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Q-homology CP2

I Work over the field C of complex numbers.

Definition
A normal projective surface S is called a Q-homology CP2 if it
has the same Betti numbers as CP2), i.e.
b1 = b3 = 0,b0 = b2 = b4 = 1.

I If S is smooth, then S = CP2 or a fake projective plane.
I If S has A1-singularities only, then S = CP2(1,1,2).
I If S has A2-singularities only, then S has 3A2 or 4A2 and

S = CP2/G or fpp/G, where G ∼= Z/3 or (Z/3)2.
Any cubic surface with 3A2 is isom. to (w3 = xyz).

I If S has A1 or A2-singularities only, S = CP2(1,2,3) or
one of the above.

In this talk, S has at worst quotient singularities.
Then S is a Q-homology CP2 if b2(S) = 1.

A minimal resolution of S has pg = q = 0.
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3 Cases: KS ample, −ample, num. trivial

Let S be a Q-hom CP2 with quotient singularities,
f : S′ → S a minimal resolution.

I −KS is ample
I log del Pezzo surfaces of Picard number 1,

e.g. CP2/G, CP2(a, b, c), . . .
I κ(S′) = −∞.

I KS is numerically trivial.
I log Enriques surfaces of Picard number 1.
I κ(S′) = −∞, 0.

I KS is ample.
I e.g. quotients of fake projective planes,

suitable contraction of a suitable blowup of some Enriques
surface or CP2.

I κ(S′) = −∞, 0, 1, 2.

Problem (Kollár)
Classify all Q-homology CP2’s with quotient singularities.
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The Maximum Number of Quotient
Singularities

S : Q-homology CP2 with quotient singularities

Question
How many singular points on S?

I |Sing(S)| ≤ 5 by the orbifold Bogomolov-Miyaoka-Yau
inequality (Sakai, Miyaoka, Megyesi).

I Many examples with |Sing(S)| ≤ 4 (e.g. Brenton 1977).

I long been conjectured that |Sing(S)| ≤ 4.
I Belousov 2008: If −KS is ample, |Sing(S)| ≤ 4.

With DongSeon Hwang, we classified S with |Sing(S)| = 5.
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Theorem (D.Hwang-Keum, J. Alg. Geom. 2011)
Let S be a Q-homology CP2 with quotient singularities. Then
|Sing(S)| ≤ 4 except the following case:

S has 5 singular points of type 3A1 + 2A3, and its minimal
resolution S′ is an Enriques surface.

Corollary
Every Z-homology CP2 with quotient singularities has at most
4 singular points.

Remark.
Every Z-cohomology CP2 with quotient singularities has at
most 1 singular point. If it has, then the singularity is of type
E8 [Bindschadler & Brenton, 1984].

Remark.
1. Q-homology CP2 with rational singularities may have an
arbitrary number of singularities, no bound.
2. In char 2 there is an example with 7 A1-singularities.
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|Sing(S)| ≤ 4 except the following case:

S has 5 singular points of type 3A1 + 2A3, and its minimal
resolution S′ is an Enriques surface.

Corollary
Every Z-homology CP2 with quotient singularities has at most
4 singular points.

Remark.
Every Z-cohomology CP2 with quotient singularities has at
most 1 singular point. If it has, then the singularity is of type
E8 [Bindschadler & Brenton, 1984].
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1. Q-homology CP2 with rational singularities may have an
arbitrary number of singularities, no bound.
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Proof for the Maximum Number

Definition (orbifold Euler characteristic)

eorb(S) := e(S)−
∑

p∈Sing(S)

(
1− 1
|π1(Lp)|

)

Theorem (The orbifold BMY inequality)
Let S be a normal projective surface with quotient
singularities. Assume that KS is nef. Then

K 2
S ≤ 3eorb(S).

Theorem (The weak oBMY inequality –
Keel-Mckernan, M.AMS 1999)
Let S be a normal projective surface with quotient
singularities. Assume that −KS is nef. Then

0 ≤ eorb(S).
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Proof for the Maximum Number

Assume |Sing(S)| = 5.
I Enumerate all possible 5-tuples of orders of local

fundamental groups using the weak oBMY inequality.
I (2, 2, 2, 2, q) q ≥ 2
I (2, 2, 2, 3, q) 3 ≤ q ≤ 6
I (2, 2, 3, 3, 3), (2, 2, 2, 4, 4)

I First reduction step
The 5th singularity of the case (2,2,2,2,q) q ≥ 2
must be of type T6 if cyclic, of type D5 if non-cyclic.

I Singularities of type T6
(Looijenga-Wahl, Kollár-ShepherdBarron)

1
6n2 (1,6na− 1),n > a > 0,gcd(n,a) = 1

[322223]
[2322224]
[22322225], [33222242]...
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I Second reduction step

The lattice 4A1 ⊕ T6 cannot be embedded into a
unimodular lattice of signature (1, Milnor number)

H2(S′,Z)/(torsion)

Use the Local-Global Principle and induction on
length(T6).

I Exclude 4A1 + D5 using some geometric arguments.
S′ Enriques surface has a configuration 4A1 + D5 of 9
smooth rat curves.
Then the K3 cover of S′ has a configuration 8A1 + 2D5.
Then the double cover branched at 8A1 has 4D5,
impossible!

I Finally, construct an example of type 3A1 ⊕ 2A3.
Consider an Enriques surface S′ with elliptic fibration of
type I2 + I2 + I4 + I4 and a 2-section intersecting only one
component of each fibre.
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Outline

Q-homology Projective Planes

The Maximum Number of Quotient Singularities

Montgomery-Yang Problem

Algebraic Montgomery-Yang Problem
Progress on Algebraic M-Y Problem

Gorenstein Q-homology Projective Planes
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Smooth S1-action on Sm

S1 ⊂ Diff (Sm).

The identity element 1 ∈ S1 acts identically on Sm.

Each diffeomorphism g ∈ S1 is homotopic to the identity 1Sm .
By Lefschetz Fixed Point Formula,

e(Fix(g)) = e(Fix(1)) = e(Sm).

If m is even, then e(Sm) = 2 and such an action has a fixed
point, so the foliation by circles degenerates.

Assume m = 2n − 1 odd.

Definition
A C∞-action of S1 on S2n−1

S1 × S2n−1 → S2n−1

is called a pseudofree S1-action on S2n−1 if it is free except
for finitely many orbits (whose isotropy groups Z/a1, . . . ,Z/ak
have pairwise prime orders).

13/28
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Pseudofree S1-action on S2n−1

Example
Linear actions
S2n−1 = {(z1, z2, ..., zn) : |z1|2 + |z2|2 + ...+ |zn|2 = 1} ⊂ Cn,
S1 = {λ : |λ| = 1} ⊂ C.

S1 × S2n−1 → S2n−1

(λ, (z1, z2, ..., zn))→ (λa1z1, λ
a2z2, ..., λ

an zn),

a1, ...,an pairwise prime.
I In this linear case

S2n−1/S1 ∼= CPn−1(a1,a2, ...,an).

I The orbit of the i-th coordinate point ei ∈ S2n−1 is an
exceptional orbit iff ai ≥ 2.

I The orbit of a non-coordinate point of S2n−1 is NOT
exceptional.

I This action has at most n exceptional orbits.
I The quotient map S2n−1 → CPn−1(a1,a2, ...,an) is a

Seifert fibration.
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Pseudofree S1-action on S2n−1

I For n = 2 Seifert (1932) showed that each pseudo-free
S1-action on S3 is linear and hence has at most 2
exceptional orbits.

I For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
a1, . . . ,ak , there is a pseudofree S1-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

I Petrie (1974) generalised the above M-Y for all n ≥ 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)
A pseudo-free S1-action on S5 has at most 3 exceptional
orbits.

I This problem is wide open. S-F withdrew their paper
[O(2)-actions on the 5-sphere, Invent. Math. 1987].

I Why so difficult?

15/28



Q-Homology Projective
Planes

Keum

Q-homology Projective
Planes

The Maximum Number of
Quotient Singularities

Montgomery-Yang
Problem

Algebraic
Montgomery-Yang
Problem

Gorenstein Q-homology
Projective Planes

Pseudofree S1-action on S2n−1

I For n = 2 Seifert (1932) showed that each pseudo-free
S1-action on S3 is linear and hence has at most 2
exceptional orbits.

I For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
a1, . . . ,ak , there is a pseudofree S1-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

I Petrie (1974) generalised the above M-Y for all n ≥ 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)
A pseudo-free S1-action on S5 has at most 3 exceptional
orbits.

I This problem is wide open. S-F withdrew their paper
[O(2)-actions on the 5-sphere, Invent. Math. 1987].

I Why so difficult?

15/28



Q-Homology Projective
Planes

Keum

Q-homology Projective
Planes

The Maximum Number of
Quotient Singularities

Montgomery-Yang
Problem

Algebraic
Montgomery-Yang
Problem

Gorenstein Q-homology
Projective Planes

Pseudofree S1-action on S2n−1

I For n = 2 Seifert (1932) showed that each pseudo-free
S1-action on S3 is linear and hence has at most 2
exceptional orbits.

I For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
a1, . . . ,ak , there is a pseudofree S1-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

I Petrie (1974) generalised the above M-Y for all n ≥ 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)
A pseudo-free S1-action on S5 has at most 3 exceptional
orbits.

I This problem is wide open. S-F withdrew their paper
[O(2)-actions on the 5-sphere, Invent. Math. 1987].

I Why so difficult?

15/28



Q-Homology Projective
Planes

Keum

Q-homology Projective
Planes

The Maximum Number of
Quotient Singularities

Montgomery-Yang
Problem

Algebraic
Montgomery-Yang
Problem

Gorenstein Q-homology
Projective Planes

Pseudofree S1-action on S2n−1

I For n = 2 Seifert (1932) showed that each pseudo-free
S1-action on S3 is linear and hence has at most 2
exceptional orbits.

I For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
a1, . . . ,ak , there is a pseudofree S1-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

I Petrie (1974) generalised the above M-Y for all n ≥ 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)
A pseudo-free S1-action on S5 has at most 3 exceptional
orbits.

I This problem is wide open. S-F withdrew their paper
[O(2)-actions on the 5-sphere, Invent. Math. 1987].

I Why so difficult?

15/28



Q-Homology Projective
Planes

Keum

Q-homology Projective
Planes

The Maximum Number of
Quotient Singularities

Montgomery-Yang
Problem

Algebraic
Montgomery-Yang
Problem

Gorenstein Q-homology
Projective Planes

Pseudofree S1-action on S2n−1

I For n = 2 Seifert (1932) showed that each pseudo-free
S1-action on S3 is linear and hence has at most 2
exceptional orbits.

I For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
a1, . . . ,ak , there is a pseudofree S1-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

I Petrie (1974) generalised the above M-Y for all n ≥ 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)
A pseudo-free S1-action on S5 has at most 3 exceptional
orbits.

I This problem is wide open. S-F withdrew their paper
[O(2)-actions on the 5-sphere, Invent. Math. 1987].

I Why so difficult?

15/28



Q-Homology Projective
Planes

Keum

Q-homology Projective
Planes

The Maximum Number of
Quotient Singularities

Montgomery-Yang
Problem

Algebraic
Montgomery-Yang
Problem

Gorenstein Q-homology
Projective Planes

Pseudofree S1-action on S2n−1

I For n = 2 Seifert (1932) showed that each pseudo-free
S1-action on S3 is linear and hence has at most 2
exceptional orbits.

I For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
a1, . . . ,ak , there is a pseudofree S1-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

I Petrie (1974) generalised the above M-Y for all n ≥ 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)
A pseudo-free S1-action on S5 has at most 3 exceptional
orbits.

I This problem is wide open.

S-F withdrew their paper
[O(2)-actions on the 5-sphere, Invent. Math. 1987].

I Why so difficult?

15/28



Q-Homology Projective
Planes

Keum

Q-homology Projective
Planes

The Maximum Number of
Quotient Singularities

Montgomery-Yang
Problem

Algebraic
Montgomery-Yang
Problem

Gorenstein Q-homology
Projective Planes

Pseudofree S1-action on S2n−1

I For n = 2 Seifert (1932) showed that each pseudo-free
S1-action on S3 is linear and hence has at most 2
exceptional orbits.

I For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
a1, . . . ,ak , there is a pseudofree S1-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

I Petrie (1974) generalised the above M-Y for all n ≥ 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)
A pseudo-free S1-action on S5 has at most 3 exceptional
orbits.

I This problem is wide open. S-F withdrew their paper
[O(2)-actions on the 5-sphere, Invent. Math. 1987].

I Why so difficult?

15/28



Q-Homology Projective
Planes

Keum

Q-homology Projective
Planes

The Maximum Number of
Quotient Singularities

Montgomery-Yang
Problem

Algebraic
Montgomery-Yang
Problem

Gorenstein Q-homology
Projective Planes

Pseudofree S1-action on S2n−1

I For n = 2 Seifert (1932) showed that each pseudo-free
S1-action on S3 is linear and hence has at most 2
exceptional orbits.

I For n = 4 Montgomery-Yang (1971) showed that given
arbitrary collection of pairwise prime positive integers
a1, . . . ,ak , there is a pseudofree S1-action on a homotopy
S7 whose exceptional orbits have exactly those orders.

I Petrie (1974) generalised the above M-Y for all n ≥ 5.

Conjecture (Montgomery-Yang problem,
Fintushel-Stern 1987)
A pseudo-free S1-action on S5 has at most 3 exceptional
orbits.

I This problem is wide open. S-F withdrew their paper
[O(2)-actions on the 5-sphere, Invent. Math. 1987].

I Why so difficult?

15/28



Q-Homology Projective
Planes

Keum

Q-homology Projective
Planes

The Maximum Number of
Quotient Singularities

Montgomery-Yang
Problem

Algebraic
Montgomery-Yang
Problem

Gorenstein Q-homology
Projective Planes

I Pseudo-free S1-actions on a manifold Σ have been
studied in terms of the orbit space Σ/S1.

I The orbit space X = S5/S1 of such an action is a
4-manifold with isolated singularities whose
neighborhoods are cones over lens spaces
corresponding to the exceptional orbits of the S1-action.

I Easy to check that X is simply connected and H2(X ,Z)
has rank 1 and intersection matrix (1/a1a2 · · · ak ).

I An exceptional orbit with isotropy type Z/a has an
equivariant tubular neighborhood which may be identified
with C× C× S1 with a S1-action

λ · (z,w ,u) = (λr z, λsw , λau)

where r and s are relatively prime to a.

16/28
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The following 1-1 correspondence was known to
Montgomery-Yang, Fintushel-Stern, and revisited by
Kollár(2005).

Theorem
There is a one-to-one correspondence between:

1. Pseudo-free S1-actions on Q-homology 5-spheres Σ with
H1(Σ,Z) = 0.

2. Compact differentiable 4-manifolds M with boundary
such that
2.1 ∂M =

⋃
i
Li is a disjoint union of lens spaces Li = S3/Zai ,

2.2 the ai ’s are pairwise prime,
2.3 H1(M,Z) = 0,
2.4 H2(M,Z) ∼= Z.

Furthermore, Σ is diffeomorphic to S5 iff π1(M) = 1.
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Algebraic Montgomery-Yang Problem

This is the M-Y Problem when S5/S1 attains a structure of a
normal projective surface.

Conjecture (J. Kollár)
Let S be a Q-homology CP2 with at worst quotient
singularities. If π1(S0) = {1}, then S has at most 3 singular
points.

What if the condition π1(S0) = {1} is replaced by the weaker
condition H1(S0,Z) = 0?

There are infinitely many examples S with
H1(S0,Z) = 0, π1(S0) 6= {1}, |Sing(S)| = 4.

These examples obtained from the classification of surface
quotient singularities [E. Brieskorn, Invent. Math. 1968].
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Example (coming from Brieskorn’s classification)
Im ⊂ GL(2,C) the 2m-ary icosahedral group Im = Z2m.A5.

1→ Z2m → Im → A5 ⊂ PSL(2,C)

Im acts on C2. This action extends naturally to CP2.Then

S := CP2/Im

is a Z-homology CP2 with −KS ample,

I S has 4 quotient singularities:
one non-cyclic singularity of type Im (the image of
O ∈ C2), and
3 cyclic singularities of order 2,3,5 (on the image of the
line at infinity),

I π1(S0) = A5, hence H1(S0,Z) = 0.

Call these Brieskorn quotients.
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Progress on Algebraic M-Y Problem

Theorem (D.Hwang-Keum, Math. Ann. 2011)
Let S be a Q-homology CP2 with quotient singularities, not all
cyclic, such that π1(S0) = {1}. Then |Sing(S)| ≤ 3.

More precisely

Theorem
Let S be a Q-homology CP2 with 4 or more quotient
singularities, not all cyclic, such that H1(S0,Z) = 0. Then S is
isomorphic to a Brieskorn quotient.

More Progress on Algebraic M-Y Problem:

Theorem (D.Hwang-Keum, Mich. Math. J. 2013; J.
MSJ 2014)
Let S be a Q-homology CP2 with cyclic singularities such that
H1(S0,Z) = 0. If either S is not rational or −KS is ample, then
|Sing(S)| ≤ 3.

Remark. If H1(S0,Z) = 0, KS cannot be numerically trivial.
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The Remaining Case of the Algebraic M-Y:

S is a Q-homology CP2 satisfying
(1) S has cyclic singularities only,
(2) S is a rational surface with KS ample.

Are there such surfaces ?

KS′ = π∗KS −
∑

Dp.

Yes.
Examples given by

I Keel and Mckernan (Mem. AMS 1999),
I Kollár (Pure Appl. Math. Q. 2008) — an infinite series of

examples with |Sing(S)| = 2.
I D. Hwang and Keum (Proc. AMS 2012) — infinite series

of examples with |Sing(S)| = 1,3.

Question: Are there such a surface S with |Sing(S)| = 4?
Are there any Q-homology CP2 which is a rational surface S
with KS ample and with |Sing(S)| = 4?
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(2) S is a rational surface with KS ample.

Are there such surfaces ?

KS′ = π∗KS −
∑

Dp.

Yes.
Examples given by

I Keel and Mckernan (Mem. AMS 1999),
I Kollár (Pure Appl. Math. Q. 2008) — an infinite series of

examples with |Sing(S)| = 2.
I D. Hwang and Keum (Proc. AMS 2012) — infinite series

of examples with |Sing(S)| = 1,3.

Question: Are there such a surface S with |Sing(S)| = 4?
Are there any Q-homology CP2 which is a rational surface S
with KS ample and with |Sing(S)| = 4?
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Cascade structure on Q-homology CP2’s

A Q-homology CP2 is obtained from a basic surface with
certain configuration of curves, by blow-ups and downs.
In the case where −KX ample, such basic surfaces have been
classified by D. Hwang.
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Gorenstein Q-homology CP2’s:

These are Q-homology CP2’s with ADE-singularities.

Let R be the singularity type or the corresponding root
sublattice of the cohomology lattice of S′, the minimal
resolution of S.
Since S is Gorenstein, rank(R) is bounded.

1 + rank(R) = b2(S′) = 10− K 2
S′ = 10− K 2

S ≤ 10,

rank(R) ≤ 9

with equality iff KS ≡ 0 iff S′ is an Enriques surface.

With D. Hwang and H. Ohashi, have classified all possible
singularity types of Gorenstein Q-homology CP2’s.
There are 58 types.
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Theorem (Hwang-Keum-Ohashi, Sci. China Math.
2015)
The singularity type R of a Gorenstein Q-homology CP2 is
one of the following:

I 27 types for KS ±ample:
A8, A7, D8, E8, E7, E6, D5, A4, A1;
A7 ⊕ A1, A5 ⊕ A2, A5 ⊕ A1, 2A4, A2 ⊕ A1, D6 ⊕ A1,
D5 ⊕ A3, 2D4, E7 ⊕ A1, E6 ⊕ A2;
A5 ⊕ A2 ⊕ A1, 2A3 ⊕ A1, A3 ⊕ 2A1, 3A2, D6 ⊕ 2A1;
2A3 ⊕ 2A1, 4A2, D4 ⊕ 3A1,

I 31 types for KS numerically trivial:
A9, D9;
A8 ⊕ A1, A7 ⊕ A2, A5 ⊕ A4, D8 ⊕ A1, D6 ⊕ A3, D5 ⊕ A4,
D5 ⊕ D4, E8 ⊕ A1, E7 ⊕ A2, E6 ⊕ A3;
A7 ⊕ 2A1, A6 ⊕ A2 ⊕ A1, A5 ⊕ A3 ⊕ A1, A5 ⊕ 2A2,
2A4 ⊕ A1, 3A3, D7 ⊕ 2A1, D6 ⊕ A2 ⊕ A1, D5 ⊕ A3 ⊕ A1,
2D4 ⊕ A1, E7 ⊕ 2A1, E6 ⊕ A2 ⊕ A1;
A5 ⊕ A2 ⊕ 2A1, A4 ⊕ A3 ⊕ 2A1, 2A3 ⊕ A2 ⊕ A1, A3 ⊕ 3A2,
D6 ⊕ 3A1, D4 ⊕ A3 ⊕ 2A1;
2A3 ⊕ 3A1.
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The 27 types with −KS ample were classified by
Furushima(1986), Miyanishi and Zhang(1988), Ye(2002). Our
method uses only lattice theory, different from theirs.

Among the 31 types with KS ≡ 0, 29 types are supported by
Enriques surfaces with finite automorphism group.

Currently, M. Schütt constucts, for each of the 31 types, an
explicit 1-dimensional family of Enriques surfaces.
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DescribeM(R).

For example, take R = D8 + A1.

M(D8 + A1) has two 1-dimensional components.

The K3 covers (general members) have transcendental lattice

TX = (0,1,0; 1,0,0; 0,0,4) or (0,2,0; 2,0,0; 0,0,4).

The first component corresponds to Enriques surfaces of
Kondō type I,
the second to Enriques surfaces Km(E × E)/iL where iL is the
Lieberman involution.
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Kondō type I,
the second to Enriques surfaces Km(E × E)/iL where iL is the
Lieberman involution.

28/28



Q-Homology Projective
Planes

Keum

Q-homology Projective
Planes

The Maximum Number of
Quotient Singularities

Montgomery-Yang
Problem

Algebraic
Montgomery-Yang
Problem

Gorenstein Q-homology
Projective Planes

DescribeM(R).

For example, take R = D8 + A1.

M(D8 + A1) has two 1-dimensional components.

The K3 covers (general members) have transcendental lattice

TX = (0,1,0; 1,0,0; 0,0,4) or (0,2,0; 2,0,0; 0,0,4).

The first component corresponds to Enriques surfaces of
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