On minimal 3-folds of general type with the geometric genus 1, 2 or 3

Meng Chen Fudan University

(**January 2017**)

Introduction

1

· Canonica | stability index

(S(V) = min {mo | \$\phi_m \text{ is birational for all mamb}}

· Curve family G on X F T Fibration

G = {g(F)|F=fibrerff} J fibration

Canonical degree CEX

 $= (K_{x \cdot c})$

· Theorem O. (Bombieri) S minimal surface of general type. Then

(1) 13(5) ≤5

(2) 73(5)=5 \Shas a Curve family G of Jenus 2
of canonical degree 1.

Introduction

X minimal 3-fold of general type $p_g = h'(\omega_x) \sim geometric genus$

Pg≥4, rs(X) ≤5 (Optimal)

$$(5(X)=5)$$
 (101) (101) (101)

Pg>5, 3 & of genus 2

with the cononical

degree 1 (Chen-D-Q.

Zhang

Date

20

Pg=4, Characterized by (Chen- Q. Zhang)

Introduction and Examples

•
$$fg = 3 \Rightarrow \Upsilon_{S}(X) \leqslant 6$$
 (optimal)

 $\Upsilon_{S}(X) = 6 \Leftrightarrow ?$
• $fg = 2 \Rightarrow \Upsilon_{S}(X) \leqslant 8$ (optimal)

 $\Upsilon_{S}(X) = 8 \Leftrightarrow X$ has a curve family G
of genus 2 with canonical degree

"2/3".

• $fg = 1$, Chen-Chen $\Rightarrow \Upsilon_{S}(X) \leqslant 18$
 $\Upsilon_{S}(X) = 18$
 $\Upsilon_{S}(X) = 19$
 $\Upsilon_{S}(X) = 19$
 $\Upsilon_{S}(X) = 16$
? Open

```
25
   · pg = 0. Chen-chen => 13(x) < 61
                          (1s(x) <57).
30
   · Examples (lano-Fletcher)
    1. X12 [P(1,1,1,2,6). K3=1, P8=3
         15(X12)=6
    2. X16 C P(1,1,2,3,8), K=1/3, Pg=2
40
        13(X16) = 8
    3. X14 = P(1,1,2,2,7), K=1/2, Px = 2
45
         13(X4) = 7
              10
                           20
```

Examples and Main Theorems

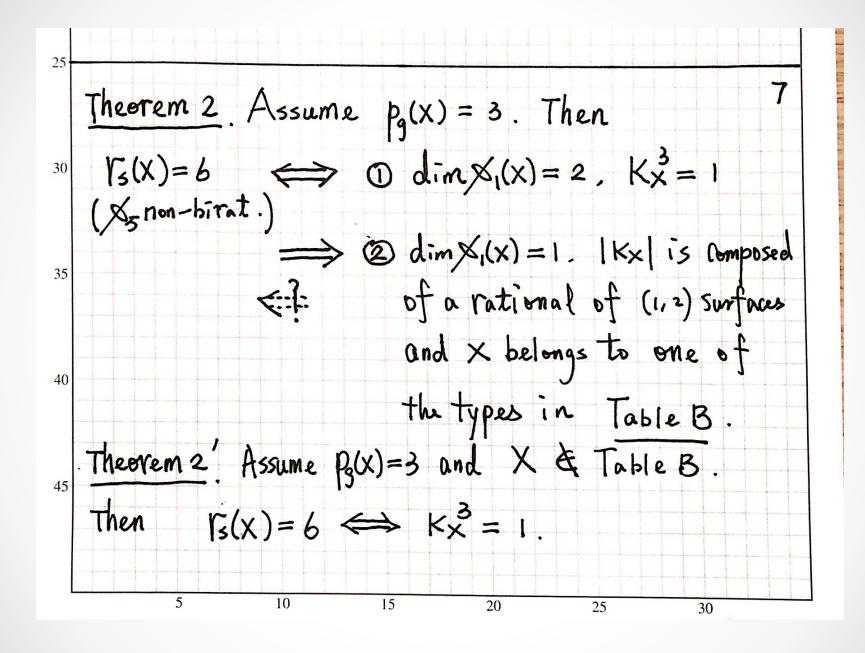
5

4.
$$X_{4,12} \subset P(1,1,2,2,3,6)$$
, $K^3 = \frac{2}{3}$, $P_8 = 2$
 $Y_3(X_{4,12}) = 6$

5.
$$X_{28} \subset P(1,3,4,5,14), K^3 = \frac{1}{3}, p_8 = 1$$

 $Y_3(X) = 14$.

(Joint with Yong Hu, Matter Penegini)
(Genova)


Theorem ! Assume $p_g(x)=1$. Then

(1) $\gamma_3(x) \leqslant 7$

(a) rs(x) ≤ 16 unless x belongs to one of the following types: (Table A)

M. Chen, Y. Hu and M. Penegini

- $b_X = \{4 \times (1,2), (3,7), 3 \times (2,5), (1,3)\}, K^3 = \frac{2}{105}, P_2 = 1, \\ \chi(\mathcal{O}_X) = 1;$
- $B_X = \{4 \times (1,2), (5,12), 2 \times (2,5), (1,3)\}, K^3 = \frac{1}{60}, P_2 = 1, \\ \chi(\mathcal{O}_X) = 1;$
- $B_X = \{7 \times (1,2), (3,7), 2 \times (1,3), (2,7)\}, K^3 = \frac{1}{42}, P_2 = 1, \\ \chi(\mathcal{O}_X) = 1;$
- $\circ B_X = \{7 \times (1,2), (3,7), (1,3), (3,10)\}, K^3 = \frac{2}{105}, P_2 = 1, \chi(\mathcal{O}_X) = 1;$
- $b_X = \{7 \times (1,2), 2 \times (2,5), 2 \times (1,3), (1,4)\}, K^3 = \frac{1}{60}, P_2 = 1, \chi(\mathcal{O}_X) = 1.$

14	41/30	-1	6	$2 \times [1, 2], 2 \times [1, 3], 2 \times [1, 4], 1 \times [1, 5],$
15	4/3	-1	6	$2 \times [1,2], 2 \times [1,3], 2 \times [1,4], 1 \times [1,6],$
16	17/12	-1	6	$2 \times [1,2], 2 \times [1,3], 3 \times [1,4],$
17	4/3	-1	6	$2 \times [2, 5], 1 \times [1, 3], 2 \times [1, 5],$
18	83/60	-1	6	$2 \times [2,5], 1 \times [1,3], 1 \times [1,4], 1 \times [1,5],$
19	27/20	-1	6	$2 \times [2,5], 1 \times [1,3], 1 \times [1,4], 1 \times [1,6],$
20	41/30	-1	6	$1 \times [1, 2], 1 \times [2, 5], 2 \times [1, 3], 2 \times [1, 5],$
21	4/3	-1	6	$1 \times [1, 2], 1 \times [2, 5], 2 \times [1, 3], 1 \times [1, 5], 1 \times [1, 6],$
22	43/30	-1	6	$2 \times [2, 5], 1 \times [1, 3], 2 \times [1, 4],$
23	17/12	-1	6	$1 \times [1, 2], 1 \times [2, 5], 2 \times [1, 3], 1 \times [1, 4], 1 \times [1, 5],$
24	83/60	-1	6	$1 \times [1, 2], 1 \times [2, 5], 2 \times [1, 3], 1 \times [1, 4], 1 \times [1, 6],$
25	571/420	-1	6	$1 \times [1,2], 1 \times [2,5], 2 \times [1,3], 1 \times [1,4], 1 \times [1,7],$
26	161/120	-1	6	$1 \times [1, 2], 1 \times [2, 5], 2 \times [1, 3], 1 \times [1, 4], 1 \times [1, 8],$
27	7/5	-1	6	$2 \times [1,2], 3 \times [1,3], 2 \times [1,5],$
28	4/3	-1	6	$2 \times [1,2], 3 \times [1,3], 2 \times [1,6],$
29	41/30	-1	6	$2 \times [1, 2], 3 \times [1, 3], 1 \times [1, 5], 1 \times [1, 6],$
30	47/35	-1	6	$2 \times [1, 2], 3 \times [1, 3], 1 \times [1, 5], 1 \times [1, 7],$
31	22/15	-1	6	$1 \times [1, 2], 1 \times [2, 5], 2 \times [1, 3], 2 \times [1, 4],$
32	29/20	-1	6	$2 \times [1,2], 3 \times [1,3], 1 \times [1,4], 1 \times [1,5],$
33	17/12	-1	6	$2 \times [1,2], 3 \times [1,3], 1 \times [1,4], 1 \times [1,6],$
34	39/28	-1	6	$2 \times [1,2], 3 \times [1,3], 1 \times [1,4], 1 \times [1,7],$
35	11/8	-1	6	$2 \times [1,2], 3 \times [1,3], 1 \times [1,4], 1 \times [1,8],$
36	49/36	-1	6	$2 \times [1, 2], 3 \times [1, 3], 1 \times [1, 4], 1 \times [1, 9],$
37	27/20	-1	6	$2 \times [1, 2], 3 \times [1, 3], 1 \times [1, 4], 1 \times [1, 10],$
38	59/44	-1	6	$2 \times [1, 2], 3 \times [1, 3], 1 \times [1, 4], 1 \times [1, 11],$
39	4/3	-1	6	$2 \times [1, 2], 3 \times [1, 3], 1 \times [1, 4], 1 \times [1, 12],$

1 1	/	- 1	-	[-1-]1 [-1-]1 [-1-]1 [-1]1 [
75	361/270	-1	6	$1 \times [1,2], 1 \times [2,5], 3 \times [1,3], 1 \times [1,27],$
76	187/140	-1	6	$1 \times [1,2], 1 \times [2,5], 3 \times [1,3], 1 \times [1,28],$
77	387/290	-1	6	$1 \times [1,2], 1 \times [2,5], 3 \times [1,3], 1 \times [1,29],$
78	4/3	-1	6	$1 \times [1,2], 1 \times [2,5], 3 \times [1,3], 1 \times [1,30],$
79	31/20	-1	6	$1 \times [1,2], 1 \times [2,5], 3 \times [1,3], 1 \times [1,4],$
80	43/30	-1	6	$1 \times [1, 2], 2 \times [2, 5], 2 \times [1, 6],$
81	22/15	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,5], 1 \times [1,6],$
82	127/90	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,5], 1 \times [1,9],$
83	83/60	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,5], 1 \times [1,12],$
84	41/30	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,5], 1 \times [1,15],$
85	61/45	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,5], 1 \times [1,18],$
86	283/210	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,5], 1 \times [1,21],$
87	161/120	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,5], 1 \times [1,24],$
88	361/270	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,5], 1 \times [1,27],$
89	4/3	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,5], 1 \times [1,30],$
90	148/105	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,6], 1 \times [1,7],$
91	167/120	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,6], 1 \times [1,8],$
92	62/45	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,6], 1 \times [1,9],$
93	41/30	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,6], 1 \times [1,10],$
94	224/165	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,6], 1 \times [1,11],$
95	27/20	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,6], 1 \times [1,12],$
96	262/195	-1	6	$1 \times [1,2], 2 \times [2,5], 1 \times [1,6], 1 \times [1,13],$
97	281/210	-1	6	$1 \times [1, 2], 2 \times [2, 5], 1 \times [1, 6], 1 \times [1, 14],$

131	41/30	-1	6	$1 \times [1, 3], 3 \times [1, 4], 1 \times [1, 5], 1 \times [1, 12],$
132	1061/780	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,5], 1 \times [1,13],$
133	569/420	-1	6	$1 \times [1, 3], 3 \times [1, 4], 1 \times [1, 5], 1 \times [1, 14],$
134	27/20	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,5], 1 \times [1,15],$
135	323/240	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,5], 1 \times [1,16],$
136	1369/1020	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,5], 1 \times [1,17],$
137	241/180	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,5], 1 \times [1,18],$
138	1523/1140	-1	6	$1 \times [1, 3], 3 \times [1, 4], 1 \times [1, 5], 1 \times [1, 19],$
139	4/3	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,5], 1 \times [1,20],$
140	39/28	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,6], 1 \times [1,7],$
141	11/8	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,6], 1 \times [1,8],$
142	49/36	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,6], 1 \times [1,9],$
143	27/20	-1	6	$1 \times [1, 3], 3 \times [1, 4], 1 \times [1, 6], 1 \times [1, 10],$
144	59/44	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,6], 1 \times [1,11],$
145	4/3	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,6], 1 \times [1,12],$
146	227/168	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,7], 1 \times [1,8],$
147	337/252	-1	6	$1 \times [1,3], 3 \times [1,4], 1 \times [1,7], 1 \times [1,9],$
148	4/3	-1	7	$4 \times [1, 2], 7 \times [1, 3],$
149	27/20	-1	7	$3 \times [1, 2], 2 \times [2, 5], 3 \times [1, 3], 1 \times [1, 4],$
150	4/3	-1	7	$4 \times [1, 2], 1 \times [2, 5], 4 \times [1, 3], 1 \times [1, 5],$
151	83/60	-1	7	$4 \times [1, 2], 1 \times [2, 5], 4 \times [1, 3], 1 \times [1, 4],$
152	41/30	-1	7	$5 \times [1, 2], 5 \times [1, 3], 1 \times [1, 5],$
153	4/3	-1	7	$5 \times [1, 2], 5 \times [1, 3], 1 \times [1, 6],$
154	17/12	-1	7	$5 \times [1, 2], 5 \times [1, 3], 1 \times [1, 4],$
155	4/3	-1	7	$5 \times [2, 5], 1 \times [1, 3],$

```
· /g(x)=3. Tool 1 > |Kx1 | rational pencil
      KXIBaF
Tool 2 => |5 Kx1| = > |3(Kx+F)| = > |3KF|
    \Rightarrow F = (4,3) or (1,2)
 F=(0.3) Tools Sox is birational
          >> Mo=1. |G|=Mox|+|, β===, 5=2.
              \propto(5)=2
            10
                   15
                          20
```

Sketch

•
$$p_g(x) = 2$$

 $Tool 2 \Rightarrow |bKx||_{F} \Rightarrow |3(4x+F)|_{F} = |3k_F|$
 $\Rightarrow F = (3.3) \text{ or } (1/2)$.

$$F=(3.3) \xrightarrow{Tool 1} deg_c(F)=1.86.x Non-birational$$

$$F = (112) \implies M_0 = 1, \xi = 1. \beta = \frac{1}{2}, |G| = M_{ov}|K_F|$$

 $\xi = \frac{2}{3}$

$$\Rightarrow \alpha(6) \geqslant \frac{4}{3}$$

$$\Rightarrow \alpha(6) \geqslant \frac{4}{3}$$

$$\Rightarrow (6) \geqslant \frac{4}{3}$$

$$\Rightarrow P_4(x) \geqslant 2$$

$$\Rightarrow P_4(x) = 1 \Rightarrow P_5(x) = 1 \Rightarrow P$$

```
Tool 1 => ×16.x non-hirational implies
                     F=(1,2), f: X/-> P'
    In general
        f: X' > IP'. Filme is a (112) surface
    g(x) = 0. h^2(0x) = h^1(f*wx') \leq 1
                                              P_{x}(x) = 3
     \mathcal{L}(0x) \leqslant 2 - \beta(x) = \begin{cases} -1 \\ 0 \end{cases}
                                               Po(x) = 2
                                               Po(x) = 1
45
     i.e. Icox) is bounded
                                     20
                                               25
```

Date

Step 2

$$\forall m_1 > m_0, P_{m_1} \geq P_{m_0}, \forall j \geq 0$$

$$H'(X', M_{m_1} - j_F) \xrightarrow{\partial m_{i_1} - j_i} U_{m_{i_1} - j_i} L'(F, M_{m_1} - j_i)$$

$$H'(F, M_{m_1} - j_C) \xrightarrow{f_{m_{i_1} - j_i}} V_{m_{i_1} - j_i} L'(C, M_{m_1} - j_i)$$

$$U_{m_{i_1} - j_i} = \dim U_{m_{i_1} - j_i} \Rightarrow decressing sequences$$

$$U_{m_{i_1} - j_i} \geq U_{m_{i_1} - j_i} \geq U_{m$$

Observations: Um, o is large => lither & is larger => Whenever Pm, is larger, Xm is britational (m=5,6,16)P2 & N2, P3 & N3, -.., $P_2 \leq 4$, $P_3 \leq 8$, $P_4 \leq 13$, $P_5 \leq 19$, $P_6 \leq 31$ $\mathcal{I}(\omega_X) = -1$, O, $\frac{1}{3} \leq K_X^3 \leq 4$

=> Table A, B, C.

Thank you!