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Classification of varieties

A task of algebraic geometry is to classify smooth projective
varieties.
dim X = 1:
g = h0(X , ωX )  Mg : moduli of curves of genus g .

dim X = 2:
(1) Difficulty: there are too many surfaces Xn birational to X , i.e.,
∃ open sets Un ⊂ Xn isomorphic to an open set of X .
(2) Reasonable to classify varieties up to birational equivalence.
(3) Find a good model from a birationally equivalent class in a
standard way.
(4) Strategy: choosing the “minimal” variety X , which admits no
blowing down maps.



Minimal model theory in dimension two

Solution in dimension 2
For a surface X , one can go a minimal model program (MMP for
short)

blowing down X → X1 → X2 → ...→ Xm = X̄

to get a smooth birational model X̄ such that either
(1) X̄ ∼= P2 or is ruled by rational curves, or
(2) KX̄ is nef and is semi-ample.
In the latter case X̄ is called the minimal model of X .



Kodaira dimension

Kodaira dimension is an invariant to refine the classification.

• Kodaira dimension: κ(X ) := maxm>0 dimφ|mKX |(X ), which
can be −∞, 0, 1, · · · , dim X .

• For surfaces, in case (1), κ = −∞.

• In case (2), κ = 0, 1, 2, and the case κ = 0 is completely
classified; when κ = 0 Iitaka fibration of X̄ is an elliptic
fibration; when κ = 2 = dim X we say X is of general type.

• A divisor D is said to be semi-ample, if for sufficiently divisible
N > 0, |ND| has no base point.

• In Case (2), KX̄ is semi-ample. We say “abundance” holds
for surfaces.



Minimal model program

dimX ≥ 3: similar story happens.
From X , after a sequence of birational modification (divisorial
contraction, flips), the so-called “MMP” one expects to get a
“minimal” variety X̄ such that either

• X̄ is a Mori fiber space, or

• KX̄ is nef.

Two central problems of MMP include

• Existence of minimal models in dimension n (En): Can MMP
run and terminate?

• Abundance in dimension n (An): if KX is nef, is KX

semi-ample?



Log-minimal model program

To study MMP by induction on dimensions, varieties with
boundary (X ,B) should be considered. Analogous theory is called
log MMP.
Central problems of log-MMP include

• Existence of log minimal models in dimension n (log En)

• Abundance in dimension n for lc minimal models (log An)

Remark: Mild singularities, say, singularities below should be
permitted in higher dimension to make MMP run. For a pair
(X ,B), taking a log smooth resolution f : Y → X and writing that

KY = f ∗(KX + B) +
∑
i

aiEi ,

if ai ≥ −1 (> −1), we say (X ,B) is log-canonical (Kawamata
log terminal).



Progresses in characteristic 0 of MMP

Over complex numbers, remarkable progresses were made by many
brilliant mathematicians: Mori, Kawamata, Shokurov, Reid, Kollar,
Viehweg, BCHM, Fujino, Gongyo....
The following has been proved

• log En and log An when B is big or KX + B is big [BCHM,
2010];

• log E3 and log A3 [Miyaoka, Kawamata, KMM, 1990s].



Progresses in characteristic p

In dimension 2,

• existence of minimal models and abundance are implied by
Bombieri-Mumford’s classification [BM, 1970s],

• similar results are true for (semi-)log canonical surfaces
[Tanaka, 2014-15].

In dimension 3 and char p > 5,

• existence of minimal models of klt pairs (X ,B) [Hacon, Xu,
Birkar, 2013-15];

• abundance for klt pairs when either KX + B or B is big [Birkar
and Xu, 2015].

Problem
Prove abundance for a minimal klt pair (X ,B) of 3-fold with
ν(KX + B) = 0, 1, 2.



Approach in characteristic zero: q(X ) > 0

Two completely different methods are employed according to
q(X ), i.e., whether X has Albanese map.
(1) If q(X ) > 0, i.e., X has non-trivial Albanese map
aX : X → AX , one can show abundance by using

Theorem: Kawamama, Viehweg, 1980

Let X be a smooth projective variety over X of maximal Albanese
map. If κ(X ) = 0, then X is birational to an abelian variety.

Iitaka Conjecture

Let f : X → Y be a fibration between two smooth projective
varieties over C, with dim X = n and dim Y = m. Then

Cn,m : κ(X ) ≥ κ(Y ) + κ(Xη̄).

In dimension 3, it is proven by K-V (1980s).



Approach: the case q(X ) = 0
(2) The case q(X ) = 0 was treated by [Miyaoka, Kawamata,
1990s].
The approach is as follows
Step 1: Prove the non-vanishing of H0(X , nKX ). Miyaoka applied
Riemann-Roch formula,

χ(Y , ρ∗O(nKX ))

=
2n3 − 3n2

12
K 3
X +

n

12
KX · (K 2

X + ρ∗c2(Y )) + χ(OX )

the following are needed

P1 generic positivity of ΩX (implying c2(X ) ≥ 0);

P2 vanishing theorems;

P3 Donaldson’s results on stable bundles: poly-stable vector bundles on
a surface with vanishing Chern classes are induced by representation
of πalg

1 ;

P4 the fundamental group of a terminal germ (X , 0) is finite.



Approach continued: the case q(X ) = 0 and log
abundance

Step 2: Prove κ(X ) > 0 if KX � 0, which implies abundance. The
following are needed [Miyaoka and Kawamata, 1980s-90s]

P5 log abundance of surfaces (which has been proven by Tanaka
in char p > 0)

P6 for case ν(KX ) = 1, infinitesimal deformation of canonical
divisors in 3-folds

P7 for case ν(KX ) = 2, log terminal singularities are quotient
singularities in codimension two, generic positivity results on
orbifolds, vanishing theorems

(3) Log abundance was proved by reducing to Mori fiber spaces
[Keel, Matsuki, McKernan, 1990s], where the key point is

P8 canonical bundle formula



Additional difficulties in char p > 0

We have additional difficulties in positive characteristics.

P9 For a fibration of smooth varieties f : X → Y , Xη̄ may be
singular, in particular it is non-reduced if f is inseparable. So
it is much more difficult to show Iitaka conjecture.

P10 For a minimal variety X , X may be uniruled. Then generic
positivity of Ω1

X fails.

Remark:

• We don’t worry about P2, P5 by [Tanaka, 2015] and P6 by
[Totaro, 2009] in positive characteristics.

• P4 has been studied by [Carvajal-Rojas, Schwede and Tucker,
2015] for F -regular singularities.

• P1 and P8 are widely open and of great importance.



Iitaka conjecture for 3-folds

Theorem: Ejiri, Birkar, Chen, -, 2015-16

Assume char k = p > 5. Let (X ,B) be a klt 3-folds and
f : X → Y a separable fibration. Then
(1) C3,1 is true when
(1.1) (Xη,Bη) is klt, p . ind(Bη) and κ(Xη,KXη

+ Bη) = 0, 2; or
(1.2) κ(Xη,KXη

+ Bη) = 1, and KXη
+ Bη induces an elliptic

fibration.
(2) C3,2 is true when
(2.1) g(Xη) > 0, or
(2.2) Y is not uni-ruled, KY is big, and κ(Xη,KXη

+ Bη) = 1.



Abundance for 3-folds with non-trivial Albanese maps

Theorem: -, 2016
Let X be a Q-factorial, projective, non-uniruled 3-fold, over an
algebraically closed field of characteristic p > 5. Let B be an
effective Q-divisor on X . Assume that
(1) (X ,B) is a minimal klt pair; and
(2) the Albanese map aX : X → AX is non-trivial.
Then KX + B is semi-ample.



Sketch of the proof

(1) Reduce to showing that either κ(KX + B) ≥ 1 or KX + B ∼Q 0.
(2) If the Albanese map aX : X → AX is separable, then the Stein
factorization of aX induces a separable fibration f : X → Y . We
can prove abundance by use of MMP, subadditivity of Kodaira
dimensions, geometry of varieties with κ(X ) = 0.
(3) If the Albanese map aX : X → AX is inseparable, then we have
a foliation F = L⊥ ⊂ TX where L is the saturation of the image
of the natural homomorphism a∗XΩ1

AX
→ Ω1

X . By replacing X with
X/F repeatedly, we can finally obtain a variety whose Albanese
map is separable, then show that κ(X ) ≥ 1 by induction. Details
will be explained below.



How to treat inseparable maps?

We explain the idea to prove that κ(X ) ≥ 1 if the Albanese map
aX : X → AX is inseparable, dim aX (X ) = dim X − 1 and X is not
uniruled.
(1) Let L denote the saturation of the image of the natural
homomorphism a∗XΩ1

AX
→ Ω1

X . Then L is generically globally

generated, rank L ≤ n − 2, and h0(X ,L) ≥ h0(AX ,Ω
1
AX

) ≥ n − 1,
which implies that

h0(X , detL) ≥ 2.

(2) We get a natural foliation F = L⊥ ⊂ TX of rank ≥ 2 and a
quotient map ρ : X → X1 = X/F . Then we have

(♣) κ(X ) ≥ κ(X1), and if κ(X1) = 0 then κ(X ) ≥ 1.

If aX1 : X1 → A is separable, then we are done by applying Cn,n−1.



Continued

(3) Let X ′ be the normalization of the reduction of X (1) ×Z (1) Z .
Then
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We can show the multiplicity of the geometric fiber of X1 → Z1

decrease strictly if aX1 is not inseparable.



Further questions

To prove abundance for 3-folds, the following probably should be
concerned according to Miyaoka, Kawamata and KMM

• generic positivity of ΩX for non-uniruled 3-fold;

• a reasonable canonical bundle formula;

• local fundamental group of klt pairs;

• a method to treat uniruled cases.



On canonical bundle formula

In char = 0, for a klt pair (X ,B) and a KX + B-trivial fibration
f : X → Y , we have a klt pair (Y ,BY ) and the canonical bundle
formula ( Ambro, 2004):

KX + B ∼Q f ∗(KY + BY ).

In positive characteristics, Das and Schwede (Ejiri) prove that if
(Xη,Bη) is F-split (F-pure) then there exists an effective
(pseudo-effective) divisor BY on Y such that

KX + B ∼Q f ∗(KY + BY ).

If not assuming (Xη,Bη) is F-split or F-pure, the results above is
not true. One can get an example by considering PC (V ) where V
is a semi-stable but not strongly semi-stable. vector bundle of rank
two.



Thank you!
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Basel, 1997.

Z. Patakfalvi, Semi-positivity in positive characteristics, Ann.
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