q-homology CP? with quotient singularities

Question
How many singular points on S?

» |Sing(S)| < 5 by the orbifold Bogomolov-Miyaoka-Yau
inequality (Sakai, Miyaoka, Megyesi).
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S : Q-homology CP? with quotient singularities

Question
How many singular points on S?

» |Sing(S)| < 5 by the orbifold Bogomolov-Miyaoka-Yau
inequality (Sakai, Miyaoka, Megyesi).
» Many examples with |Sing(S)| < 4 (e.g. Brenton 1977).

» long been conjectured that |Sing(S)| < 4.
» Belousov 2008: If —Ks is ample, |Sing(S)| < 4.

With DongSeon Hwang, we classified S with |Sing(S)| = 5.

7/28



Theorem (D.Hwang-Keum, J. Alg. Geom. 2011)

Let S be a Q-homology CIP? with quotient singularities. Then
|Sing(S)| < 4 except the following case:

S has 5 singular points of type 3A; + 2As, and its minimal
resolution S’ is an Enriques surface.
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Corollary
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Let S be a Q-homology CP? with quotient singularities. Then
|Sing(S)| < 4 except the following case:

S has 5 singular points of type 3A; + 2As, and its minimal
resolution S' is an Enriques surface.

Corollary

Every 7.-homology CP? with quotient singularities has at most
4 singular points.

Remark.

Every Z-cohomology CP? with quotient singularities has at
most 1 singular point. If it has, then the singularity is of type
Eg [Bindschadler & Brenton, 1984].
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Theorem (D.Hwang-Keum, J. Alg. Geom. 2011) s
Let S be a Q-homology CP? with quotient singularities. Then
|Sing(S)| < 4 except the following case:

The Maximum Number of
Quotient Singularities

S has 5 singular points of type 3A; + 2As, and its minimal
resolution S' is an Enriques surface.

Corollary
Every 7.-homology CP? with quotient singularities has at most
4 singular points.

Remark.

Every Z-cohomology CP? with quotient singularities has at
most 1 singular point. If it has, then the singularity is of type
Eg [Bindschadler & Brenton, 1984].

Remark.

1. Q-homology CP? with rational singularities may have an
arbitrary number of singularities, no bound.

2. In char 2 there is an example with 7 A;-singularities.
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Proof for the Maximum Number
Definition (orbifold Euler characteristic)

eon(S) :=e(S) - >

pe Sing(S)

1

' ()

)
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Proof for the Maximum Number
Definition (orbifold Euler characteristic)

en(S)=e(S) - Y (1- )

peSing(S) 1 (Lo)l

Theorem (The orbifold BMY inequality)

Let S be a normal projective surface with quotient
singularities. Assume that Ks is nef. Then

K2 < 3eon(S).
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Proof for the Maximum Number
Definition (orbifold Euler characteristic)

1

eorb(s) = e(S) - Z 1- m

pe Sing(S)

Theorem (The orbifold BMY inequality)

Let S be a normal projective surface with quotient
singularities. Assume that Ks is nef. Then

K2 < 3eon(S).

Theorem (The weak oBMY inequality —
Keel-Mckernan, M.AMS 1999)

Let S be a normal projective surface with quotient
singularities. Assume that —Ks is nef. Then

0< eo,b(S).

)
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Proof for the Maximum Number

Assume |Sing(S)| = 5.
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Proof for the Maximum Number

Assume |Sing(S)| = 5.
» Enumerate all possible 5-tuples of orders of local
fundamental groups using the weak oBMY inequality.
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Proof for the Maximum Number

Assume |Sing(S)| = 5.

» Enumerate all possible 5-tuples of orders of local
fundamental groups using the weak oBMY inequality.

>
>
>

(2,2,2,2,9)g>2
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Proof for the Maximum Number

Assume |Sing(S)| = 5.
» Enumerate all possible 5-tuples of orders of local
fundamental groups using the weak oBMY inequality.
> (2?272727(7) q 2 2
> (2,2,2,3,9)3<q<6
» (2,2,8,3,3),(2,2,2,4,4)
» First reduction step
The 5th singularity of the case (2,2,2,2,q) ¢ > 2
must be of type Tg if cyclic, of type Ds if non-cyclic.
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@(175%—1),n>a>0,gcd(n,a):1
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Proof for the Maximum Number

Assume |Sing(S)| = 5.
» Enumerate all possible 5-tuples of orders of local
fundamental groups using the weak oBMY inequality.
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» (2,2,8,3,3),(2,2,2,4,4)
» First reduction step
The 5th singularity of the case (2,2,2,2,q) ¢ > 2
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1
@(Lfma—1),n>a>0,gcd(n,a):1

[322223]
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Proof for the Maximum Number

Assume |Sing(S)| = 5.
» Enumerate all possible 5-tuples of orders of local
fundamental groups using the weak oBMY inequality.
> (2?272727(7) q 2 2
> (2,2,2,3,9)3<q<6
» (2,2,8,3,3),(2,2,2,4,4)
» First reduction step
The 5th singularity of the case (2,2,2,2,q) ¢ > 2
must be of type Tg if cyclic, of type Ds if non-cyclic.

» Singularities of type T¢
(Looijenga-Wahl, Kollar-ShepherdBarron)

1
@(1,6na— 1),n>a>0,gcd(n,a) =1
[322223]

[2322224]

[22322225],[33222242]...
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» Second reduction step
The lattice 4A; @ Tg cannot be embedded into a
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H?(S',7)/(torsion)

Use the Local-Global Principle and induction on
length( Ts).
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Then the double cover branched at 8A; has 4Ds,
impossible!
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unimodular lattice of signature (1, Milnor number)
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H?(S',7)/(torsion)

Use the Local-Global Principle and induction on
length(Tg).

» Exclude 4A; + Ds using some geometric arguments.

S’ Enriques surface has a configuration 4A; + Ds of 9
smooth rat curves.

Then the K3 cover of S’ has a configuration 8A; + 2Ds.
Then the double cover branched at 8A; has 4Ds,
impossible!

» Finally, construct an example of type 3A; & 2As.
Consider an Enriques surface S’ with elliptic fibration of
type b + kL + 4 + Iy and a 2-section intersecting only one
component of each fibre.
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S' c Diff(8™).
The identity element 1 € S' acts identically on S™.
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The identity element 1 € S' acts identically on S™.
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Smooth S'-action on S™

S' c Diff(8™).
The identity element 1 € S' acts identically on S™.

Each diffeomorphism g € S' is homotopic to the identity 1gn.

By Lefschetz Fixed Point Formula,
e(Fix(g)) = e(Fix(1)) = e(S8™).
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By Lefschetz Fixed Point Formula,
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If mis even, then ¢(8™) = 2 and such an action has a fixed
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e(Fix(g)) = e(Fix(1)) = e(S8™).

If mis even, then ¢(8™) = 2 and such an action has a fixed
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Smooth S'-action on S™

S' c Diff(8™).
The identity element 1 € S' acts identically on S™.

Each diffeomorphism g € S' is homotopic to the identity 1gn.

By Lefschetz Fixed Point Formula,
e(Fix(g)) = e(Fix(1)) = e(S8™).

If mis even, then ¢(8™) = 2 and such an action has a fixed
point, so the foliation by circles degenerates.

Assume m=2n— 1 odd.
Definition
A C°°-action of S' on §2"1

S1 % 32n71 N 32n71

is called a pseudofree S'-action on 827~ if it is free except

for finitely many orbits (whose isotropy groups Z/ay, ..., Z/ax

have pairwise prime orders).
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Pseudofree S'-action on §2"1
Example

Lin
SQn

ear actions

1 ={(z1,22,..,2n)  |Z1P + |22 + ...+ |zp]2 =1} C C,

S'={\:|\ =1} cC.

ai,

S1 % 82n71 N S2n71
(M (21,22, .00,20)) = (AT 21, A2 25, ..., AP Zy),
..., @n pairwise prime.
In this linear case
§21-1/8' =~ CP"(ay, ap, ..., an).

The orbit of the i-th coordinate point ; € 2"~ is an
exceptional orbit iff @; > 2.

The orbit of a non-coordinate point of 827~ is NOT

exceptional.

This action has at most n exceptional orbits.

The quotient map S2"~' — CP" '(ay, &z, ..., an) is a
Seifert fibration.
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Pseudofree S'-action on S2"

» For n = 2 Seifert (1932) showed that each pseudo-free
S'-action on S? is linear and hence has at most 2
exceptional orbits.
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» For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
ai, ..., a, there is a pseudofree S'-action on a homotopy
S7 whose exceptional orbits have exactly those orders.
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exceptional orbits.

» For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
ay,...,ax, there is a pseudofree S'-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

» Petrie (1974) generalised the above M-Y for all n > 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)

A pseudo-free S'-action on S® has at most 3 exceptional
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» For n = 2 Seifert (1932) showed that each pseudo-free
S'-action on S? is linear and hence has at most 2
exceptional orbits.

» For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
ai, ..., a, there is a pseudofree S'-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

» Petrie (1974) generalised the above M-Y for all n > 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)

A pseudo-free S'-action on S® has at most 3 exceptional
orbits.

» This problem is wide open. S-F withdrew their paper
[O(2)-actions on the 5-sphere, Invent. Math. 1987].
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Pseudofree S'-action on S2"

» For n = 2 Seifert (1932) showed that each pseudo-free
S'-action on S? is linear and hence has at most 2
exceptional orbits.

» For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
ai, ..., a, there is a pseudofree S'-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

» Petrie (1974) generalised the above M-Y for all n > 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)

A pseudo-free S'-action on S® has at most 3 exceptional
orbits.

» This problem is wide open. S-F withdrew their paper
[O(2)-actions on the 5-sphere, Invent. Math. 1987].

» Why so difficult?
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» Pseudo-free S'-actions on a manifold ¥ have been
studied in terms of the orbit space ¥/S’.

» The orbit space X = S®/S' of such an action is a
4-manifold with isolated singularities whose
neighborhoods are cones over lens spaces
corresponding to the exceptional orbits of the S'-action.
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» Pseudo-free S'-actions on a manifold ¥ have been
studied in terms of the orbit space ¥/S’.

» The orbit space X = S®/S' of such an action is a
4-manifold with isolated singularities whose
neighborhoods are cones over lens spaces
corresponding to the exceptional orbits of the S'-action.

» Easy to check that X is simply connected and Hx(X,Z)
has rank 1 and intersection matrix (1/aaz - - - ax).
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Pseudo-free S'-actions on a manifold ¥ have been
studied in terms of the orbit space ¥/S’.

The orbit space X = S%/S' of such an action is a
4-manifold with isolated singularities whose
neighborhoods are cones over lens spaces
corresponding to the exceptional orbits of the S'-action.
Easy to check that X is simply connected and H»(X, Z)
has rank 1 and intersection matrix (1/aaz - - - ax).

An exceptional orbit with isotropy type Z/a has an
equivariant tubular neighborhood which may be identified
with C x C x S with a S'-action

A (z,w,u) = (N'z, Mw, \u)

where r and s are relatively prime to a.
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There is a one-to-one correspondence between:

1. Pseudo-free S'-actions on Q-homology 5-spheres Y. with
Hi(x2,Z) = 0.

2. Compact differentiable 4-manifolds M with boundary
such that

21 oM = UL,‘ is a disjoint union of lens spaces L; = S®/Z.,,

1
2.2 the a;’s are pairwise prime,
23 Hi(M,Z) =0,
24 Hx(M,72) = 7Z.

Furthermore, ¥ is diffeomorphic to S° iff 71 (M) = 1.
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Algebraic Montgomery-Yang Problem

This is the M-Y Problem when S°/S' attains a structure of a
normal projective surface.
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Algebraic Montgomery-Yang Problem

This is the M-Y Problem when S°/S' attains a structure of a
normal projective surface.

Conjecture (J. Kollar)

Let S be a Q-homology CIP? with at worst quotient

singularities. If 71(S°) = {1}, then S has at most 3 singular
points.

@-Homology Projective
Planes

Keum

Algebraic
Montgomery-Yang
Problem

19/28



@-Homology Projective

Algebraic Montgomery-Yang Problem

Keum

This is the M-Y Problem when S°/S' attains a structure of a
normal projective surface.

Conjecture (J. Kollar)

Let S be a Q-homology CIP? with at worst quotient R,
singularities. If m(S°) = {1}, then S has at most 3 singular Problen
points.

What if the condition 71(S°) = {1} is replaced by the weaker
condition H;(S°, Z) = 0?
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This is the M-Y Problem when S°/S' attains a structure of a
normal projective surface.

Conjecture (J. Kollar)

Let S be a Q-homology CIP? with at worst quotient
singularities. If m1(S°) = {1}, then S has at most 3 singular
points.

What if the condition 71(S°) = {1} is replaced by the weaker
condition H;(S°, Z) = 0?

There are infinitely many examples S with
Hi(8%,Z) = 0, mi(S°) # {1}, |Sing(S)| = 4.
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Algebraic Montgomery-Yang Problem

This is the M-Y Problem when S°/S' attains a structure of a
normal projective surface.

Conjecture (J. Kollar)

Let S be a Q-homology CIP? with at worst quotient
singularities. If m1(S°) = {1}, then S has at most 3 singular
points.

What if the condition 71(S°) = {1} is replaced by the weaker
condition H;(S°, Z) = 0?

There are infinitely many examples S with
Hi(8%,Z) = 0, mi(S°) # {1}, |Sing(S)| = 4.

These examples obtained from the classification of surface
quotient singularities [E. Brieskorn, Invent. Math. 1968].
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Example (coming from Brieskorn’s classification)
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11— Zom — Im — As C PSL(2,C)

I acts on C2. This action extends naturally to CP?.
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is a Z-homology CP? with —Kg ample,

» S has 4 quotient singularities:
one non-cyclic singularity of type I, (the image of

O € C?), and
3 cyclic singularities of order 2, 3,5 (on the image of the

line at infinity),
> 7T1(SO) = As, hence H1(SO,Z) =0.
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Im C GL(2,C) the 2m-ary icosahedral group I, = Zom. As.

11— Zom — Im — As C PSL(2,C)

I acts on C2. This action extends naturally to CP2.Then

Algebraic
Montgomery-Yang
Problem

S :=CP?/Iy
is a Z-homology CP? with —Kg ample,

» S has 4 quotient singularities:
one non-cyclic singularity of type I, (the image of

O € C?), and
3 cyclic singularities of order 2, 3,5 (on the image of the

line at infinity),
> 7T1(SO) = As, hence H1(SO,Z) =0.

Call these Brieskorn quotients.
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Progress on Algebraic M-Y Problem

Theorem (D.Hwang-Keum, Math. Ann. 2011)

Let S be a Q-homology CIP? with quotient singularities, not all
cyclic, such that 71(S°) = {1}. Then |Sing(S)| < 3.
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Let S be a Q-homology CP? with quotient singularities, not all
cyclic, such that 71(S°) = {1}. Then |Sing(S)| < 3.

More precisely

Theorem

Let S be a Q-homology CP? with 4 or more quotient
singularities, not all cyclic, such that H;(S°,Z) = 0. Then S is
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Theorem (D.Hwang-Keum, Math. Ann. 2011)

Let S be a Q-homology CP? with quotient singularities, not all
cyclic, such that 71(S°) = {1}. Then |Sing(S)| < 3.

More precisely

Theorem

Let S be a Q-homology CP? with 4 or more quotient
singularities, not all cyclic, such that H;(S°,Z) = 0. Then S is
isomorphic to a Brieskorn quotient.

More Progress on Algebraic M-Y Problem:

@-Homology Projective
Planes

Keum

Progress on Algebraic M-Y
Problem

21/28



Progress on Algebraic M-Y Problem

Theorem (D.Hwang-Keum, Math. Ann. 2011)

Let S be a Q-homology CP? with quotient singularities, not all
cyclic, such that 71(S°) = {1}. Then |Sing(S)| < 3.

More precisely

Theorem

Let S be a Q-homology CP? with 4 or more quotient
singularities, not all cyclic, such that H;(S°,Z) = 0. Then S is
isomorphic to a Brieskorn quotient.

More Progress on Algebraic M-Y Problem:

Theorem (D.Hwang-Keum, Mich. Math. J. 2013; J.
MSJ 2014)
Let S be a Q-homology CP? with cyclic singularities such that

H;(8° Z) = 0. If either S is not rational or —Ks is ample, then
|Sing(S)| < 3.
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Progress on Algebraic M-Y Problem

Theorem (D.Hwang-Keum, Math. Ann. 2011)

Let S be a Q-homology CP? with quotient singularities, not all
cyclic, such that 71(S°) = {1}. Then |Sing(S)| < 3.

More precisely

Theorem

Let S be a Q-homology CP? with 4 or more quotient
singularities, not all cyclic, such that H;(S°,Z) = 0. Then S is
isomorphic to a Brieskorn quotient.

More Progress on Algebraic M-Y Problem:

Theorem (D.Hwang-Keum, Mich. Math. J. 2013; J.
MSJ 2014)

Let S be a Q-homology CP? with cyclic singularities such that
H:(S°,Z) = 0. If either S is not rational or —Ks is ample, then
|Sing(S)| < 3.

Remark. If H;(S° Z) = 0, Ks cannot be numerically trivial.
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The Remaining Case of the Algebraic M-Y:
S is a Q-homology CP? satisfying
(1) S has cyclic singularities only,
(2) Sis a rational surface with Ks ample.
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The Remaining Case of the Algebraic M-Y:
S is a Q-homology CP? satisfying
(1) S has cyclic singularities only,
(2) Sis a rational surface with Ks ample.

Are there such surfaces ?
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The Remaining Case of the Algebraic M-Y:

S is a Q-homology CP? satisfying
(1) S has cyclic singularities only,
(2) Sis a rational surface with Ks ample.

Are there such surfaces ?

Ks =m"Ks— Y _ Dp.
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The Remaining Case of the Algebraic M-Y:

S is a Q-homology CP? satisfying
(1) S has cyclic singularities only,
(2) Sis a rational surface with Ks ample.
Are there such surfaces ?
Ks =m"Ks— Y _ Dp.
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The Remaining Case of the Algebraic M-Y:
S is a Q-homology CP? satisfying
(1) S has cyclic singularities only,
(2) Sis a rational surface with Ks ample.

Are there such surfaces ?
Ks =m"Ks— Y _ Dp.

Yes.
Examples given by

» Keel and Mckernan (Mem. AMS 1999),
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The Remaining Case of the Algebraic M-Y:
S is a Q-homology CP? satisfying
(1) S has cyclic singularities only,
(2) Sis a rational surface with Ks ample.

Are there such surfaces ?
Ks =m"Ks— Y _ Dp.

Yes.
Examples given by
» Keel and Mckernan (Mem. AMS 1999),
» Kollar (Pure Appl. Math. Q. 2008) — an infinite series of
examples with |Sing(S)| = 2.
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The Remaining Case of the Algebraic M-Y:
S is a Q-homology CP? satisfying
(1) S has cyclic singularities only,
(2) Sis a rational surface with Ks ample.

Are there such surfaces ?
Ks =m"Ks— Y _ Dp.

Yes.
Examples given by
» Keel and Mckernan (Mem. AMS 1999),
» Kollar (Pure Appl. Math. Q. 2008) — an infinite series of
examples with |Sing(S)| = 2.
» D. Hwang and Keum (Proc. AMS 2012) — infinite series
of examples with |Sing(S)| = 1, 3.
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The Remaining Case of the Algebraic M-Y:
S is a Q-homology CP? satisfying
(1) S has cyclic singularities only,
(2) Sis a rational surface with Ks ample.

Are there such surfaces ?
Ks =m"Ks— Y _ Dp.

Yes.
Examples given by

» Keel and Mckernan (Mem. AMS 1999),

» Kollar (Pure Appl. Math. Q. 2008) — an infinite series of
examples with |Sing(S)| = 2.

» D. Hwang and Keum (Proc. AMS 2012) — infinite series
of examples with |Sing(S)| = 1, 3.

Question: Are there such a surface S with |Sing(S)| = 4?
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The Remaining Case of the Algebraic M-Y:
S is a Q-homology CP? satisfying
(1) S has cyclic singularities only,
(2) Sis a rational surface with Ks ample.

Are there such surfaces ?
Ks =m"Ks— Y _ Dp.

Yes.
Examples given by

» Keel and Mckernan (Mem. AMS 1999),

» Kollar (Pure Appl. Math. Q. 2008) — an infinite series of
examples with |Sing(S)| = 2.

» D. Hwang and Keum (Proc. AMS 2012) — infinite series
of examples with |Sing(S)| = 1, 3.

Question: Are there such a surface S with |Sing(S)| = 4?
Are there any Q-homology CP? which is a rational surface S
with Ks ample and with |Sing(S)| = 4?
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Cascade structure on Q-homology CP?’s

A Q-homology CP? is obtained from a basic surface with
certain configuration of curves, by blow-ups and downs.

In the case where —Kx ample, such basic surfaces have been
classified by D. Hwang.
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Gorenstein Q-homology CP?’s:

Keum

These are Q-homology CP?’s with ADE-singularities.
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Gorenstein Q-homology CP?’s:

These are Q-homology CP?’s with ADE-singularities.

Let R be the singularity type or the corresponding root
sublattice of the cohomology lattice of S’, the minimal
resolution of S.

Since S is Gorenstein, rank(R) is bounded.

1+ rank(R) = by(S') = 10 — K& = 10 — K2 < 10,

rank(R) <9

with equality iff Ks = 0 iff S’ is an Enriques surface.
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Gorenstein Q-homology CP?’s:

These are Q-homology CP?’s with ADE-singularities.

Let R be the singularity type or the corresponding root
sublattice of the cohomology lattice of S’, the minimal
resolution of S.

Since S is Gorenstein, rank(R) is bounded.

1+ rank(R) = bp(S') =10 — K& =10 — K& < 10,
rank(R) <9

with equality iff Ks = 0 iff S’ is an Enriques surface.

With D. Hwang and H. Ohashi, have classified all possible
singularity types of Gorenstein Q-homology CP?’s.
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Gorenstein Q-homology CP?’s:

These are Q-homology CP?’s with ADE-singularities.

Let R be the singularity type or the corresponding root
sublattice of the cohomology lattice of S’, the minimal
resolution of S.

Since S is Gorenstein, rank(R) is bounded.

1+ rank(R) = bp(S') =10 — K& =10 — K& < 10,
rank(R) <9

with equality iff Ks = 0 iff S’ is an Enriques surface.

With D. Hwang and H. Ohashi, have classified all possible
singularity types of Gorenstein Q-homology CP?’s.
There are 58 types.
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Theorem (Hwang-Keum-Ohashi, Sci. China Math.
2015)

The singularity type R of a Gorenstein Q-homology CP? is
one of the following:
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Theorem (Hwang-Keum-Ohashi, Sci. China Math.
2015)

The singularity type R of a Gorenstein Q-homology CP? is
one of the following:

» 27 types for Ks £ample:
As, A7, Dg, Eg, E7, Eg, Ds, As, Aq;
A7 @ A1, As @ Az, As @ A1, 2A4, A2 ® Ay, D @ Ay,
Ds @ A3, 2D4, E; @ A1, Es @ Ap;
A5EBA2@A1, 2A3EBA1,A3@2A1,3A2, D6@2A1,'
2A3 D 2A1, 4A5, Dy © 3A4,

» 31 types for Ks numerically trivial:
Ag, Dy;
As DA, A7 B A, As B Ay, Ds © Ay, Ds © Az, Ds & Ay,
Ds ® Dy, Es ® A1, E7 @ Ao, Eg @ Az;
A7 D2A1, As D A D A1, As © As @ Ay, As @ 2A,,
2A4 @ A1, 3A3, D7 © 2A1, D ® Az @ A1, Ds @ A3 @ Ay,
2Dy @ A1, E7 ®2A1, Eg © Az @ A,
As @ As @ 2A1, Ay © Az @ 2A1, 2A3 © As D Ay, A3 © 3A,,
Ds ® 3A1, Dy © As @ 2A¢;
2A; @ 3A;.
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The 27 types with —Ks ample were classified by
Furushima(1986), Miyanishi and Zhang(1988), Ye(2002). Our
method uses only lattice theory, different from theirs.
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The 27 types with —Ks ample were classified by
Furushima(1986), Miyanishi and Zhang(1988), Ye(2002). Our
method uses only lattice theory, different from theirs.

Among the 31 types with Ks = 0, 29 types are supported by
Enriques surfaces with finite automorphism group.
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The 27 types with —Ks ample were classified by
Furushima(1986), Miyanishi and Zhang(1988), Ye(2002). Our
method uses only lattice theory, different from theirs.

Among the 31 types with Ks = 0, 29 types are supported by
Enriques surfaces with finite automorphism group.

Currently, M. Schitt constucts, for each of the 31 types, an
explicit 1-dimensional family of Enriques surfaces.
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Describe M(R).

(O Fr =

«E>»

A




Describe M(R).

For example, take R = Dg + A;.
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Describe M(R).
For example, take R = Dg + A;.

M(Ds + A¢) has two 1-dimensional components.
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Describe M(R).
For example, take R = Dg + A;.
M(Ds + A¢) has two 1-dimensional components.

The K3 covers (general members) have transcendental lattice

Tx =(0,1,0;1,0,0;0,0,4) or (0,2,0;2,0,0;0,0,4).
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Describe M(R).

For example, take R = Dg + A;.

M(Ds + A¢) has two 1-dimensional components.

The K3 covers (general members) have transcendental lattice
Tx =(0,1,0;1,0,0;0,0,4) or (0,2,0;2,0,0;0,0,4).

The first component corresponds to Enriques surfaces of

Kondo type |,

the second to Enriques surfaces Km(E x E)/ip where i is the
Lieberman involution.
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