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Classification of varieties

A task of algebraic geometry is to classify smooth projective
varieties.

dim X = 1:

g = h%(X,wx) ~» Mg: moduli of curves of genus g.

dim X = 2:

(1) Difficulty: there are too many surfaces X, birational to X, i.e.,
d open sets U, C X, isomorphic to an open set of X.

(2) Reasonable to classify varieties up to birational equivalence.
(3) Find a good model from a birationally equivalent class in a
standard way.

(4) Strategy: choosing the “minimal” variety X, which admits no
blowing down maps.



Minimal model theory in dimension two

Solution in dimension 2
For a surface X, one can go a minimal model program (MMP for
short)

blowing down X — X1 = Xo — ... > X™ =X

to get a smooth birational model X such that either
(1) X =2 P? or is ruled by rational curves, or

(2) Kx is nef and is semi-ample.

In the latter case X is called the minimal model of X.



Kodaira dimension

Kodaira dimension is an invariant to refine the classification.

¢ Kodaira dimension: x(X) := maxm>0 dim @k, |(X), which
can be —00,0,1,--- ,dim X.

For surfaces, in case (1), K = —oc.

In case (2), k =0,1,2, and the case k = 0 is completely
classified; when x = 0 litaka fibration of X is an elliptic
fibration; when k = 2 = dim X we say X is of general type.

A divisor D is said to be semi-ample, if for sufficiently divisible
N > 0, [ND| has no base point.

In Case (2), Kx is semi-ample. We say “abundance” holds
for surfaces.



Minimal model program

dimX > 3: similar story happens.

From X, after a sequence of birational modification (divisorial
contraction, flips), the so-called “MMP" one expects to get a
“minimal” variety X such that either

e X is a Mori fiber space, or
o Kg is nef.
Two central problems of MMP include
¢ Existence of minimal models in dimension n (E,): Can MMP
run and terminate?
e Abundance in dimension n (Ap): if Kx is nef, is Kx
semi-ample?



Log-minimal model program

To study MMP by induction on dimensions, varieties with
boundary (X, B) should be considered. Analogous theory is called
log MMP.
Central problems of log-MMP include

e Existence of log minimal models in dimension n (log E,)

e Abundance in dimension n for Ic minimal models (log A,)

Remark: Mild singularities, say, singularities below should be
permitted in higher dimension to make MMP run. For a pair
(X, B), taking a log smooth resolution f : Y — X and writing that

Ky = f*(Kx + B) + Y _ aiE;,
i

if a; > —1 (> —1), we say (X, B) is log-canonical (Kawamata
log terminal).



Progresses in characteristic 0 of MMP

Over complex numbers, remarkable progresses were made by many
brilliant mathematicians: Mori, Kawamata, Shokurov, Reid, Kollar,
Viehweg, BCHM, Fujino, Gongyo....
The following has been proved
e log E, and log A, when B is big or Kx + B is big [BCHM,
2010];
e log E3 and log A3 [Miyaoka, Kawamata, KMM, 1990s].



Progresses in characteristic p

In dimension 2,

e existence of minimal models and abundance are implied by
Bombieri-Mumford's classification [BM, 1970s],

e similar results are true for (semi-)log canonical surfaces
[Tanaka, 2014-15].

In dimension 3 and char p > 5,

e existence of minimal models of kit pairs (X, B) [Hacon, Xu,
Birkar, 2013-15];

e abundance for kit pairs when either Kx + B or B is big [Birkar
and Xu, 2015].

Problem
Prove abundance for a minimal kit pair (X, B) of 3-fold with
v(Kx + B) =0,1,2.



Approach in characteristic zero: q(X) > 0

Two completely different methods are employed according to
q(X), i.e., whether X has Albanese map.

(1) If g(X) >0, i.e., X has non-trivial Albanese map

ax : X = Ax, one can show abundance by using

Theorem: Kawamama, Viehweg, 1980

Let X be a smooth projective variety over X of maximal Albanese
map. If K(X) =0, then X is birational to an abelian variety.

litaka Conjecture

Let f : X — Y be a fibration between two smooth projective
varieties over C, with dim X = n and dimY = m. Then

Com : K(X) > K(Y) + £(X5).

In dimension 3, it is proven by K-V (1980s).



Approach: the case g(X) =0
(2) The case g(X) = 0 was treated by [Miyaoka, Kawamata,
1990s].
The approach is as follows
Step 1: Prove the non-vanishing of H%(X, nKx). Miyaoka applied
Riemann-Roch formula,

x(Y,p*O(nKx))

2n® —3n? n

the following are needed
P1 generic positivity of Qx (implying c,(X) > 0);
P2 vanishing theorems;

P3 Donaldson's results on stable bundles: poly-stable vector bundles on
a surface with vanishing Chern classes are induced by representation

I
of ﬂ'fg;

P4 the fundamental group of a terminal germ (X, 0) is finite.



Approach continued: the case g(X) = 0 and log
abundance

Step 2: Prove x(X) > 0 if Kx ~ 0, which implies abundance. The
following are needed [Miyaoka and Kawamata, 1980s-90s]
P5 log abundance of surfaces (which has been proven by Tanaka
in char p > 0)
P6 for case v(Kx) = 1, infinitesimal deformation of canonical
divisors in 3-folds
P7 for case v(Kx) = 2, log terminal singularities are quotient
singularities in codimension two, generic positivity results on
orbifolds, vanishing theorems

(3) Log abundance was proved by reducing to Mori fiber spaces
[Keel, Matsuki, McKernan, 1990s|, where the key point is

P8 canonical bundle formula



Additional difficulties in char p > 0

We have additional difficulties in positive characteristics.

P9 For a fibration of smooth varieties f : X — Y, X5 may be
singular, in particular it is non-reduced if f is inseparable. So
it is much more difficult to show litaka conjecture.

P10 For a minimal variety X, X may be uniruled. Then generic
positivity of Q) fails.
Remark:

e We don't worry about P2, P5 by [Tanaka, 2015] and P6 by
[Totaro, 2009] in positive characteristics.

e P4 has been studied by [Carvajal-Rojas, Schwede and Tucker,
2015] for F-regular singularities.

e P1 and P8 are widely open and of great importance.



litaka conjecture for 3-folds

Theorem: Ejiri, Birkar, Chen, -, 2015-16

Assume char k = p > 5. Let (X, B) be a klt 3-folds and

f : X = Y a separable fibration. Then

(1) Gz1 is true when

(1.1) (Xg, By) is klt, p+ind(By) and k(Xg, Kx, + By) = 0,2; or
(1.2) k(Xq, Kx; + By) = 1, and Kx,_ + By induces an elliptic
fibration.

(2) Gz is true when

(2.1) g(X7) >0, or

(2.2) Y is not uni-ruled, Ky is big, and x(Xg7, Kx. + By) = 1.



Abundance for 3-folds with non-trivial Albanese maps

Theorem: -, 2016

Let X be a Q-factorial, projective, non-uniruled 3-fold, over an
algebraically closed field of characteristic p > 5. Let B be an
effective Q-divisor on X. Assume that

(1) (X, B) is a minimal kit pair; and

(2) the Albanese map ax : X — Ax is non-trivial.

Then Kx + B is semi-ample.



Sketch of the proof

(1) Reduce to showing that either k(Kx + B) > 1 or Kx + B ~q 0.
(2) If the Albanese map ax : X — Ax is separable, then the Stein
factorization of ax induces a separable fibration f : X — Y. We
can prove abundance by use of MMP, subadditivity of Kodaira
dimensions, geometry of varieties with x(X) = 0.

(3) If the Albanese map ax : X — Ax is inseparable, then we have
a foliation F = L+ C Tx where L is the saturation of the image
of the natural homomorphism Q}Q,qu — Q}<. By replacing X with
X | F repeatedly, we can finally obtain a variety whose Albanese
map is separable, then show that x(X) > 1 by induction. Details
will be explained below.



How to treat inseparable maps?

We explain the idea to prove that x(X) > 1 if the Albanese map
ax : X — Ax is inseparable, dim ax(X) = dim X — 1 and X is not
uniruled.
(1) Let £ denote the saturation of the image of the natural
homomorphism a}Q}qX — Q}<. Then L is generically globally
generated, rank £ < n—2, and h°(X, L) > h%(Ax, Q) ) > n—1,
which implies that

RO(X,det £) > 2.
(2) We get a natural foliation F = £+ C Tx of rank >2 and a
quotient map p : X — X; = X/F. Then we have
(d) k(X) > k(X1), and if kK(X1) =0 then k(X) > 1.
If ax, : X1 — A is separable, then we are done by applying C, 1.



Continued

(3) Let X’ be the normalization of the reduction of X(1) x ;) Z.
Then

24)73 Zl 4>7r4 Z(l)

a a1
Z/Zl iz()
F

A— AQ)

We can show the multiplicity of the geometric fiber of X1 — 23
decrease strictly if ax, is not inseparable.



Further questions

To prove abundance for 3-folds, the following probably should be
concerned according to Miyaoka, Kawamata and KMM

e generic positivity of Qx for non-uniruled 3-fold;

e a reasonable canonical bundle formula;

e |ocal fundamental group of kit pairs;

e a method to treat uniruled cases.



On canonical bundle formula

In char = 0, for a kit pair (X, B) and a Kx + B-trivial fibration
f: X — Y, we have a klt pair (Y, By) and the canonical bundle
formula ( Ambro, 2004):

Kx + B ~q *(Ky + By).

In positive characteristics, Das and Schwede (Ejiri) prove that if
(Xy, By) is F-split (F-pure) then there exists an effective
(pseudo-effective) divisor By on Y such that

Kx + B ~Q f*(Ky + By).

If not assuming (X, B;) is F-split or F-pure, the results above is
not true. One can get an example by considering Pc (V) where V
is a semi-stable but not strongly semi-stable. vector bundle of rank
two.



Thank you!
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